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ABSTRACT

We consider a MIMO fading broadcast channel and study the

achievable throughput of zero-forcing downlink beamform-

ing when the channel state information (CSI) available to the

transmitter and/or receivers is imperfect. Each receiver (mo-

bile) acquires imperfect CSI via downlink training pilots, and

the transmitter acquires CSI through explicit feedback from

each mobile. We analyze both analog and digital (i.e., quan-

tized) channel feedback techniques. Our analysis quantifies the

throughput degradation due to limited training, limited feed-

back resources (measured in feedback channel symbols rather

than bits), and errors on the feedback channel. Using these re-

sults we are able to quantify scenarios in which digital feedback

outperforms analog and also provide guidelines for the optimal

allocation of resources to training and channel feedback.

I MODEL SETUP AND BACKGROUND

We consider a multi-input multi-output (MIMO) Gaussian

broadcast channel modeling the downlink of a system where

the base station (transmitter) has M antennas and K user ter-

minals (receivers) have one antenna each. A channel use of

such channel is described by

yk = hH

kx + zk, k = 1, . . . ,K (1)

where yk is the channel output at receiver k, zk ∼ CN(0, N0) is

the corresponding AWGN, hk ∈ C
M is the vector of channel

coefficients from the k-th receiver to the transmitter antenna

array and x is the channel input vector. The channel input is

subject to the average power constraint E[|x|2] ≤ P .

We assume that the channel state, given by the collection of

all channel vectors H = [h1, . . . ,hK ] ∈ C
M×K , varies in time

according to a block fading model where H is constant over

each frame of length T channel uses, and evolves from frame

to frame according to an ergodic stationary jointly Gaussian

process; i.i.d. block-fading channel, where the entries of H are

Gaussian i.i.d. with elements ∼ CN(0, 1) is a special case of

this.

A Capacity results

If H is perfectly and instantaneously known to all terminals

(perfect CSIT and CSIR), the capacity region of the channel (1)

is obtained by MMSE-DFE beamforming and Gaussian dirty-

paper coding (see [1, 2] and references therein). Because of

simplicity and robustness to non-perfect CSIT, simpler linear

precoding schemes with standard Gaussian coding have been

extensively considered. A particularly simple scheme consists

of zero-forcing (ZF) beamforming, where the transmit signal is

formed as x = Vu, such that V ∈ C
M×K is a zero-forcing

beamforming matrix and u ∈ C
K contains the symbols from

K independently generated Gaussian codewords. For K ≤ M ,

the k-th column vk of V is chosen to be a unit vector orthogo-

nal to the subspace Sk = span{hj : j 6= k}. In this case, the

achievable sum rate is given by

RZF = max
P

k
E[Pk(H)]≤P

K∑

k=1

E

[
log

(
1 +

|hH

kvk|2Pk(H)

N0

)]
.

(2)

We consider the situation where K = M , and thus do not con-

sider user selection. Furthermore, we are mainly interested in

the high-spectral efficiency regime, where we can characterize

the achievable sum rate as κ log P/N0 + O(1), and κ is the

“system multiplexing gain” or “pre-log factor” of the ergodic

sum rate. Hence, it is well-known that using uniform power

Pk = P/M for all k = 1, . . . ,M , rather than performing op-

timal water-filling, incurs a loss only in the O(1) term, and we

shall restrict to this choice in the rest of this paper.

It is well-known that, under perfect CSIT and CSIR, both the

optimal “Dirty-Paper” sum-rate C and the zero-forcing sum-

rate RZF are equal to M log P/N0 + O(1). On the contrary,

under non-perfect CSIT the rate sum may behave in a radi-

cally different way; for example, if there is perfect CSIR and

no CSIT when H has i.i.d. Gaussian entries, the sum rate is

equal to log P/N0 + O(1) [1]

B Channel state information model

We consider a model that includes the effect of downlink train-

ing, channel feedback, and secondary downlink training, as

shown in Fig. 1. The initial training and feedback stages are

standard, but note that an additional round of training is re-

quired because terminals do not know the channels of other

terminals and thus are not aware of the chosen beamforming

vectors.. Furthermore, we consider the explicit transmission of

channel feedback symbols over an AWGN (unfaded) channel

with SNR P
N0

.

1. Initial Training: In order to allow for channel estima-

tion, β1M shared pilots (β1 ≥ 1 symbols per antenna) are

transmitted on the downlink. If the true channel state is

H = [h1, . . . ,hK ], each receiver estimates its channel on

the basis of the received signal sk:

sk =
√

β1P hk + zk (3)

where the entries of zk are i.i.d. . ∼ CN(0, N0). The

MMSE estimate (h̃k) is h̃k =
√

β1P
N0+β1P sk, and the true
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Figure 1: Training & Feedback Model

channel hk can be written as:

hk = h̃k + nk (4)

where the entries of nk are i.i.d. ∼ CN(0, σ2
n) with σ2

n =
(1 + β1P/N0)

−1, and nk and h̃k are independent.

2. Channel Feedback: Each mobile feeds back the es-

timate h̃k to the transmitter immediately after the initial

training phase using βM feedback channel symbols (per

mobile). A simplifying assumption we make is that we

consider no fading and orthogonal access in the CSIT

feedback link (uplink), and we assume that the SNR on

the feedback channel is equivalent to the un-faded down-

link SNR P
N0

. We use Ĥ = [ĥ1, . . . , ĥK ] ∈ C
M×K to de-

note the (imperfect) channel information available at the

transmitter corresponding to true channel state H (which

is constant for each frame), and represent the feedback

mechanism as a probabilistic mapping from the mobile

estimate h̃k to the transmitter estimate ĥk. The choice of

feedback mechanism (i.e., digital or analog) determines

the parameters of this mapping.

3. Beamformer Selection: The transmitter selects beam-

forming vectors using the zero-forcing criterion applied to

its channel estimate Ĥ. Following the ZF procedure, v̂k is

a unit vector orthogonal to the subspace Sk = span{ĥj :

j 6= k}, with V̂ , [v̂1, . . . , v̂K ].

4. Secondary Training: An additional round of downlink

training is performed to allow each terminal to estimate its

useful signal coefficient denoted by ak = hH
k v̂k, which

then enables coherent detection. The training is accom-

plished in β2M symbols by transmitting along each of the

beamforming vectors for β2 ≥ 1 symbols on the down-

link. MMSE estimation is performed on received signal

rk =
√

β2P ak + zk, which results in estimate âk which

satisfies:

ak = âk + fk, (5)

where fk and âk are independent complex Gaussian’s

with variance σ2
f = N0

N0+β2P and 1 − σ2
f , respectively.

5. Data Transmission: The duration of the frame is dedi-

cated to transmission of data symbols. If u is a vector of

data symbols intended for the M terminals, then setting

x = V̂u in (1) yields:

yk = (hH

k v̂k) uk +
∑

j 6=k

(hH

k v̂j) uj + zk (6)

= akuk + Ik + zk (7)

where Ik =
∑

j 6=k(hH

k v̂j)uj is the interference at receiver

k and ak = hH

k v̂k is the useful signal coefficient. The

effective output of the channel is the pair (yk, âk).

II RATE GAP BOUND WITH CSIT TRAINING AND

FEEDBACK

We now provide a general lower bound on the throughput

achievable in terms of the CSI model described in the pre-

vious section. This bound directly captures the effect of the

training/feedback parameters β1, β, β2, and allows for differ-

ent feedback mechanisms that are captured by the interference

term. Although we do not have room for the proof, note that

we use techniques similar to those in [3, 4]:

Theorem II.1 The achievable rate for ZF beamforming with

CSIT training and feedback can be bounded from below by:

Rk(P ) ≥ E

[
log

(
1 +

|âk|2P
σ2

fP + N0M + E [|Ik|2|âk]M

)]
,

where Rk(P ) = supuk
I(uk; yk, âk) is the rate achieved with

the optimal input distribution.

A useful measure of the performance is the difference be-

tween the rate achieved with perfect CSIT and the rate achieved

with channel estimation/feedback. If we let RZF
k (P ) denote the

per-user rate achieved with zero-forcing and uniform (in time

and across users) power allocation Pk(H) = P
M in (2), the rate

gap defined as follows:

∆R(P )
△
= RZF

k (P ) − Rk(P ). (8)

We now provide a bound on the rate gap incurred under channel

estimation and feedback with respect to ideal CSIT under ZF

beamforming.

Theorem II.2 The rate gap ∆R(P ) is upper bounded by:

∆R(P ) ≤ log

(
1 + σ2

f

P

N0M
+

Var [Ik]

N0

)
(9)

The proof is similar to the proof of Theorem 1 in [5] with the

addition of a step to handle the |âk|2P in the numerator of the

achievable rate expression.

Interestingly, the bound (9) only depends on Var [Ik] rather

than on the conditional variance Var [Ik|âk]. In general,

Var [Ik] depends on the channel feedback method used as well

as the errors introduced in the channel estimation phase (the

initial training phase). In the following sections, we shall com-

pute Var [Ik] and particularize the above results for specific

feedback schemes, i.e., specific schemes that map h̃k to ĥk.
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A Analog CSIT feedback

If analog feedback is used, the (downlink) channel coefficients

are explicitly transmitted on the feedback channel (modeled

as AWGN with SNR P
N0

) by each mobile using unquantized

quadrature-amplitude modulation [6–9]. Recall that each mo-

bile receives sk =
√

β1P hk + zk during the initial training

phase. If each mobile transmits a scaled version of sk during

the channel feedback phase, the transmitter observation for a

particular frame is given by (using (4)):

gk =

√
βP√

β1P + N0

sk + w̃k (10)

=

√
ββ1P√

β1P + N0
hk +

√
βP√

β1P + N0
zk + w̃k (11)

=

√
ββ1P√

β1P + N0

hk + wk (12)

where w̃k represents the AWGN noise on the uplink and (11)

is obtained from (3). wk and w̃k are spatially and spec-

trally white Gaussian processes with components distributed

as CN(0, σ2
w),CN(0, N0) respectively. From (10) and the ex-

pression for sk, σ2
w is computed to be βPN0

β1P+N0

+ N0. The

power scaling β corresponds to the number of channel uses per

channel coefficient, assuming that transmission in the feedback

channel has fixed peak power P and that the channel state vec-

tor is modulated by a βM × M unitary spreading matrix [6].

The transmitter then computes the MMSE estimate ĥk and we

can write

hk = ĥk + ek (13)

where ĥk and ek are mutually independent and the components

of ek are i.i.d. . ∼ CN(0, σ2
e) with σ2

e =
N2

0
+N0(β+β1)P

(N0+βP )(N0+β1P ) .

Using the representation in (13) and some other basic prop-

erties we are able to compute the variance of the interference

term:

Var [Ik] =
∑

j 6=k

P

M
E
[
|hH

k v̂j |2
]

=
∑

j 6=k

P

M
E
[
|eH

k v̂j |2
]

= (M − 1)
P

M
σ2

e

By plugging this into (9) and simplifying σ2
e we have:

∆RA(P ) ≤ log

(
1 + σ2

f

P

N0M
+

M − 1

M

P

N0
σ2

e

)

≤ log

(
1 +

1

β2M
+

M − 1

M

(
1

β
+

1

β1

))
.

It is interesting to note that the rate gap is bounded, 0 implying

that multiplexing gain is preserved in spite of imperfect CSIR.

B Rate gap bound for digital CSIT feedback

We now compute the rate gap bound when digital feedback

is used, in which case the channel coefficients are quantized

at each mobile and represented by B bits. The packet of B
bits is fed back by each receiver through orthogonal feedback

channels on the uplink. For the time being we consider error-

free transmission of the feedback bits; later we relate feedback

‘bits’ to feedback channel “symbols”, and we also incorporate

the effect of errors on the feedback link.

The quantization codebook C used to quantize the channel

coefficients at each terminal is assumed to be known at the

transmitter and consists of 2B unit-norm vectors in C
M i.e.

(p1, . . . ,p2B ). The quantization ĥk of h̃k is selected from the

C according to:

ĥk = arg max
p ∈ C

cos2
(
∠(h̃k,p)

)
, (14)

where cos2
(
∠(h̃k,p)

)
, |h̃H

kp|2/||h̃k||2. The index of the

chosen vector is represented by B bits and fed back to the

transmitter. Note that ĥk is of unit-norm and hence no channel

magnitude information is fed back in this model.

In [5], it is shown that if a Random Vector Quantizer (see [5]

and references therein) is used, the relationship between the

beamforming vectors and h̃k satisfies:

E

[
cos2

(
∠

(
h̃k, v̂j

))]
≤ 1

M − 1
2−

B
M−1 (j 6= k) (15)

We can use this to bound the variance of the interference term:

Var [Ik] =
∑

j 6=k

P

M
E
[
|hH

k v̂j |2
]

(a)
=

∑

j 6=k

P

M

(
E

[
||h̃k||2

]
E

[
|h̃H

k v̂j |2
||h̃k||2

]
+ E

[
|nH

k v̂j |2
]
)

(b)

≤ P

M
E

[
||h̃k||2

]
2−

B
M−1 +

∑

j 6=k

P

M
E
[
v̂H

j E[nkn
H

k ]v̂j

]

(c)
=

β1P
2

N0 + β1P
2−

B
M−1 + (M − 1)

P

M
σ2

n

≤ P2−
B

M−1 + (M − 1)
P

M
σ2

n

where (a) is obtained from the representation (4), (b) from (15)

and (c) by computing the expected norm of h̃k =
√

β1P
N0+β1P sk

using sk =
√

β1P hk + zk. Plugging into (9), we have:

∆RD(P ) ≤ log

(
1 + σ2

f

P

N0M
+ P2−

B
M−1 +

M − 1

M

P

N0
σ2

n

)

≤ log

(
1 +

1

Mβ2
+

P

N0
2−

B
M−1 +

M − 1

M

1

β1

)

If B is scaled linearly with log2(P ) as B = α(M −1) log2(P )
then we have:

∆RD(P ) ≤ log

(
1 +

1

Mβ2
+

(
P

N0

)1−α

+
M − 1

M

1

β1

)
.

If α < 1 this bound goes to infinity and indeed full multiplex-

ing gain is not achieved [5, Theorem 4]. If α >= 1 this quan-

tity is bounded and full multiplexing is achieved. Furthermore,

note that if α > 1 we have P 1−α → 0 which implies that the

effect of limited rate feedback vanishes at high SNR.
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III COMPARISON BETWEEN ANALOG AND DIGITAL CSIT

FEEDBACK

In this section we compare analog and digital feedback under

the assumption that it is possible to transmit digital feedback

error-free at rate equal to the capacity of the feedback channel.

A Perfect CSIR

For the sake of simplicity, we first restrict ourselves to the

case of perfect CSIR, i.e., β1, β2 → ∞. From (14) and us-

ing M−1
M ≤ 1 we have:

∆RA
CSIR(P ) ≤ log

(
1 +

1

β

)
, (16)

which corresponds to βM channel symbols of feedback per

mobile during the feedback phase.

Let us now consider digital feedback for the same situa-

tion. Note that analog feedback has the additional advantage

of providing a noisy version of the channel norm informa-

tion (which, although irrelevant for ZF beamforming, could be

made use of by user selection algorithms), while digital feed-

back provides no norm information. Thus, for fair comparison,

we assume that βM feedback symbols in the analog feedback

scheme corresponds to β(M − 1) feedback symbols for the

digital feedback scheme. Let us assume (very unrealistically)

that the digital feedback link can operate error-free at capac-

ity, i.e., it can reliably transmit log(1 + P/N0) bits per feed-

back symbol. Thus, the number of feedback bits per mobile is

B = β(M − 1) log2(1 + P/N0). Replacing this into the rate

gap bound (16), we obtain:

∆RD
CSIR ≤ log

(
1 +

P/N0

(1 + P/N0)β

)
. (17)

If β = 1 digital and analog feedback achieve essentially the

same rate gap of at most 1 b/s/Hz. However, if β > 1, unlike

the analog feedback case, the rate gap of the quantized feed-

back vanishes for P/N0 → ∞. For example, for β = 2 the

rate gap is upperbounded by log(1 + N0

P ), which quite small

for even moderate values of P/N0 (e.g., P/N0 = 10 dB gives

0.13 b/s/Hz). We conclude that digital is far superior to analog

for β > 1.

This conclusion finds an appealing interpretation in the con-

text of rate-distortion theory. It is well-known (see [10] and

references therein) that analog transmission (which consists of

scaling the source symbols and sending them uncoded and un-

quantized through the channel) is an optimal strategy to send

a Gaussian source over a Gaussian channel with minimal end-

to-end quadratic distortion. In our case, the source is the Gaus-

sian channel vector hk and the noisy channel is the feedback

AWGN channel with SNR P/N0. Hence, the fact that ana-

log feedback cannot be essentially outperformed for β = 1 is

expected. However, it is also well-known that if the channel

rate is larger than the source rate (i.e., less than one Gaussian

source symbol arrives per channel symbol, which corresponds

to β > 1 in our case), then analog is strictly suboptimal as

compared to separate source and channel coding because the

distortion with analog transmission scales as 1/β whereas it

decreases exponentially with β (i.e., along the vector quantizer

R-D curve) for digital transmission.

B Imperfect CSIR

We now compare analog and digital feedback under the as-

sumption of imperfect CSIR. From (14) for analog feedback

(again using M−1
M ≤ 1) and (16) with B = β(M −1) log2(1+

P/N0) we have:

∆RA(P ) ≤ log

(
1 +

1

Mβ2
+

1

β
+

1

β1

)

∆RD(P ) ≤ log

(
1 +

1

Mβ2
+

P/N0

(1 + P/N0)β
+

1

β1

)

The 1
β1

term reflects the effect of initial training error (β1M
downlink pilots) on the CSI available to the transmitter: this

is due to the fact that the CSIT is a corrupted version of the

CSIR obtained during initial training (phase 1). The leading
1

Mβ2

term is due to the inaccurate signal coefficient estimate

during secondary training, i.e., the fact that the channel is not

quite coherent. Finally, the middle term in both expressions

is the further CSIT imperfection incurred during the feedback

process.

Comparing the equations we come to the same general con-

clusions as in Section A: if β = 1 then digital and analog are

roughly equivalent, but if β > 1 digital is superior to analog

because the effect of feedback noise vanishes at high SNR for

digital but not for analog.

However, note that there are some important differences with

the perfect CSIR scenario. Firstly, imperfect CSIR leads to

residual interference that does not vanish with SNR. As a result,

the rate gap is not driven to 0 even when β > 1 for digital

feedback when β1 and β2 are fixed. For instance, even when

there is perfect feedback (i.e., β = ∞) with imperfect CSIR

(β1, β2 finite), we have the following bound which applies to

either analog or digital feedback

∆RPERF. FB
CSIR (P ) ≤ log

(
1 +

1

β2M
+

1

β1

)
. (18)

Although the feedback channel is perfect, the CSIT is still im-

perfect because it is based upon the imperfect terminal channel

estimate. Another effect of imperfect CSIR is that the advan-

tage of digital feedback relative to analog feedback is some-

what reduced because of the residual rate loss (suffered by ei-

ther analog or digital) due to the imperfect CSIR.

Based on the above rate gap equations, we can come up with

some rough guidelines about allocation of resources for train-

ing and feedback. For either digital or analog feedback, sec-

ondary training is clearly less important than initial training

and therefore it makes sense to choose β1 > β2. Furthermore,

for digital feedback it is sufficient (at high SNR) to choose β
slightly larger than one and to put the remaining resources into

training. For analog, on the other hand, initial training and

feedback have essentially the same effect, although note that

the feedback stage requires βM symbols per mobile.
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IV EFFECTS OF CSIT FEEDBACK ERRORS

We now investigate the impact of removing the optimistic

assumption that the quantized feedback channel can operate

error-free at capacity. To concentrate on the effect of feed-

back channel errors, we assume perfect CSIR, by which we

mean the SINR (after selection of the beamforming vectors) is

known perfectly at each terminal.

We consider a very simple CSIT feedback scheme that cer-

tainly represents a lower bound on the best quantized feedback

strategy. The user terminals perform quantization using RVQ

and transmit the feedback bits using simple uncoded QAM.

No intelligent mapping of the quantization bits onto the QAM

symbols is used, and therefore even a single erroneous feed-

back bit from user k results in CSIT that is completely inde-

pendent (due to the properties of RVQ) of the actual k-th chan-

nel vector. Since uncoded QAM is used, error detection is not

possible and the base station computes beamforming vectors

based on the possibly erroneous feedback.

We again use βM symbol periods to transmit the feed-

back bits. There is a non-trivial tradeoff between quanti-

zation and channel errors. In order to maintain a bounded

gap, feedback must be scaled at least as (M − 1) log2(1 +
P/N0) ≈ M log2 P/N0. Therefore, we consider sending

B = αM log2 P/N0 for 1 ≤ α ≤ β bits in βM symbol peri-

ods, which corresponds to α
β log2(P/N0) bits per QAM sym-

bol.

From [11], using the fact that the QAM constellation size is

equal to L = (P/N0)
α
β , we have the following upper bound to

the symbol error probability for QAM modulation:

Ps ≤ 2 exp

(
−3

2

(
P

N0

)1−α/β
)

(19)

For α = β (which means trying to signal at capacity with

uncoded modulation!) Ps does not decreases with SNR and

the system performance is very poor. However, for α/β < 1,

which corresponds to transmitting at a constant fraction of ca-

pacity, Ps → 0 as P/N0 → ∞. The upper bound on the error

probability of the whole quantized vector (transmitted in βM
symbols) is given by Pe,fb = 1− (1− Ps)

βM . A lower bound

on the achievable ergodic rate is obtained by assuming that

when a feedback error occurs for user k its SINR is zero while

if no feedback error occurs its rate is given RZF
k − ∆Rquant.,

that is, the rate of ideal ZF decreased by the (upper bound to)

the rate gap. It follows that the ergodic rate of user k is upper-

bounded by

Rk ≥ (1 − Ps)
βM
(
RZF

k − log
(
1 + (P/N0)

1−α
))

(20)

Choosing 1 < α < β we achieve both vanishing Ps and van-

ishing ∆Rquant. as P/N0 → ∞. Thus, even under this very

simple CSIT feedback scheme the optimal ZF performance can

be eventually approached for sufficiently high SNR.

It should be noted that the assumption of perfect SINR at

each mobile is important in this analysis of the effect of feed-

back errors. It is not sufficient to only know the useful sig-

nal coefficient ak, but it necessary to know the SINR which
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Figure 2: Quantized feedback with QAM modulation.

incorporates the interference terms as well. By learning the

SINR, the terminal implicitly learns whether a feedback error

occurred or not because the SINR is likely to be extremely low

whenever an error occurs; this fact is what makes it possible

to consider the rate conditioned on no feedback error as in the

above expression. Without SINR information, feedback errors

could lead to considerably more degradation because each ter-

minal would not be able to determine when feedback errors

have occurred.

Fig. 2 shows the ergodic rate achieved by ZF beamform-

ing with quantized CSIT and QAM feedback transmission for

M = K = 4, independent Rayleigh fading, β = 4 and dif-

ferent values of α. It is noticed that by proper design of the

feedback parameters the performance can be made very close

to the ideal CSIT case.
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