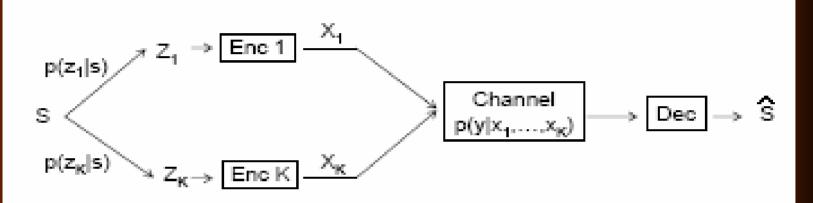
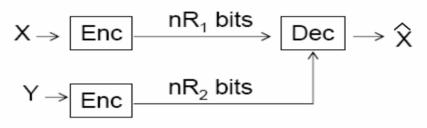
Multi-User Information Theory Project

Distributed Source Coding


By Vikrham Gowreesunker

Overview

- Distributed Source Coding
 - 'Compression of multiple correlated sensor outputs that do not communicate with each other. The sensors send their compressed outputs for a centralized joint decoding'
- Lossless source coding of discrete source w/ side information at decoder as a case Slepian-Wolf Coding
- The Wyner-Ziv Coding Scheme

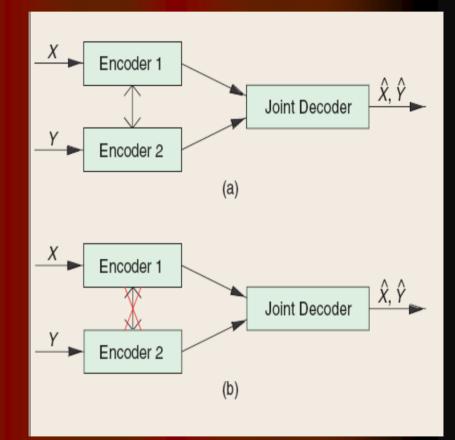

Graphics were borrowed from Dr.Jindal's EE8510 class notes and "Distributed Source Coding for sensor networks" by Xiong, Liveris and Cheng

Sensor Network Model

- S: source (random variable)
- Z₁,...,Z_K: sensor observations
- X₁,...,X_k: sensor transmissions
- Y: channel output
- S: estimate of source

Source Coding with Side Info

- Want to decode X losslessly using Y only as side information
- (R₁,R₂) achievable iff (Wyner) [5]:

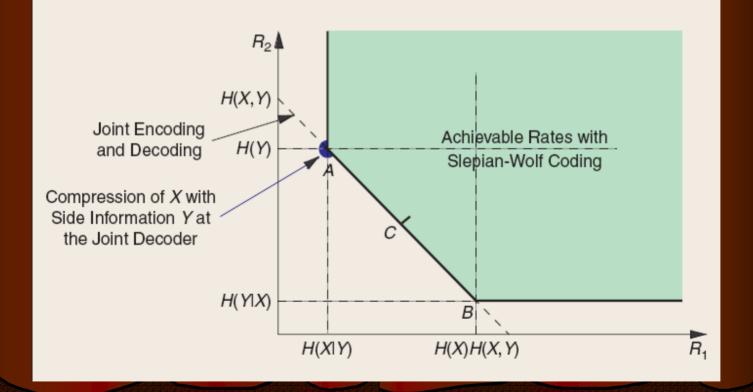

 $R_1 \ge H(X \mid U)$ $R_2 \ge I(Y;U)$

for some p(u|y)

- Achievability: Cover Y with reconstruction r.v. U, use random binning on X and Markov lemma to find typical (X^{n,}Uⁿ) pair in bin
- Markov Lemma: If X->Y->Z, (xⁿ,yⁿ) typical, and zⁿ chosen iid p(zⁿ|yⁿ), then (xⁿ,yⁿ,Zⁿ) typical with nearly probability one
 - By definition X->Y->U. Since (xⁿ, yⁿ) typcial with high probability, also have (xⁿ,yⁿ,uⁿ) typical, which implies (xⁿ,uⁿ) typical

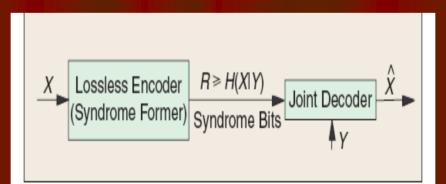
Slepian-Wolf Coding (SWC)

- (Xi,Yi), i.i.d from a pair of correlated discrete r.v X and Y.
- Part (a)
 - For Joint Encoding, a rate of H(X,Y) is sufficient
- Part (b)
 - For distributed (non cooperative) encoding, slepian-wolf showed that a rate of H(X,Y) is still sufficient



Slepian-Wolf Coding (SWC) cont..

- Proof: Uses the concept of random binning. This involves partitioning the space of all possible outcomes of a random source into disjoint sets or *bins*. [slepian-wolf]
- Generalization of achievability [Cover] to include: Arbitrary ergodic processes, countably infinite alphabets and arbitrary number of sources.
- In practice, random binning is non constructive and methods such as pseudo-random binning and algebraic binning could be used. However, a more appealing strategy was brought forward by Wyner.


Slepian-Wolf Rate Regions

• For 2 sources, we have the following rate region.

SWC as Source Coding with SI at Decoder

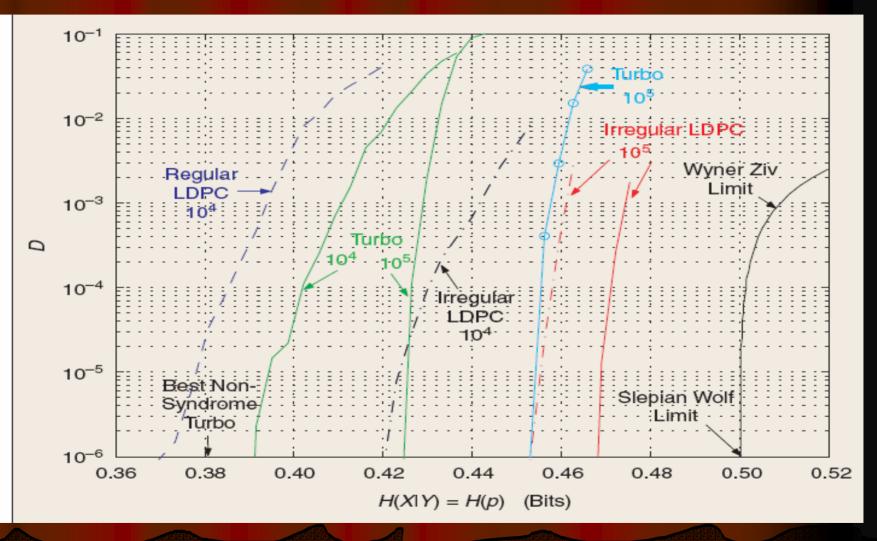
- The point A requires a rate of R1+R2 = H(X,Y) = H(X/Y)+H(Y). This is the same as source coding with side info at decoder.
- If A is achievable, B can be achieved by inverting X and Y. All rates in between can be achieved by time sharing.

Asymmetric Coding

 In 1974, Wyner drew the parallel between asymmetric coding and the well studied channel coding problem. He suggested the use of linear block codes.

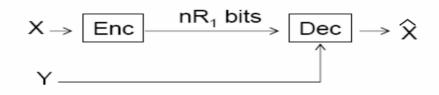
Wyner's Scheme

- Binary Symmetric Sources & Hamming distance measure.
- (n,k) binary block code => 2^(n-k) syndromes, each corresponding to a set of 2^k binary words of length n.
- Each bin is a *coset code*.
- n-bits are mapped into n-k bits index, achieving a compression
- *ratio of n : (n-k).*
- However, this approach has began to appear in practical codes only recently. [Pradhan and Ramchandran 2003].


Asymmetric Coding cont..

- Wyner's Syndrome concept can be extended to all binary linear codes and near-capacity channel codes such as Turbo and Low Density Parity Check (LCPD) codes.
- Turbo and LCPD codes have been shown to approach the slepian-wolf limit.
- In practice, linear channel code rates depends of the correlation model between X and Y.
- Next we look at the binary symmetric correlation model

SWC for Binary Symmetric Correlation


- The first practical designs borrowed ideas from Turbo codes and Parity Bits for this model.
- Liveris et al. followed the Wyner's Scheme with Turbo/LDPC codes. The perfomance was very close to SW limits.
- Simulations results from Liveris et al are shown in the following figure

Liveris et al Results

Wyner-Ziv Coding (WZC)

Rate-Distortion with Side Info

Want to lossy decoding of X using Y as side information (Wyner-Ziv) [6]

 $R_{Y}(D) = \frac{\min}{\substack{p(u \mid x), f(y, u) \\ E[d(x, f(y, u))] \le D}} I(X; U) - I(Y; U)$

- Generally is <u>strict</u> rate loss relative to cooperative encoder (i.e. encoder who knows X and Y)
- Achievability: Generate 2^{nI(X;U)} codewords iid p(u) and randomly place in 2^{nR} bins. Choose codeword typical with xⁿ and send bin index. Decoder finds (uⁿ, yⁿ) typical (Markov lemma) in correct bin. Given correct uⁿ, computes f(u,y) to estimate X.

Rate Loss and Wyner-Ziv

- For zero mean and jointly gaussian X and Y and MSE, Wyner-Ziv Coding has no rate loss when compared to joint encoding.
- Pradhan et al, shows that this is also valid for the more general case of X = Y + Z with Z gaussian and X and Y arbitrarily distributed.

WZC as source-channel coding problem

- Source coding is employed to quantized X.
- Furthermore, the quantized version is still correlated to the side information. Hence rate can be reduced using Slepian-Wolf coding.
- SWC can essentially be viewed as channel coding. Hence the joint sourcechannel coding.
- In practice, we use both
 - 1. A Source Code [e.g. Trellis Coded Quantization] that can achieve granular gain
 - 2. A Channel Code [e.g. turbo and LDPC] that approach the slepian-wolf
- DISCUS [1999] is the first major work on Wyner-Ziv code design. Several other designs have since been proposed. Among the most notable one is the Slepian-Wolf coded quantization(SWCQ). This combines source coding and channel coding for algebraic binning.

Further Work

 Theoretical limits for *lossy* Distributed Source Coding for multiple sources.

 Practical Codes for CEO problem [currently limited to special cases]

Cross-Layer design aspect of DSC.