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Abstract—This paper addresses three issues in the field of ad hoc
network capacity: the impact of i) channel fading, ii) channel in-
version power control, and iii) threshold–based scheduling on ca-
pacity. Channel inversion and threshold scheduling may be viewed
as simple ways to exploit channel state information (CSI) without
requiring cooperation across transmitters. We use the transmission
capacity (TC) as our metric, defined as the maximum spatial in-
tensity of successful simultaneous transmissions subject to a con-
straint on the outage probability (OP). By assuming the nodes are
located on the infinite plane according to a Poisson process, we are
able to employ tools from stochastic geometry to obtain asymptot-
ically tight bounds on the distribution of the signal-to-interference
(SIR) level, yielding in turn tight bounds on the OP (relative to a
given SIR threshold) and the TC. We demonstrate that in the ab-
sence of CSI, fading can significantly reduce the TC and somewhat
surprisingly, channel inversion only makes matters worse. We de-
velop a threshold-based transmission rule where transmitters are
active only if the channel to their receiver is acceptably strong,
obtain expressions for the optimal threshold, and show that this
simple, fully distributed scheme can significantly reduce the effect
of fading.

Index Terms—Ad hoc networks, channel inversion, fading,
threshold scheduling, transmission capacity (TC).

I. INTRODUCTION

THIS paper addresses two issues of contemporary interest
in the field of ad hoc network capacity. First, we char-

acterize the effect of random channel variations, due both to
shadowing/fading and to random distances between trans-
mitter–receiver pairs. Second, this paper considers the effect of
local channel state information (CSI), namely through pairwise
scheduling and power control. Through analysis we are able
to obtain asymptotically tight lower and upper bounds on the
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transmission capacity (TC). We anchor our discussion around
three examples: lognormal shadowing, Rayleigh fading, and
nearest neighbor transmissions (in a Poisson field).

Although fading without any CSI is shown to decrease ca-
pacity, fading might in fact enable an increase in capacity if
it can be exploited. To investigate this we consider two simple
ways to utilize local CSI: channel inversion power control and
threshold–based scheduling. Both mechanisms require coordi-
nation only between each transmitter and its intended receiver,
i.e., no coordination between transmitters is required. Because
the TC definition includes a universal signal-to-interference-
plus-noise ratio (SINR) target, it may seem intuitive that channel
inversion would be helpful, by saving power (and hence inter-
ference) from privileged links, and by providing assistance to
underprivileged links to help them avoid outage. However, we
prove that although channel inversion power control may help
an individual link and does promote fairness, it lowers the net-
work capacity as a whole.

Next, we characterize the potentially significant positive
capacity impact of exploiting CSI for threshold–based sched-
uling. In particular, each transmitter elects to transmit only
if the channel to its receiver is acceptably strong. Our results
demonstrate that this simple scheduling rule provides signif-
icant capacity gains in a completely distributed manner. In
effect, the threshold rule introduces multiuser diversity into the
network by activating only those links with acceptable channel
quality. A scientific contribution of this paper relative to prior
work on ad hoc network scheduling is a novel framework for
concisely and explicitly characterizing the effect of fading and
scheduling in terms of the network and system parameters.

Some simplifying assumptions made in this paper are as fol-
lows. First, we assume narrowband fading, i.e., each channel
is affected by a single scalar gain. Second, transmissions are
slotted in time and multiple-hop communication is not explicitly
considered. The goal of the considered framework is to quantify
the maximum number of simultaneous successful transmissions
per unit area; how these transmissions are used as far as routing
packets over multiple hops is presently outside its scope. Third,
we ignore retransmissions, which will reduce the effective net-
work capacity. Finally, we assume that candidate transmitters
are randomly located independent of one another, in particular,
according to a homogeneous PPP. The rest of our modeling as-
sumptions are given in Section III.

A. Transmission Capacity

Throughout the paper we will employ transmission capacity
(TC) as the primary performance metric. The TC was introduced
in [1], and is defined as the maximum number of successful
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communication links that can be accommodated per unit area,
subject to a specified constraint on the outage probability (OP)
relative to a target signal-to-interference ratio (SIR).1 TC there-
fore quantifies the area spectral efficiency in an ad hoc network
from an outage perspective. A particular advantage of the TC
framework is its amenability to precise analysis. This allows the
impact of physical layer effects (like fading) on link layer sched-
uling policies to be more precisely characterized. Recently, the
TC has been employed to characterize capacity in a variety of
scenarios, e.g., coverage [2], the capacity of irregular ad hoc net-
works [3], successive interference cancellation [4], or for better
understanding of contention-based scheduling [5]. In addition to
ad hoc networks, the TC is also an appropriate metric for gen-
eral open spectrum usage (e.g., Wi-Fi, cognitive radio) where
many (noncooperative) transmitter–receiver pairs operate in the
same frequency band.

In [1], the TC of an ad hoc network is studied for a network
with path loss attenuation (no fading), fixed transmission power,
and Aloha–style transmission attempts. In such a network, the
only source of randomness is the locations of the transmitters,
modeled as a homogeneous Poisson process. An outage occurs
whenever the SINR falls below an SINR threshold ; in this
simple setup the TC is

(1)

where is the fixed distance between each transmitter–receiver
pair and is the path-loss exponent. Note that has
units of expected number of successful transmissions per unit
area.

Relationship to Transport Capacity: The transmission
capacity (TC) is closely related to the popular transport
capacity metric introduced by Gupta and Kumar [6]. The trans-
port capacity is defined as the maximum weighted sum rate of
communication over all pairs of nodes, where each pair’s
communication rate is weighted by the distance separating
them. A number of papers have studied transport capacity
from an information-theoretic perspective [7]–[11], and the
best result to date has shown that the transport capacity is

when nodes have a minimum distance sep-
arating them and the path-loss exponent obeys . This
minimum distance means that the area required for nodes is
also . As both transport capacity and the arena
area are linear in it follows that . That
is, the transport capacity per unit area is a constant, and has
units of bit-meters per second per unit area. The importance
of this result is that i) the transport capacity per unit area is
independent of the number of nodes (for large), and ii) local
(one-hop) communication is order optimal.

The TC can be converted into units of bit-meters per second
per unit area by simply multiplying by the product of the av-
erage transmission rate times the average transmission distance.
In the outage setting considered here successful transmissions
have rate (bits per second) and transmis-
sions have a mean distance (meters). It follows that the TC

1Noise can also be included, but this is a negligible effect for interference-
limited ad hoc networks, which is our case of interest.

Fig. 1. Illustration of two uses of CSI to combat fading channels: threshold
based scheduling (top left) and channel inversion power control (top right). The
bottom row gives the corresponding baseline mode (Aloha scheduling and fixed
transmission power). In channel threshold scheduling, the transmitter elects
to transmit provided the channel gain (h ) is above a specified threshold. In
channel inversion power control, the transmitter selects a transmission power
such that the received power is a specified value (here, 1).

is in units of bit-meters per second per unit area. We can
write to emphasize that the TC is order optimal,
and thus order equivalent to the transport capacity.2 This con-
stant depends upon the fundamental network parameters such
as , as well as the particular technologies that are
assumed, e.g., successive interference cancellation, CSI, power
control, etc.

The contribution of the transport capacity framework is
to prove optimality and achievability of bit-meters per
second per unit area for as wide a class of networks as possible.
Because transport capacity seeks to make as few assumptions
as possible regarding network behavior, the lower and upper
constants obtained in proving the result are given only in terms
of the path-loss exponent and the minimum distance between
nodes (see, e.g., [11, eq. (8.1)]). Furthermore, the density of the
network is not explicitly considered in works that have devel-
oped upper bounds to transport capacity scaling. Our interest,
on the other hand, is in determining the value of the unknown
constant for various networks and transmission strategies (i.e.,
achievability schemes) of practical interest. The two metrics
arise from distinct aims: TC aims to study the performance of a
specific network (and gives performance expressions in terms
of those specific model parameters), while transport capacity
aims at establishing fundamental bounds over a broad class of
networks.

B. Overview of Main Results

The main contribution of this paper is a comprehensive in-
vestigation of the effect of narrowband fading, both with and
without CSI, on the TC of an ad hoc network. Two different
strategies, channel inversion, and threshold scheduling, that po-
tentially mitigate the effect of fading are considered, and all four
combinations of the strategies are analyzed (see Fig. 1).

2Recent work has shown that the 1=
p
n throughput scaling of multihop,

which essentially corresponds to linear scaling of transport capacity in an
extended network, can actually be exceeded for path-loss exponents between
2 and 3 [12]. As a result, TC corresponds to an achievable rate that is not
order–optimal for 2 � � < 3, but maximizing this quantity is still meaningful
because multihop is currently the prevalent means of communication in ad hoc
networks.
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TABLE I
MATHEMATICAL SUMMARY OF MAIN RESULTS

Summary of Some of the Mathematical Results: In all four
scenarios, the received signal at a reference receiver at the
origin is

(2)

where is the random distance separating the signal trans-
mitter from the reference receiver, is the path loss exponent,

is the signal intended for Rx , is the transmit power of Tx
, is the distance from Tx to Rx , and is the fading

coefficient on the link from Tx to Rx . The corresponding SIR
is given by

SIR (3)

We denote the received signal power at the reference receiver
by with , and similarly use to de-
note the signal power at the th transmitter’s receiver. It is often
convenient to work with the inverse of the SIR, i.e., the inter-
ference-to-signal ratio (ISR), which we denote as . Using the
definition of , can be expressed as

(4)

The probability of outage, , is the probability the SIR falls
below the SIR outage threshold , or equivalently, is the proba-
bility the ISR is too large: for .

Table I summarizes some of the mathematical results for these
four scenarios. The first two columns identify the four scenarios
of scheduling and power control. The third column gives the ex-
pression for the random variable denoting the ISR seen by
a typical receiver at the origin. The received signal power is
unity for channel inversion . Without power control, the
signal power is a random variable under random access, and
a random variable under threshold scheduling. The random
variable is a random channel strength between a transmitter
and its associated receiver; is the same but conditioned
on the channel strength being above the threshold . The inter-
ference is summed over the interferers , which form a PPP
of intensity (random access with probability ), or
(threshold scheduling with threshold ). Without power control,
the individual interference contribution from interferer at lo-
cation is simply the random channel gain times the path
loss . With power control, the interference contribution
is multiplied by the random variable (random access) or

(threshold scheduling) representing the random power
selected by node in compensating for the channel to ’s in-
tended receiver.

The fourth column gives an explicit expression for an asymp-
totically tight lower bound on the OP, . The lower bounds
for no power control involve the moment generating function
(MGF) of a random variable (for random access) or (for
threshold scheduling), while the lower bounds for channel inver-
sion are exponentially decreasing at rate (for random access)
or (for threshold scheduling). We call the
rate constant for the OP decay (although are random
variables); the rate constants are given in the fifth column. Fi-
nally, the sixth column gives the other expressions needed to
translate the OP expressions back to fundamental model param-
eters. First, is the intensity of potential transmitters. Under
random access with transmission probability the intensity of
actual transmitters is . Under threshold scheduling
with threshold the intensity of actual transmitters is

, where is a random channel strength between a
transmitter and its associated receiver.

Design Implications of the Mathematical Results: The fol-
lowing paragraphs list some of the design insights implied by
the mathematical results.

a) Random access, no power control: This is the baseline
mode. We compute the TC in this mode under fading channels
and compare it with the TC under pure path loss. The effect of
fading is to reduce the TC by the factor .
Fading of the desired signal has a negative effect while fading
of interfering signals has a positive effect. However, the net ef-
fect of fading is negative for any distribution because the above
quantity is always less than unity. For example, in Rayleigh
fading with the loss is a factor of .

b) Random access, channel inversion: Performing channel
inversion actually decreases the TC relative to no power con-
trol. One positive effect of channel inversion is that it assists
with fairness. If the distance between a transmitter–receiver pair
is large compared to the average and/or the channel gain co-
efficient is small, the OP of this pair would be considerably
higher than the network–wide average without channel inver-
sion. Channel inversion neutralizes distance and/or fading dis-
advantages and essentially puts all transmitter–receiver pairs on
equal footing, but this fairness can come at the cost of reduced
TC. The capacity reduction is very small at low outage levels,
but is much more significant at moderate and high outage levels.

c) Threshold scheduling, no power control: Threshold
scheduling increases the TC relative to random access. With
threshold scheduling, users transmit only if the fading co-
efficient to the desired receiver is above some threshold .
Scheduling changes the distribution of (for all ) from the
unconditional distribution to the conditional distribution of

given (but leaves the distribution of for
unchanged). Eliminating the fading coefficients below the
threshold can significantly reduce outage for many fading
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distributions of interest (e.g., Rayleigh fading), and therefore
can significantly increase the intensity of transmissions. Per-
formance with threshold-based scheduling can equal or even
exceed that of a path-loss only network.

d) Threshold scheduling, channel inversion: Channel inver-
sion in fact has little impact on the TC under threshold sched-
uling. Threshold scheduling precludes transmission attempts by
nodes in deep fades, and as such all transmitting nodes will re-
quire only moderate power to invert their channels.

The remainder of the paper is organized as follows. Section II
describes related work. Section III introduces the mathematical
model. The TC for fading channels under randomized transmis-
sions (with and without channel inversion) is derived in Sec-
tion IV; TC under threshold based transmission decisions (with
and without channel inversion) is derived in Section V. Sec-
tion VI contains the numerical and simulation results. A brief
conclusion is offered in Section VII. All proofs are found in the
Appendix.

II. RELATED WORK AND PRELIMINARIES

A. Fading Channels

Computing the TC under the assumed channel fading model
involves computing the tail probability of the random SIR seen
by a typical receiver. The SIR can be viewed as the spatial
analog of the familiar temporal power-law shot noise process,
where the cumulative effect of the impulse response of Poisson
driven shocks in time is replaced with the cumulative effect of
the channel response of a Poisson driven set of interferers in
space. Previous results on spatial shot noise processes in wire-
less networks have characterized the aggregate cochannel in-
terference under distance attenuation with random fading as a
stable random process [13]–[15]. In [15], an exact expression
for the outage capacity in a Rayleigh-fading environment, as-
suming randomized transmissions and no power control, is de-
rived using the MGF of the interference power. Interestingly,
the lower bound to OP for the case of channel inversion in a
Rayleigh-fading environment exactly matches the expression in
[15]; this is discussed in detail in Section IV-D.

Our characterization of the TC under general fading models
relies upon results from three distinct but related fields of study:
stable distributions, shot-noise processes, and spatial cochannel
interference models.

Stable Distributions: Stable distributions, introduced by
Lévy in 1925 [16], are defined as distributions that are closed
under convolution. More precisely, the random variable is
said to be stable if, for independent and identically
distributed (i.i.d.) copies of , there exist constants
such that

(5)

where the equality holds in distribution, see, e.g., Shao and
Nikias [17]. Except in special cases (e.g., Gaussian and
Cauchy), there is no closed-form expression for the probability
density function (PDF) or cumulative distribution function

(CDF) of a stable random variable. Instead, the family is pa-
rameterized by its characteristic function. For the subfamily of
symmetric stable random variables (the case of relevance to us)
the characteristic function is

(6)

where is dispersion parameter and is the char-
acteristic or stability exponent. Stable random variables with

have fractional moments given by

(7)

and for all for the Gaussian case of
[17]. In particular, all stable random variables (except the lim-
iting Gaussian case) have infinite variance. The importance of
stable distributions is illuminated by the so-called generalized
CLT: for i.i.d. and with , then

(8)

iff is stable, where the convergence is in distribution [17].
Petropulu et al. [18] have further developed the implications of
stable distributions on signal processing in communications.

Shot Noise Process: The shot noise process was first de-
scribed by Schottky [19] in 1918, and was soon applied to noise
modeling in a wide variety of fields. The general shot noise
process, using the notation of Lowen and Teich [20], is a func-
tional

(9)

where is a stationary Poisson process on and is the
(linear, time-invariant) impulse response function. Thus, is
the superposition of responses seen at time caused by all pre-
vious times . Extensive work was done by Rice et al. from
the 1940s through the 1970s to characterize the CDF and PDF
of the random variable , e.g., [21]. More recent algorithms
for computation are found in Gubner [22]. A characterization of
the stochastic process is provided by Lowen and
Teich [20] for the important case when is a power law, i.e.,

(10)

and can be either deterministic or random. They make the
important observation that is a stable random variable for
certain values of . Their framework is restricted to the
time dimension, i.e., the points are times in a Poisson process
on .

Spatial Cochannel Interference Models: The use of spa-
tial models for cochannel interference in packet radio (ad hoc)
networks goes back at least to 1978 where Musa and Wasylki-
wskyj [23] consider the impact of node locations on the ag-
gregate interference. This idea was further developed by Sousa
and Silvester in a series of papers in the early 1990s [13], [24],
[25]. Sousa and Silvester characterize the aggregate cochannel
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interference as a stable distribution, although they do not men-
tion anywhere that it is a shot-noise process. Sousa’s work is
the first, as far as we are aware, to connect the aggregate inter-
ference generated by a distance-dependent power law path loss
channel model with a stable distribution (although spatial con-
nections were made as early as 1919 by Holtsmark in astronomy
[26], see [17]). Ilow and Hatzinakos [14] characterize the impact
of random channel effects on the aggregate cochannel interfer-
ence. They study the individual and combined impacts of log-
normal shadowing and Rayleigh fading on the aggregate inter-
ference, where the interference effects are subject to a distance
dependent path loss attenuation. Our work extends theirs in that
their focus was on identifying the impact of the fading model
on the parameters of the characteristic function of the interfer-
ence, while our focus is on link layer capacity and the benefit of
CSI. Baccelli et al. consider the impact of cochannel interfer-
ence on link layer scheduling through the use of stochastic ge-
ometry [15]. Their proposed multiple-hop spatial reuse Aloha
protocol maximizes a performance metric they call the spatial
density of progress. Their focus is on optimizing the power and
access probability of Aloha protocols, whereas our focus is on
characterizing the benefit of threshold scheduling with CSI on
capacity.

B. Threshold Scheduling With CSI

Distributed channel-aware wireless scheduling has received
extensive attention in the literature. Much of this work is game
theoretic in that transmission decisions of neighboring trans-
mitters are coupled: an active neighboring interferer reduces
the SIR seen by a receiver, which makes it less likely for that
receiver’s transmitter to transmit [27]. The coupling of these
decisions severely limits analytical tractability, and in practice
can also result in adverse behavior and/or require considerable
overhead.

In contrast, our approach precludes the transmitter interac-
tion presumed in the game-theoretic approaches, i.e., transmis-
sion decisions are independent for each transmitter. The success
or failure of an individual transmission attempt, however, is of
course dependent upon the joint decisions of all transmitters.
In particular, we consider the realistic scenario where each user
monitors the channel to just its desired recipient (either through
channel reciprocity or a very low rate feedback channel), and
then transmits opportunistically only when the channel strength
is above a threshold. We characterize the optimum threshold,
and show that this simple approach increases the capacity sig-
nificantly over a channel-blind Aloha approach. The proposed
threshold-scheduling scheme is fully distributed and extremely
simple, and can be viewed as an optimal scheduling approach
under the specified side information constraint. Although the
proposed approach is obviously suboptimal compared to a cen-
tralized scheduler with global channel knowledge, our scheme
has the benefits of being more practical as well as yielding to
analysis. In particular, through stochastic geometry we obtain
tight upper and lower bounds on the OP and TC under an arbi-
trary threshold, and from here obtain the TC-optimal threshold.

Prior work on quantifying ad hoc network capacity with
transmitter CSI includes Toumpis and Goldsmith [28], who

TABLE II
SUMMARY OF NOTATION

determined that fading actually increases the achievable rate
regions (as opposed to the overall ad hoc network capacity) by
providing statistical diversity, since the best set of transmit–re-
ceive pairs can be selected. This, however, would require a
global centralized search which is impractical. Toumpis and
Goldsmith argue in a second paper that although fading reduced
a transport capacity lower bound by a logarithmic factor, fading
actually increased the overall network capacity [29]. Using the
transport capacity framework, some interesting recent results
by Gowaiker et al. include a study on entirely random channels
(no geometric dependence) that showed that shadowing or
obstructions could increase the transport capacity [30]. Xue
and Xie [9] and Xie and Kumar [8] study fading channels with
geometric considerations valid for path-loss exponents greater
than three that supported their previous results in the absence
of fading. A recent review of this research thrust is found
in the monograph by Georgiadis, Neely, and Tassiulas [31].
Essentially, in order to fully exploit fading, some delay must be
introduced, which results in a delay–capacity tradeoff. We will
not consider this tradeoff in this paper, however.

III. MATHEMATICAL MODEL

For a random variable we will write for the CDF,
for the PDF, and for the com-

plementary CDF (CCDF). The exception to this rule is that
and are used to denote the CCDF

and inverse CCDF for a standard normal random
variable. We write to denote that is a random
variable with distribution . The superscripts will denote
lower and upper bounds. Table II summarizes the notation used
throughout the paper.

A. Channel Model

We consider a general class of channel models consisting of
a deterministic distance-dependent path-loss component with
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path-loss exponent , and a random distance-independent
component. In particular, let

(11)

be the far-field attenuation in signal power over a distance
with a channel gain . The distance-independent channel gain

is assumed to be independent across channels and indepen-
dent of the node position. Note that this model has a singularity
as ; this matter is discussed in some detail in [13] and
[15]. Because we consider the network from an outage perspec-
tive, such a singularity has only a negligible effect on our results.
For example, if an interferer is very close to a receiver, the above
channel model would lead to an artificially small SIR. However,
the receiver would very likely be in outage even if the singularity
was removed, and thus there is no effect on the OP. Furthermore,
we assume the distribution on transmitter–receiver pair separa-
tion distances precludes the possibility of nearby transmitter–re-
ceiver pairs. Although the singularity at the origin is not physi-
cally meaningful, it turns out that retaining the singularity sig-
nificantly simplifies the analysis without materially affecting the
numerical and simulation results. As explained further in the nu-
merical and simulation results section (Section VI), for purposes
of analysis we will retain the singularity ( ), but all our
simulation results will employ . Our results will illus-
trate that the results are essentially unaffected by the singularity.

For simplicity and analytical tractability we ignore back-
ground thermal noise. In an interference-limited network the
noise contribution is minimal. Our earlier work [1] contained
models with additive noise, and it was shown there was no
appreciable effect unless the network was extremely sparse. Of
course, it is straightforward to numerically verify this claim.

We study network performance both with and without
channel inversion. In the absence of channel inversion, we
assume that unit power is employed; this results in no loss of
generality because in the absence of additive noise increasing
the power linearly increases both the signal and interference,
leaving the SIR unaffected. Under channel inversion each
transmitter employs a power where is
the channel gain connecting the transmitter with its intended re-
ceiver; this results in unit signal power at the intended receiver.
The impact of channel inversion on link layer performance for
Poisson distributed transmitters is also addressed by Baccelli et
al. [15].

B. Network Model

Consider a large ad hoc network, where the locations of po-
tential transmitters at a typical point in time form a stationary
Poisson point process (PPP) on the plane . The
spatial density of the point process is denoted by , giving the
average number of potential transmitters per unit area. We also
assume that each potential transmitter has an associated in-
tended receiver (not in ), and we let the index refer to the
pair consisting of transmitter and its associate receiver . The
assumption that each potential transmitter has a receiver that is
not a potential transmitter precludes the possibility of collisions
where a transmitter attempts to communicate with another node
that is already transmitting.

Let denote the random channel gain for the channel be-
tween the transmitter of pair and the receiver of pair . The
channel gains are independent across both receivers ( is in-
dependent of ), and across transmitters ( is independent
of ). Let be the common distribution for the channel
gains. Let represent the distance between the transmitter
and intended receiver of pair ; the distances are assumed
to be i.i.d. with common distribution . As discussed in the
Introduction, we restrict our attention to transmission policies
where each transmitter’s decision is made independent of the
other transmitter decisions. It follows that the relevant state in-
formation for each transmitter ’s decision is the pair
describing the channel with its intended receiver.

Our attention will focus on a (typical) reference receiver,
without loss of generality assumed to be located at the origin
. The reference receiver and its associated transmitter are

pair number . It follows that the performance will depend
upon not only each pair’s channel information (dictating which
transmitters will elect to transmit), but also upon the channel
information connecting each transmitter with the reference re-
ceiver at the origin (dictating the typical receiver performance).
We encode all this state information by forming the marked
PPP (MPPP)

(12)

Let denote the distance from each transmitter to the ref-
erence receiver at the origin.

The PPP denotes the set of actual interferers at
the typical time under consideration. Because the transmis-
sion decisions are made independently across transmitters
and independent of their locations, it follows that is also a
stationary MPPP, albeit with a smaller intensity, denoted as

. We discuss transmission decision rules for obtaining
from in Section IV (using random transmission decisions)
and Section V (using threshold based transmission decisions).
Rather than work with the SIR we will instead work with its
inverse , which can be thought of as the aggregate
cochannel interference power normalized by the signal power.
The normalized aggregate interference seen at the reference
receiver is

(13)

where are the transmission powers employed. The SIR
seen at the reference receiver is therefore

SIR (14)

C. Performance Metrics

Three performance metrics are studied in this paper: the OP,
the spatial throughput, and the TC.

Outage Probability: A reception is assumed successful pro-
vided the SIR seen at the receiver exceeds a specified ,
with an outage resulting if this condition is not satisfied. Let
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denote the probability of outage when the intensity of at-
tempted transmissions is

SIR (15)

where is the ISR requirement.
The SIR-based OP introduced above corresponds very simply

to achievability in the information-theoretic sense. If all nodes
are assumed to transmit Gaussian symbols and the channel is
narrowband, the mutual information between the transmitting
( ) and receiving ( ) nodes is given by

SIR (16)

where SIR is the SIR seen by receiver . Since only the term
is considered, an implicit assumption is that mul-

tiuser interference is treated as noise (interference can be can-
celed, see [4]). Mutual information, or rate, is measured con-
ditioned on channel conditions, node locations, the instanta-
neous set of transmitters, and the fading coefficients. Thus, the
quantity in (16) measures the rate of reliable information flow
from to at a snapshot of the network. Of course, this
mutual information expression is only meaningful if the con-
ditioning variables are fixed during transmission. Most impor-
tantly, this requires that the time scale of fading be larger than
packet durations.

In the outage formulation, the instantaneous mutual informa-
tion is treated as a random variable (a function of random in-
terferer locations and channel conditions) and an outage occurs
whenever this random variable falls below the desired rate of
communication. Thus, for rate , the OP is given by

. Since there is a one-to-one mapping be-
tween mutual information and SIR in this expression, outage
can equivalently be stated in terms of SIR, as in (15) with

.
Spatial Throughput: The spatial throughput is the expected

spatial density of successful transmissions

(17)

i.e., the product of the attempted transmission intensity ( ) times
the average probability of success ( ).

Transmission Capacity: The spatial throughput often
obscures the fact that high throughput is sometimes obtained
at the expense of unacceptably high outage. This is especially
important in ad hoc networks as wasted transmissions both
cause unnecessary interference for other nodes and they waste
precious energy. As a simple example of high throughput
achieved through high outage, note that classic slotted Aloha
has a throughput of the form , which is maximized for
an attempt rate of . The optimal throughput at
is , but the OP is . Thus, 68% of
all attempted transmissions must fail to achieve the optimal
throughput. For many important network applications, e.g.,
streaming media, high levels of outage are unacceptable, and
as such it is desirable that the network operate in a low-outage
regime. With this in mind, we define the optimal contention
density as the maximum spatial density of attempted
transmissions such that the corresponding OP is . The

parameter serves as a proxy for network quality of service.
The optimal contention density is found by solving
for , i.e., , where is the inverse of (15).
Having found the optimal contention density, we define the
transmission capacity as the corresponding spatial density of
successful transmissions

(18)

The advantage of the TC framework is that it yields the max-
imum throughput that can be obtained subject to a maximum
permissible OP, i.e., a quality of service (QoS) requirement.

IV. PERFORMANCE WITHOUT THRESHOLD SCHEDULING

In this section, we present analytical results for the perfor-
mance metrics introduced in Section III-C when transmission
decisions are made randomly; performance results with
threshold scheduling decisions are given in Section V. Under
randomized transmissions, the set of actual transmitters is
obtained from the set of possible transmitters by each node
electing to transmit at random with probability , for any
desired . We provide analytical results for performance
with fixed (unit) power (Section IV-A) and with channel in-
version (Section IV-B), and then provide detailed discussion
(Section IV-C) as well as examples (Section IV-D).

A. Performance Without Threshold Scheduling and Without
Channel Inversion

Looking at the three performance metrics in Section III-C it
is apparent that they each depend upon the distribution of in
(13). In the absence of channel inversion, the normalized aggre-
gate interference seen by the reference receiver is

(19)

where is the received signal power. Because transmission
decisions are made by each node at random (independent of the
channel state), it follows that each node electing to transmit has

, where is
expressible in terms of the known distributions and . The
distribution of may be expressed in terms of the distribution
of conditioned on

(20)

Previous work by Ilow and Hatzinakos [14] has characterized
the conditional distribution as a stable distribution.
This forms the starting point of our analysis. For easy reference,
we combine results from Theorems 1, 2, and 3 from Ilow and
Hatzinakos [14] and repeat them below in a single theorem using
our notation.

Theorem 1: (Ilow and Hatzinakos [14]). Under randomized
transmissions and lacking channel inversion, the conditional
distribution in (20) is symmetric stable with
characteristic function given by (6), with stability parameter

and dispersion parameter

(21)
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for the Gamma function and

(22)

As mentioned in the Introduction, stable distributions are
awkward to work with as they do not have closed-form expres-
sions for their PDF or CDF. This motivates the importance of
the bounds on the CCDF given in the next theorem.

Theorem 2: Under randomized transmissions and lacking
channel inversion, the expressions are upper and lower
bounds on the CCDF of the random variable in (19)

(23)

where random variable is defined as

(24)

and . The lower bound is asymptotically tight
as and the upper bound has an asymptotic bounded
error. Specifically

(25)

(26)

(27)

for

(28)

The full proof is provided in the Appendix . The lower bound
is the probability that a single term in the sum in (19)

is larger than , i.e., the probability that there exists at least
one dominant interferer that individually contributes enough in-
terference to cause outage relative to threshold . Note that
due to fading, a dominant interferer need not correspond to the
nearest interferer. Indeed, considering only the contribution of
the nearest interferer gives a weaker bound. The upper bound

is obtained by application of the Chebyshev inequality.
We now make several remarks on the theorem.

Asymptotic Impact of Channel Variations: The impact of
the random channel fading gains and the random dis-
tances separating transmitters and receivers on the asymp-
totic CCDF bounds in (25)–(27) is confined to the fractional mo-
ments . Since the asymptotic lower bound
is tight in most scenarios of interest, as explained in further de-
tail below, the fractional moments are generally able to com-
pletely capture the effect of fading and random distances. When
channel inversion is employed, then the fractional moment de-
pendence actually holds for the upper and lower bounds them-
selves, as shown in Section IV-B.

Looseness of the Upper Bound: The asymptotic looseness
of the upper bound depends only on the path-loss exponent
and not on the random channel effects, i.e.,

(29)

Moreover, the upper bound is increasingly tight as increases.
The fact that the upper bound, which is based on the Chebyshev
inequality, is not tight suggests the use of tighter upper bounds
such as the Chernoff bound. This is in fact a viable approach
in theory, although it is often not computationally feasible. An
upper bound using the Chernoff bound instead of the Chebyshev
bound is developed in the Appendix , along with a discussion of
the associated computational obstacles.

Tightness of the Lower Bound: The lower bound is tight as
, i.e., as one moves further along the tail of the distri-

bution of (also corresponding to ). The lower bound
captures the probability of outage being caused by one or more
individually dominant interferers, and thus ignores the proba-
bility that there is no single dominant interferer but the aggre-
gate interference level summed over all interferers causes an
outage. As a result, the fact that the lower bound is tight as

is intuitive given the fact that the distribution of
the channel is a subexponential distribution, a
subclass of heavy tailed distributions [32]. A key property of a
subexponential distribution is that with high probability sums of
subexponential random variables achieve large values by indi-
vidual terms in the sum being large

(30)

In the present context, as decreases (or equivalently, as in-
creases) it is increasingly unlikely that a group of interferers
could collaboratively cause an outage for the reference receiver
without at least one of them being a dominant interferer. In most
scenarios of interest, the desired OP is quite low and therefore
is sufficiently large. As a result, the asymptotic lower bound in
(25) is generally very accurate. The SIR threshold can also be
reduced through spreading (e.g., direct sequence code-division
multiple access (CDMA)) or coding. The impact of spreading
on the OP (and TC) is addressed in [1] where the SIR require-
ment is reduced by the spreading factor.

We now utilize the results of Theorem 2 to generate bounds
on the performance metrics of interest. Under randomized trans-
mission, each potential transmitter transmits at random
(with fixed power) with a specified probability . In this case,
the intensity of attempted transmissions (the intensity of ) is

.

Theorem 3: Under randomized transmissions and without
channel inversion, the bounds on the OP (15) are

(31)
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where

(32)

and and . The bounds on the spatial
throughput (17) are

(33)

The bounds on the TC (18) are

(34)

where are the inverses of in (31).

The expressions in the theorem are easily obtained by sub-
stituting the bounds on from Theorem 2 into the per-
formance metric expressions for (15), (17), and
(18). A discussion of Theorem 3 is found after Corollary 3 in
Section IV-B, which gives the analogous results when channel
inversion is employed.

B. Performance Without Threshold Scheduling and With
Channel Inversion

In this paper, we consider two distinct ways in which CSI may
be exploited by the transmitter: threshold scheduling of trans-
missions and channel inversion. Channel inversion is a specific
type of power control in which the transmitted power is an in-
verse function of the channel quality. This is by far the most
prevalent form of power control in current wireless networks.
Although fast channel inversion is a widely known feature of
CDMA cellular networks for avoiding the near–far problem,
channel inversion is also used in all cellular networks (some-
times called Automatic Gain Control) and also in the Bluetooth
ad hoc networking standard to adjust for transmission range and
channel quality. Therefore, in this section we consider perfor-
mance without threshold scheduling but with channel inversion.
Performance with threshold scheduling but without channel in-
version is discussed in Section V-A, and performance with both
threshold scheduling and channel inversion is discussed in Sec-
tion V-B.

Each transmitter that elects to transmit employs
transmit power , where is the channel
gain separating transmitter and receiver ; this ensures the
signal power at receiver is unity.3

Under channel inversion, the normalized aggregate interfer-
ence seen at the reference receiver is

(35)

3A sufficient condition for channel inversion to require finite power almost
surely is that the support of W excludes the interval [0; �) for some � > 0. A
necessary condition for finite average power is that [1=W ] < 1. For some
distributions, such as Rayleigh fading, the quantity [1=W ] is actually infinite.
The analytical results still hold in this scenario, but this condition clearly makes
channel inversion impractical. However, in Section V-B we combine channel
inversion with a minimum fading threshold, so that channel inversion is feasible
for essentially any distribution.

Because transmission decisions are made randomly, it follows
that the ’s are i.i.d. according to distribution , which is
also the distribution of in the case of no channel inversion.

In the case of no channel inversion, the normalized interfer-
ence contribution of every interferer is divided by , the coef-
ficient describing the channel fade and the distance-based path
loss between the reference Tx and Rx. As a result, the reference
Rx is very sensitive to the value of . When channel inversion
is used, the normalized contribution of each interferer is divided
by a different , namely, its own effective channel coefficient.
Therefore, channel inversion completely eliminates sensitivity
to , which does not even appear in (35), but instead intro-
duces sensitivity to the effective channel coefficients of the
interfering nodes.

The analysis with channel inversion is very similar to that
without channel inversion, and the following corollaries are the
analogs of Theorems 1–3 for randomized transmissions with
channel inversion.

Corollary 1 (To Theorem 1): Under randomized transmis-
sions with channel inversion, the random variable in (35) is
symmetric stable with characteristic function given by (6), with
stability parameter and dispersion parameter
given by (21) with replaced with in (28).

The corollary follows from Theorems 1–3 in Ilow and Hatz-
inakos [14].

Corollary 2 (To Theorem 2): Under randomized transmis-
sions with channel inversion, the expressions are upper
and lower bounds on the CCDF of the random variable

in (35)

(36)

where is given in (28). The upper bound is nontrivial for all
, defined as

(37)

The lower bound is asymptotically tight as and the
upper bound has an asymptotic bounded error. Specifically,

have asymptotic expansions given in
(25)–(27).

The proof is found in the Appendix . The bounds on the CCDF
of in Corollary 2 may be used to obtain performance bounds
for (15), (17), and (18), as shown in the following
corollary.

Corollary 3 (To Theorem 3): Under randomized transmis-
sions and with channel inversion, the bounds on the OP (15)
are

(38)
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where

(39)

and and . The bounds on the spatial
throughput (17) are

(40)

The bounds on the TC (18) are

(41)

where is the inverse of in (38).

Comparing Corollaries 1–3 with their corresponding Theo-
rems 1–3, it is apparent that the primary impact of channel
inversion is to remove the need to condition on the received
signal power (which is unity under channel inversion). Com-
paring Theorem 1 and Corollary 1, adding channel inversion
means the unconditioned distribution is stable (instead of
the conditioned distribution ), and the dispersion param-
eter is given by constant in (28) instead of the function
in (22). Note that . In Theorem 2, the
bounds on the CCDF are expressed in terms of expectations
of functions of the random variable in (24); in Corollary 2,
the bounds on the CCDF are expressed in terms of the same
functions, with replaced by its expected value . A
similar comment holds for Theorem 3 and Corollary 3. Note that
the bounds in Theorems 2 and 3 require evaluating an integral,
while the bounds in Corollaries 2 and 3 only require evaluating
a constant.

The intuition for this difference is quite straightforward.
Without channel inversion, the marks of the Poisson process in
(19) are and are not independent because appears in
each term. As a result, the distribution of conditioned on
must be considered, which results in an additional expectation
in the associated bounds. With power control, the marks of the
Poisson process in (35) are and thus are independent.

C. Discussion

In this subsection, we discuss the preceding analytical results
by comparing performance with and without channel inversion
as well as studying the effect of channel fading and random
distances on ad hoc network performance.

The Effect of Channel Inversion: By applying Jensen’s in-
equality to the convex function , we can order the OP lower
bounds in Theorem 3 and Corollary 3 as

(42)

where and denote no power control and power control,
respectively. Thus, channel inversion strictly increases the lower
bound on OP. The intuition for this increase appears to come
from the difference in the normalized interference expressions

with and without channel inversion in (35) and (19), respec-
tively. With channel inversion, the reference receiver is vulner-
able to signal fades of any of its nearby interferers (i.e., small
values of ); without channel inversion, the reference receiver
is vulnerable only to a fade on its own channel . Channel in-
version introduces an undesirable diversity on the interference
power that increases the likelihood of a nearby dominant inter-
ferer causing an outage. Numerical results indicate that similar
conclusions hold for the actual OP, not just for the analytical
bounds.

There are a few other relevant issues concerning channel in-
version that should also be mentioned. If channel inversion is
used, the average transmission power is . An equiva-
lent fixed-power system that delivers the same average received
power would only require transmission power of , which
by Jensen’s inequality is smaller than . Thus, channel
inversion essentially requires greater transmission power, or al-
ternatively, delivers less received power, than a system using
fixed power. As a result, using channel inversion has the poten-
tial of pushing it from the interference-limited regime into the
noise-limited regime. This effect does not appear in our SIR-
based analysis, but we note that this effect is less pronounced
when channel inversion is combined with threshold scheduling
in Section V-B because the threshold eliminates small values
of and thus decreases the difference between and

.
One positive effect of channel inversion is that it assists

with fairness. If the distance between a transmitter–receiver
pair is large compared to the average and/or the channel gain
coefficient is small, the OP of this pair would be consider-
ably higher than the network-wide average without channel
inversion. Channel inversion neutralizes distance and/or fading
disadvantages, and essentially puts all transmitter–receiver
pairs on equal footing. What our results show is that there is a
quantifiable network-wide penalty for doing so.

Effect of Random Distance and Fading: In order to un-
derstand the effect of random Tx–Rx distance and fading, it is
useful to rewrite the expression for the TC upper bound
for a power-controlled system given in (41)

(43)

where we have used for small values of .4 Al-
though this bound holds for channel inversion power controlled
systems, it is also extremely accurate for systems using fixed
transmission power when is small because the asymptotically
tight (i.e., for ) outage lower bound given in (25) leads to
the same TC upper bound stated above.

Channel Variations Reduce Transmission Capacity: Ap-
plying Jensen’s inequality to the convex function and random
variable yields

(44)

4When there is no fading (	 = 1), transmitter to receiver distances are
fixed (D = r), and � is small, (43) recovers the TC given in [1, Theorem 1],
which describes the TC of a network in which there is only path-loss.
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with equality iff is deterministic. As a result, in (39) is
strictly larger under random than under deterministic , and
thus fading reduces TC under randomized transmissions with
channel inversion. It can also be seen that variations in the dis-
tances separating transmitters and receivers also reduces TC.
The ratio of with variable over with fixed (with
the same mean) is given by

(45)

the right-hand term is the factor by which increases due to
random distances, and thereby reduces the TC.

Separating the Effects of Signal and Interference Fading:
The effect of fading can be more clearly elucidated by sepa-
rating signal and interference fading.

Corollary: Under randomized transmissions with channel in-
version, if the reference channel gain is drawn according to
distribution ( for signal) while the interference channel
gains are drawn (i.i.d.) according to a possibly different
distribution ( for interference), all results of Corollaries
1–3 hold with in (28) defined as

(46)

This statement follows from the fact that the proof of Corol-
lary 2 only depends on the -moment of given by

, and thus does not require
and to follow the same distribution.

To simplify discussion, without loss of generality, assume
. Since the functions and are convex

and concave, respectively, for , Jensen’s inequality
yields and . As a
result, fading of the desired signal reduces TC, while fading of
interfering signals increases TC.

Since the function approaches infinity as , if
has a large amount of mass near the origin, the fractional mo-
ment can be very large, thereby leading to a significant
reduction in TC. The proceeding section shows that this indeed
the case when is exponential (i.e., Rayleigh fading), where

as .
There are distributions for which the fractional moment

can be made arbitrarily small, implying an arbitrarily
large increase in TC, but this is certainly the exception. A simple
calculation shows that which is lower-bounded by the
probability is greater than or equal to unity (i.e., the mean),
which is reasonably large for typical fading distributions.

Therefore, it is safe to say that signal fading can have a
rather significant negative effect on TC, while interference
fading leads to a less significant positive effect. If the fading
distributions are identical, then (44) indicates that the net effect
of fading is negative.

Maximum Achievable Spatial Throughput and TC: The
optimal transmission probability to maximize the spatial
throughput upper bound in (40) is , and
thus the bound optimal intensity of transmission attempts

is . The corresponding bound on optimal
throughput is

(47)

The OP constraint that maximizes the TC upper bound in
(41) is , with a corresponding bound on
TC of

(48)

Note that maximizing the spatial throughput and TC incurs a
potentially unacceptable high OP: almost two thirds of all at-
tempted transmissions must fail to maximize capacity. The as-
sumption that means that the spatial intensity of po-
tential transmitters in is sufficiently large to “saturate” the
network, i.e., the network will not be underutilized due to a lack
of available transmitters. We emphasize that the optimality of

holds for the bounds, not the performance metric
itself; however, our numerical and simulation results will show
that the approximation is valid over most regimes of interest.

D. Examples

We next compute the performance bounds in Theorem 3 and
Corollary 3 for three examples. In Example 1, we fix the trans-
mitter to receiver distances, , and let have a lognormal
distribution, capturing the impact of lognormal shadowing. In
Example 2, we again fix and let have an exponen-
tial distribution, capturing the impact of Rayleigh fading. In
Example 3, we fix the fading coefficients and let
have a distribution corresponding to the distance to the nearest
neighbor in a Poisson process of potential receivers.

Example 1: Lognormal Shadowing: Fix for each
, and let be lognormal-distributed with parameter , i.e.,

, where

(49)

Under randomized transmissions in the absence of channel in-
version, the distribution of received signal power is

(50)

where is the CCDF of the standard normal distri-
bution. It is straightforward to establish that

(51)

so that

(52)

The bounds on in (31) are

(53)



4138 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 11, NOVEMBER 2007

Fig. 2. Multiplicative effect of Rayleigh and lognormal fading.

for

(54)

The bounds on and in Theorem 3 are computable from
the bounds on . All quantities in Corollaries 1–3 are com-
putable from given above.

Example 2: Rayleigh Fading: Fix for each , and
let be exponentially distributed, i.e., . Under
randomized transmissions in the absence of channel inversion
the distribution of received signal power is also exponential with
parameter , i.e.,

(55)

It is straightforward to establish that

(56)

so that

(57)

where we have used .
If we plug this value of into the lower bound to OP with

channel inversion in (38), we get

(58)

In [15], a closed-form expression (Corollary 3.2) for the OP
of a system utilizing random transmissions without channel in-
version in a Rayleigh-fading environment is derived using the
MGF of the interference power. Remarkably, this expression co-
incides exactly with the above expression, which is an OP lower
bound when there is channel inversion. As a result, (58) corre-
sponds to the exact OP without channel inversion, and we can

unequivocally state that the use of channel inversion degrades
performance in Rayleigh fading, since (58) is an outage lower
bound when channel inversion is used.

When no channel inversion is employed, we can translate (58)
into exact expressions for the other performance metrics; these
expressions are all upper bounds to performance with channel
inversion

(59)

In Fig. 2, the quantity , which is the multi-
plicative effect of fading on TC, is plotted against the path-loss
exponent for Rayleigh fading, lognormal fading ( 6 dB),
and the combination of the two. Both fading distributions have
a more benign effect as the path-loss exponent increases, but
note that Rayleigh fading exacts a very harsh penalty when the
path-loss exponent is near two.

Example 3: Nearest Receiver Transmissions: Fix
for each . Recall is the MPPP of intensity of potential
transmitters, where each potential transmitter has an intended
receiver not in . Suppose the set of all possible receivers is a
PPP, denoted , of intensity . Consider the case when each
node elects to transmit to its nearest neighbor; for simplicity, we
ignore the facts that i) multiple potential transmitters may select
the same receiver, and ii) the distances are dependent random
variables. Under these assumptions the distances are i.i.d.
with distribution

(60)

Then

(61)
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Under randomized transmissions in the absence of channel in-
version the distribution of received signal power

(62)

It follows that and . The bounds on
in (31) are given by

(63)

The lower bounds and in Theorem 3 are computable
from the upper bound on , with the upper bounds being

(64)

All quantities in Corollaries 1–3 are computable from given
above.

V. PERFORMANCE WITH THRESHOLD SCHEDULING

In this section, we study the performance when each po-
tential transmitter elects to transmit only if the channel
strength to its intended receiver is acceptably strong, i.e.,
if , where is the global channel state
threshold. In particular, the set of actual transmitters, , is
given by . By the assumed independence
of signal strengths across potential transmitters, the intensity of
attempted transmissions is

(65)

The motivation behind this scheduling policy is the intuition that
transmitting only when the channel to one’s intended receiver is
strong may significantly improve performance above random-
ized transmission decisions. We emphasize there is no claim that
the threshold scheduling rule is in any sense globally optimal:
global optimality would require global channel state knowledge
by each node, which is clearly unrealistic. Transmitter channel
state information is a realistic assumption when channel coher-
ence times extend across multiple transmission attempts, which
is the case for all but the highest mobility systems. We con-
sider performance both with fixed (unit) power (Section V-A)
and with channel inversion (Section V-B).

Note that a threshold-based policy is most feasible when the
time scale of fading is smaller than the allowable packet de-
lays. If this is the case, delay constraints are not violated even
if a transmitter has to wait multiple coherence times before the
threshold is exceeded. In slow fading scenarios, it may not be
possible to employ only a threshold-based schemes, and some
combination of randomized scheduling and threshold sched-
uling may be more appropriate.

A. Performance With Threshold Scheduling and Without
Channel Inversion

In the absence of channel inversion, the normalized aggregate
interference seen by the reference receiver is

(66)

where is the received signal power conditioned on the ref-
erence transmitter having an acceptably strong channel. Notice
that the effect of the threshold policy is to change the distribution
of the channel coefficient from the unconditional distribution of

to the conditional distribution of given ; the distri-
bution of the interfering channel coefficients is unaffected
because transmission is decided only on the basis of .

The distribution of is then

(67)

which is expressible in terms of the known distributions and
. The distribution of may be expressed in terms of the

distribution of conditioned on

(68)

where .

Theorem 4: Under threshold-based transmissions and
lacking channel inversion, Theorems 1–3 continue to hold with
the following changes. In Theorem 1, the conditional distribu-
tion in (20) is replaced with in (68).
In Theorem 2, the upper and lower bounds on the CCDF
of the random variable in (19) are replaced with upper and
lower bounds on the CCDF of the random variable in
(66), with in (24) replaced with

(69)

and in (28) replaced with

(70)

In Theorem 3, the upper and lower bounds on the OP and the
spatial throughput hold with in (32) replaced with

(71)

The bounds on the TC are replaced with the inverses of
defined in terms of the expectation of . The proof is found in
the Appendix.

Comments on Theorem 4: Several sanity checks are available
to validate the above expression for . First, note that for

(no signal strength threshold for transmission) reduces to
. Second, consider the case when the channel fading gains are
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constant, for all . Then it is straightforward to see
that

(72)

Note that the condition is equivalent to
, which is the signal strength transmission requirement under

fixed fading and random distances. Finally, consider the case
when the transmitter-to-receiver distances are constant,
for all . Then

(73)

Note that the condition is equivalent to
, which is the signal strength transmission requirement under

random fading and fixed distances.

B. Performance With Threshold Scheduling and With Channel
Inversion

Under threshold scheduling, the transmitters in are those
potential transmitters in with . With channel inversion,
each transmitter employs transmit power , meaning
that the maximum transmit power is . Under this
channel inversion scheme, the normalized aggregate interfer-
ence seen at the reference receiver is

(74)

where each has distribution in (67).

Theorem 5: Define

(75)

with defined in (70). Under threshold-based transmissions
with channel inversion, Corollaries 1, 2, as well as (38) and
(40) in Corollary 3 continue to hold with replaced with

. The bounds on the TC are

(76)

where is the inverse of ,
and are the inverses of in (38)

respectively, and is given by (39). The proof is found in the
Appendix .

Comments on Theorem 5: By construction, both and
are concave functions, and have the same maximum value.

We can write

(77)

The derivative is

(78)

for . Note that

(79)

so that the sufficient condition for optimality is

(80)

The optimal throughput can be expressed as

(81)

The function is monotonically decreasing in . Taking
the derivative yields

(82)

C. Examples

We revisit the three examples introduced in Section IV-D and
compute the various quantities in Theorems 4 and 5.

Example 1: Lognormal Shadowing (Continued): Fix
for each and let be lognormal-distributed with parameter

, i.e., , where is given by (49). Under
threshold-based transmission decisions, the distribution in
(67) is given by

(83)

where is the CCDF of the standard normal distri-
bution. It is straightforward to establish that

(84)

It follows that in (70) is

(85)

Moreover, in Theorem 5 is given by

(86)

Solving for yields

(87)

Example 2: Rayleigh Fading (Continued): Fix for
each and let . Under threshold-based transmission
decisions, the distribution in (67) is given by

(88)
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It is straightforward to establish that

(89)

where is the incomplete Gamma function. It follows that
in (70) is

(90)

Substituting is consistent with (57) since
. Moreover, in Theorem 5 is given by

(91)

Solving for yields

(92)

where solves .

Example 3: Nearest Receiver Transmissions (Continued):
Fix for each , and let in (60). Under
threshold-based transmission decisions, the distribution
in (67) is given by

(93)

It is straightforward to establish that

(94)

It follows that in (70) is

(95)

Moreover, in Theorem 5 is given by

(96)

Solving for yields

(97)

where is the branch of the Lambert function,
satisfying [33].

VI. NUMERICAL AND SIMULATION RESULTS

We present numerical and simulation results for the three ex-
amples studied in Sections IV and V. Numerical results are com-
puted using Mathematica, and our simulator is written in Perl.
The simulation methodology is described in greater detail in
[34]. Throughout this section we set

(98)

For Examples 1 and 2, where the distances are con-
stant, we set 5 m. For Example 3, where the fading

coefficients are constant, we set . The ab-
scissa in all plots of OP ( ) and spatial throughput ( ) is , the
probability of transmission under the randomized transmission
rule. The abscissa is also labeled for the plots of and under
the threshold transmission rule with threshold . This is done
to facilitate comparison between the performance plots under
the two scheduling rules. For each , the threshold is
chosen so that the intensity of points under the two transmission
rules is the same, i.e.,

(99)

It follows that the threshold is computed from using the func-
tion .

A. Example 1: Lognormal Shadowing

This subsection presents numerical and simulation re-
sults from Example 1, where the are constant and the

are lognormal random variables with PDF (49) and
(6 dB). Solving in (99) yields

, where is the inverse of the
standard normal CCDF.

Fig. 3 shows four plots of simulation and numerical results
for lognormal shadowing. The top left plot illustrates the lower
and upper bounds along with simulation results for the OP
versus the transmission probability under randomized and
threshold transmissions with no channel inversion. The bounds
are seen to be reasonably tight, especially for the usual case of
interest where is small. Furthermore, the dramatic reduction
in outage achievable through threshold scheduling is apparent.
The other three plots show simulation results for the four cases
discussed in the paper: randomized transmissions with and
without channel inversion, and threshold transmissions with
and without channel inversion. The three plots are of OP
versus transmission probability , spatial throughput versus

, and the TC versus the outage requirement .
Several observations merit comment. First, note that as

(as ) channel inversion has no impact on performance,
while as (as ) randomized and threshold
transmissions have identical performance. The limited impact
of channel inversion is especially apparent for threshold trans-
missions: for large (small ) only potential transmitters with
good channels elect to transmit, and thus there is less need for
using channel inversion to compensate for poor channels com-
pared with smaller (larger ). For large (small ) employing
thresholds is increasingly ineffective in restricting transmissions
to nodes with good channels, and as such becomes equivalent to
randomized transmissions.

Second, as discussed in the comments of Sections IV and V,
channel inversion always reduces performance (larger , smaller

, smaller ). As discussed, channel inversion is a compensa-
tion mechanism allowing nodes with poor channels to their re-
ceivers to obtain acceptable received signal power. Although
nodes with good channels reduce their power and hence de-
crease the amount of interference they cause, the net effect is
undesirable. The intuitive explanation, as noted in Section IV-C,
is that a single dominant interferer is the most likely contributor
to causing outage, so a policy of pairwise channel inversion in-
creases the likelihood of a dominant interference event occur-
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Fig. 3. Example 1: Lognormal shadowing. All plots are for � = 6 (6 dB). Top left: OP q versus the transmission probability p for both randomized
transmissions (solid curves) and threshold transmissions (dashed curves) with no channel inversion. The three curves for each case are the lower and upper bounds
along with simulation results. Other plots: The other three plots show simulation results for the four cases: randomized transmissions with and without channel
inversion, and threshold transmissions with and without channel inversion.

ring since the chances of at least one nearby transmitter having
a poor channel to its receiver are reasonably good.

Third, note that the plots of spatial throughput and TC achieve
the same peaks (for each of the four cases), and that i) the peak
capacity under threshold transmissions is over twice the peak
capacity under randomized transmissions, and ii) the outage re-
quirement required to obtain those peaks is much smaller for
threshold transmissions than for randomized transmissions. In
effect, channel variability should not be dealt with through ran-
domization, but instead should be exploited through threshold
scheduling.

B. Example 2: Rayleigh Fading

For Example 2, the are constant and the are expo-
nentially distributed with parameter . Solving
in (99) yields . Fig. 4 shows four plots of simula-
tion and numerical results for Rayleigh fading. The top left plot
illustrates the upper and lower bounds and the simulation results
spatial throughput versus the transmission probability for
threshold-based transmissions with channel inversion (dashed
curves) and without channel inversion (solid curves). The other
three plots are for the same scenarios as in Fig. 3. The comments
made in Example 1 hold here as well, but overall the effects are

not quite as severe as the channel variations are not quite as large
as in the lognormal case with 6 dB.

C. Example 3: Nearest Receiver Transmissions

In Example 3, the have CCDF (60) and the are
constant. Solving yields

The density of potential receivers in is set equal to the
density of potential transmitters: .

Fig. 5 shows four plots of simulation and numerical results
for nearest receiver transmissions. The top left plot illustrates
the TC versus the outage requirement for randomized trans-
missions (solid curves) and threshold transmissions (dashed
curves) with channel inversion. The three curves for each case
are the lower and upper bounds along with simulation results.
The bounds are again seen to be reasonably tight, especially for
the small case of usual interest. The other three plots follow
as in Examples 1 and 2.

The comments from Examples 1 and 2 apply here as well; in
other words, random-hop distances behave much like random-
channel effects. Note that the bottom right plot of TC illustrates
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Fig. 4. Example 2: Rayleigh fading. Top left: Spatial throughput � versus the transmission probability p for threshold based transmissions with channel inversion
(dashed curves) and without channel inversion (solid curves). The three curves for each case are the lower and upper bounds along with simulation results. Other
plots: The other three plots show simulation results for the four cases: randomized transmissions with and without channel inversion, and threshold transmissions
with and without channel inversion.

that threshold scheduling achieves a three-fold or greater in-
crease in TC relative to the capacity under randomized trans-
missions for all . Even more than Examples 1 and 2,
this example highlights the tension between throughput and fair-
ness: in this example, performance is maximized by employing
a threshold rule such that only nodes that are sufficiently close
to their intended receivers are selected to transmit. In Example
2 and to a lesser extent Example 1, one could argue that the
channel coherence time scale is short enough such that the un-
fairness of opportunistic scheduling is of limited concern to the
typical user. Here, however, the transmitter–receiver distances
are changing on the time scale of user mobility, meaning the un-
fairness of opportunistic scheduling is of much greater concern.

VII. CONCLUSION

The goal of this paper was to develop a methodology, and
some insights, on how ad hoc network capacity is affected by
temporal variations in channel quality and transmission dis-
tance. We focused on the case where each node has only local
information; in particular, it knows the channel to a desired
receiver. This approach, while suboptimal, has the considerable
merits of being realistic and analytically tractable.

We made the following observations, with TC and OP as
the metrics of interest. First, randomized transmissions perform
poorly in the presence of either fading or variable channel dis-
tances. That is, variability strictly reduces capacity in transmit-
ters that are blind to the channel. Second, we showed that a
policy of channel inversion, while helping users with poor chan-
nels, negatively impacts the overall network capacity. The intu-
ition is that this increases the likelihood of a dominant interferer
causing an outage: because of the coupled nature of all the links
in an ad hoc network, channel inversion causes all the nodes
in an area to suffer when a single link is poor. Third, channel
variations can be exploited through the use of simple threshold
scheduling, where a user transmits when its desired channel is
above a target. We derive the optimal threshold, and show that
over many ranges of interest, the capacity is about three times
higher than with no scheduling.

APPENDIX

Proof of Theorem 2:

The proof consists of three steps: i) obtaining the lower
bound ( ), ii) obtaining the upper bound ( ), and iii)
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Fig. 5. Example 3: Nearest receiver transmissions. Top left: Transmission capacity c versus the outage requirement � for randomized transmissions (solid curves)
and threshold transmissions (dashed curves) with channel inversion. The three curves for each case are the lower and upper bounds along with simulation results.
Other plots: The other three plots show simulation results for the four cases: randomized transmissions with and without channel inversion, and threshold trans-
missions with and without channel inversion.

obtaining the asymptotic expansions for , and
. We begin with some definitions.

Under randomized transmissions and without channel inver-
sion, the normalized aggregate interference seen by the refer-
ence receiver is given by (19). It is clear that is the product
of a random variable and a shot-noise process with points

and marks . The and are all mu-
tually independent. Fix the outage threshold at and the
received signal power at . Split into two disjoint com-
plementary processes: , where

(100)

Thus, is the set of points that are individually capable of
causing outage at the reference receiver if the outage threshold
is and the received signal power is . It is helpful to think
of the points in as the dominant interferers for the ref-
erence receiver, and the remaining points in as the non-
dominant interferers. Note that although the quantities and

are independent for each in , they are not independent
in and . Also, although is a stationary (homoge-
neous) Poisson process of intensity , both and are

nonstationary Poisson processes. Define the aggregate normal-
ized interference from these processes as

(101)

and note that .
Step 1: Lower Bound : The lower bound on

is

(102)

To compute the lower bound observe that the event
is the same as the event . With this observation, we
can compute the lower bound using the expression for the void
probability of a Poisson process

(103)

where is the density of points in at location

(104)
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Noting that the density is radially symmetric, we can switch to
polar coordinates, with slight abuse of notation writing
for the intensity of at distance . The resulting expression
is simplified by writing , exchanging the
order of integration, and using the change of variables

(105)

where . This completes the lower bound.
Step 2: Upper Bound : To establish the upper bound,

we condition on for each

(106)

where we have used the fact that

The upper bound on is obtained by finding an
upper bound on for each . Application of
the Chebyshev inequality yields

(107)

We apply Campbell’s theorem [35] to compute the mean and
variance of . This requires that we characterize the density
of points in in the product space , where
is the support of . The density at a point in this space
is . Straightforward analysis
yields

(108)

Similarly

(109)

Using it follows that the upper bound may
be expressed as

(110)

where .
Step 3: Asymptotic Expansions: We next obtain the asymp-

totic expansions of as . In all
three cases, we will compute the series representations of the
conditional distributions
conditioned on , then recover the unconditioned distri-
butions by integrating against the distribution . We first ob-
tain the series expansion of . Equation (29) in [20] gives
the series representation of the PDF of in (9) when is
a power law (10) with marks and and

(111)

Here, is the intensity of the Poisson process of times in
(9). Recall that is a shot-noise process on , not . We
can nonetheless use the result to obtain the series representation
of the CCDF of by translating the shot-noise process on
onto , then integrating the PDF to get the CCDF. Translating
a Poisson shot-noise point process on onto is discussed in
[14] and [36]; in essence, the path-loss exponent changes from

to and the intensity increases from to . Applying this
transformation yields the conditional PDF of

(112)

Integrating the conditional PDF yields the conditional CCDF

(113)
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Taking the dominant term of the series yields

(114)

where we have used the identity .
Unconditioning yields

(115)

We next obtain the series representation of the conditional
lower bound

(116)

Taking the dominant term of the series yields

(117)

and unconditioning yields

(118)

Finally, we obtain the first-order Taylor series expan-
sion of the conditional upper bound . Define

so that the conditional lower bound is
given by

(119)

Taking an expansion around corresponds to finding the
asymptotic order for large . The first-order Taylor series ex-
pansion of around is easily seen to be

(120)

Substituting back for and unconditioning
yields

(121)

Proof of Corollary 2:

The corollary follows from the proof of Theorem 2 with the
following changes. Note that under randomized transmissions
with channel inversion, the normalized aggregate interference
seen at the reference receiver , given by (35), is a shot-noise
process, with random marks . There is no need to

condition on the received signal power. This means that
and in (100) may be replaced with

(122)

and in (101) may be replaced with

(123)

Step 1: Lower Bound : The lower bound (105) be-
comes

(124)

Step 2: Upper Bound : The unconditioned version
of (106) is

(125)

The upper bound is obtained by applying the Chebyshev in-
equality, replacing (107) with

(126)

The mean and the variance become

(127)

Instead of (110), the unconditioned upper bound is

(128)

The upper bound is nontrivial when , where the
critical point corresponds to the solution of

(129)

for . Solving this equation for yields the function
given in (37).
Step 3: Asymptotic Expansions: The asymptotic expan-

sions under channel inversion are the conditional asymptotic ex-
pansions from Step 3 of the proof of Theorem 2 with replacing

and replacing .
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Chernoff Upper Bound:

Let , , , , , be as in the proof of Corollary 2.
In Corollary 2, the Chebyshev inequality is used to upper-bound

, which in turn yields an upper bound on the CCDF
. Our purpose in this subsection is to discuss the use of

the Chernoff bound instead of the Chebyshev bound. In partic-
ular, the Chernoff bound may be used to upper-bound ,
which yields a tighter upper bound on the CCDF, . The
Chernoff rate function requires the log MGF of the random
variable , defined as . The log
MGF for a functional of a nonstationary MPPP

with and intensity
is given by Kingman ([37, eq. (5.10), p. 58]) as

(130)

It is clear that is a functional of a nonstationary MPPP with
i.i.d. marks . The intensity of points from the process
at the point is

(131)

After changing to radial coordinates, it follows that the log MGF
for is

(132)

The Chernoff bound on has a rate function given by the
Legendre transform of the log MGF

(133)

Evaluating the log MGF requires the PDF of the marks ,
which, in turn, depends upon the transmission decision policy.
Under randomized transmission decisions with channel inver-
sion the PDF is

(134)

where is the unconditioned signal power PDF given by
.

Although the Chernoff bound is in principle computable
using the above equations, it is in practice often not computa-
tionally feasible to do so. Note that evaluating the PDFs
and requires evaluating a double integral, and evalu-
ating the MGF requires evaluating a double integral
expressed in terms of , in effect requiring a quadruple
integral be evaluated for each . Further, the optimal in
the Chernoff rate function must be computed numerically. In
contrast, the Chebyshev inequality, although not as tight as the
Chernoff bound, is given explicitly without requiring the eval-
uation of any integrals. Thus, for both eases of computability
and clarity of exposition we have chosen to express our results
using the Chebyshev bound instead of the Chernoff bound.

Proof of Theorem 4:

Theorem 4 asserts that the sole effect of changing from ran-
domized transmission decisions (without channel inversion) to
threshold-based transmission decisions (without channel inver-
sion) is to change the distribution of the received signal power.
Consider the expressions for the normalized aggregate interfer-
ence seen by the reference receiver under randomized trans-
missions (19) and under threshold transmissions (66). They are
the same with the exception that in (19) is replaced with

in (66). Given that all the results in Theorems 1–3 are ob-
tained by first conditioning on , it follows that those same
results will hold under threshold transmissions, with the distri-
bution replaced with . All that remains is to establish
the expression for in (70).

Define the random variable . The proof consists of
developing an expression for in terms of the threshold
, the distribution for the channel gains , and the distribution

for the transmitter to receiver distances . We first identify the
distribution of conditioned on (step 1), then identify
the distribution of conditioned on (step 2), and finally,
compute (step 3).

Step 1: Distribution of Conditioned on : The
conditioned signal strength distribution may be expressed in
terms of the unconditioned signal strength distribution

(135)

with corresponding density

(136)

The unconditioned signal strength distribution depends upon
the distributions . In particular, the unconditioned signal
strength CDF is

(137)

and the unconditioned signal strength PDF is

(138)

Step 2: Distribution of Conditioned on : We
next identify the distribution of . The CDF of
conditioned on is denoted , note that this does
not mean the distribution of conditioned on .

(139)

The PDF is

(140)
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Step 3: Fractional Order Moment of : We next develop
an expression for

(141)

(142)

This last expression gives the fractional moment in terms of
given in the theorem. The distribution of may

be used to obtain the expression in terms of the distributions

(143)

The above development is elementary, involving only ex-
changing of the order of integration and introducing a change
of variables.

Proof of Theorem 5:

Theorem 5 asserts that the sole effect of changing from
randomized transmission decisions (with channel inversion)
to threshold-based transmission decisions (with channel inver-
sion) is to change the distribution of the received interference
power. Consider the expressions for the normalized aggregate
interference seen by the reference receiver under randomized
transmissions (35) and under threshold transmissions (74).
They are the same with the exception that in (35) is replaced
with in (74). Given that all the results in Corollaries
1–3 depend upon the fractional order moment , for

, it follows that these same results will hold under
threshold transmissions, with , and fractional order
moment . All that remains is to establish the bounds on
the TC given by (76).

Let be the constant given by (39), and let be
a generic intensity of attempted transmissions. Define

. The OP bounds in (38) depend upon only through the
product ; think of , in (38), as the
lower and upper outage probabilities for a normalized intensity

of transmission attempts . The bounds are both
bijections on , as such they admit unique inverses, denoted

and . Think of as the bounds
on the normalized transmission attempt intensity required for
OP .

Under the threshold decision rule, both depend upon .
The function gives the normalized transmis-
sion attempt intensity under each threshold . It is clear
that is monotone decreasing in onto the interval ,
and as such it too admits a unique inverse, denoted for

. Think of as the threshold required
for a normalized transmission attempt intensity of . To summa-
rize, each threshold maps to a normalized intensity of
attempted transmissions , and each maps to bounds
on the OP given by , for
given in (38).

The optimal contention density has an associated op-
timal threshold such that , where

. That is, is the maximum intensity of transmission
attempts with an associated OP of , but this may also be ex-
pressed as the intensity of potential transmitters thinned by the
probability that a typical potential transmitter’s signal strength

exceeds some threshold . Using the above definitions

(144)

with associated bounds on the optimal contention density given
by

(145)

Finally, the TC bounds are simply

(146)

The requirement that translates to an upper bound
on such that in must satisfy , and in

must satisfy .
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