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Abstract

This report is a literature survey that investigates the effect of feedback on the capacity
region of multiple access channels (MAC) and broadcast channels (BC).

1 Introduction

Effect of feedback on capacity was first considered by Shannon, where he proved that the capacity
of a single user discrete memoryless channel does not increase with feedback. This is shown to be
the case for white Gaussian channels as well. However, if the Gaussian noise is correlated, some
capacity increase can be achieved. There are two well-known results [3]:

1. 1 Feedback at most doubles the capacity of a channel with correlated Gaussian noise.

2. 2 Feedback at most increases the capacity of a channel with correlated Gaussian noise by half
a bit.

In the next two sections, the major results on the effect of feedback on MAC and BC are summa-
rized.

2 Multiple Access Channel

It is expected that capacity region for a discrete memoryless MAC increases by feedback. This is
due to the fact that there are several independent transmitters, so feedback helps each transmitter
learn about the messages that other transmitters are sending. As a result, transmitters can
align themselves with each other and transmit cooperatively leading to improved capacity. An
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achievable region for MAC with feedback was given by [1] using block Markov coding and a
random coding argument. An outer bound for the capacity of MAC with feedback is given by [7].
There is a nonzero gap between the outer bound and the achievable region so capacity is unknown
in general. However, for the special case of white Gaussian MAC with two transmitters Ozarow
[7] derived an achievable region using a deterministic coding argument proposed by [10] which he
proved to be the optimal coding strategy, thus yielding capacity region.

Capacity region for a discrete memoryless MAC without feedback is given as [3]:

Cnf =
⋃

p(x1)p(x2)

{
(R1, R2) : R1 ≤ I(X1; Y |X2) (1)

R2 ≤ I(X2; Y |X1)

R1 + R2 ≤ I(X1, X2; Y )
}

,

where
⋃

denotes convex hull operation over all achievable rate pairs. The achievable region of
Cover and Leung is described in the following theorem:

Theorem 1 (Cover and Leung) Let U be a discrete random variable which takes on values in
the set ||U || = min{||X1|| × ||X2||, ||Y ||}, where ||Xi|| denotes the alphabet size of user i. Consider
the set P of all joint distributions of the form p(u, x1, x2, y) = p(u)p(x1|u)p(x2|u)p(y|x1, x2) where
p(y|x1, x2) is fixed by the channel. An achievable region for MAC with feedback is given by [1]:

Cfb =
⋃

P

{
(R1, R2) : R1 ≤ I(X1; Y |X2, U) (2)

R2 ≤ I(X2; Y |X1, U)

R1 + R2 ≤ I(X1, X2;Y )
}

.

This achievable region is strictly larger than 1. Sum-rate is also increased in 2 with respect to
1.1 To prove 2, a block Markov coding scheme with random coding is used [1]: Assume there
are B blocks. In each block we transmit at a rate of (2nR1 , 2nR2 , n), and the messages to be
sent are w1 ∈ {1, · · · , 2nR1}, w2 ∈ {1, · · · , 2nR2} and an index j ∈ {1, · · · , J := 2nR0}. Index
j is transmitted to help the receiver remove any uncertainty it has in decoding the previous
block. For each j produce a random code un(j) ∼ ∏n

i=1 p(ui(j)). Suppose that at block b, j∗

will be transmitted. Transmitter 1 maps w1 to the codeword xn
1 (w1, j) ∼

∏n
i=1 p(x1i|ui(j)), and

Transmitter 2 maps w2 to the codeword xn
2 (w2, j) ∼

∏n
i=1 p(x2i|ui(j)). At block b, transmitter

1 sends xn
1 (w1, j), and transmitter 2 sends xn

2 (w2, j). The receiver gets yn and performs the
decoding procedure in two steps. In step1 receiver finds the unique ĵ such that (un(ĵ), y) are
jointly typical and uses this index to remove any uncertainty it has from the previous block.
In step 2, it finds the set of all the pairs (ŵ1, ŵ2) such that (xn

1 (ŵ1, j), xn
2 (ŵ2, j), yn) are jointly

typical. Let us denote this set by Sy. At the end of block b, each transmitter gets a feedback
from the receiver. Using this feedback, each transmitter tries to find the message of the other

1During the presentation I gave a wrong answer. In fact sum-rate is increased. Although 2 and 1 are similar in
their third equation, the pdf over which convex hull is taken is different.
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transmitter. So, transmitter 1 tries to estimate unique ŵ2 such that (xn
1 (ŵ1, j), xn

2 (ŵ2, j), yn) are
jointly typical. Other transmitter does the same thing. The probability that each transmitter
decode the message of the other transmitter with error should be arbitrarily low. This is how the
first two inequalities are derived. Third inequality appears due to constraints on J := 2nR0 . Index
j is used to remove the residual uncertainty at the receiver, so receiver should be able to decode
it with arbitrarily small probability of error, yielding R0 ≤ I(U ; Y ). On the other hand j is the
index of the true transmitted pair (w1, w2) in the previous block inside the set of all candidate
pairs (Sy) which is kept by the receiver, thus in order for the receiver to be able to determine the
correct pair without ambiguity, we should have J ≥ ||Sy||. Combining these two constraints on J
gives the third inequality in 2. Note that at the first block there is no previous uncertainty to be
removed, so only new data are sent. At the last block, there is no new data so the actual rate is
B−1/B, but as B becomes large rate loss becomes negligible. A complete proof can be found in [1].

There exists no converse to show that this achievable region is capacity. However, an outer
bound exists. To derive the outer bound, we assume that transmitters can fully cooperate in their
transmission. Converse for this outer bound is proved in [7]. It is given by:

Cout =
⋃

p(x1,x2)

{
(R1, R2) : R1 ≤ I(X1, Y |X2) (3)

R2 ≤ I(X2, Y |X1)

R1 + R2 ≤ I(X1, X2; Y )
}

.

For a white Gaussian MAC scenario with two transmitters, we know capacity is larger than 2. This
result, which is summarized in the following theorem, is due to Ozarow.

Theorem 2 (Capacity for white Gaussian MAC) For a white Gaussian MAC with two
transmitters with average power constraints E[X2

1 ] ≤ P1, and E[X2
1 ] ≤ P1, capacity region is

given as [7]:

Cfb =
⋃

0≤ρ≤1

{
R1 ≤ 1

2
log(1 +

P1

N
(1− ρ2)) (4)

R2 ≤ 1
2

log(1 +
P2

N
(1− ρ2))

R1 + R2 ≤ 1
2

log(1 +
P1 + P2 + 2ρ

√
P1P2

N
)
}

Ozarow used the deterministic coding proposed in [10] to prove his result. A sketch of this coding
strategy is given below. A complete proof can be found in [7]. Suppose transmitter i has a message
set wi ∈ {0, · · · ,Mi−1}. Transmitters map each message into a number on the real line and transmit
that number instead of the message itself. Transmitter i maps message mi to θi = mi

Mi−1
− 1

2 , so each
message is mapped to a number in [−1/2, 1/2]. If the total number of messages Mi−1 is large, θi

will have a uniform distribution with variance 1/12. At time k = 1, transmitter 1 sends
√

12P1θ1,
where the square root expression is used to satisfy the average power constraint, while transmitter
2 is quiet. Receiver gets Y1 =

√
12P1θ1 + Z1, where Z1 ∼ N (0, N) is the channel noise, and forms

an estimate of θ1 as θ̂1
1 = Y1/

√
12P1. At time k = 2, transmitter 2 sends θ2 while transmitter 1 is

3



quiet. Receiver gets Y2 =
√

12P2θ2 +Z2, and forms an estimate of θ2 as θ̂2
2 = Y2/

√
12P2. For k ≥ 2,

the receiver feeds back its previous estimates θ̂k
1 , θ̂k

1 to the transmitters. Transmitter i computes
the error εi,k = θ̂k

i − θi, and at time k + 1 sends only the error to the receiver. Note that for time
indices k ≥ 3 both transmitters send simultaneously. Transmitted signals are given by:

X1,k+1 =

√
P1

α1,k
ε1,k

X2,k+1 =

√
P2

α2,k
ε2,ksign(ρk),

where αi,k is the variance of εi,k which is the error of receivers estimate of the transmitter i message
at time k, and ρk is the correlation coefficient between ε1,k and ε2,k. Note that by using a sign
equal to ρk, second transmitter tries to somehow align itself with the first transmitter. After each
transmission receiver update its estimates using the recursive LMMSE given by:

θ̂k+1
i = θ̂k

i −
Yk+1εi,k

Y 2
k+1

Yk+1,

and feeds back its new estimates to the transmitters. This procedure is repeated until arbitrarily
low error variance is achieved.

In Fig. 1, the capacity region with feedback is plotted for a 2 transmitter white Gaussian
MAC scenario where P1 = P2 = 10 and noise power N = 1. The capacity without feedback is also
plotted and is the pentagonal region depicted by small squares. From this figure, it is obvious that
a positive gain is achieved by using feedback.
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Figure 1: MAC capacity: feedback versus no feedback
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3 Broadcast Channel

For the physically degraded discrete memoryless BC, El Gamal proved that capacity does not
increase with feedback [4]. Later, he proved the same result for physically degraded white Gaussian
BC. In his proof he used a modified version of entropy power inequality (EPI) given as [5]:

e
2H(Y )

n ≥ e
[ 2
n

∑n
i=1 H(Xi|Y i−1)]

+ e
2H(Z)

n ,

where Y = X + Z, and X is dependent on Y . However, it is conditionally independent of Y given
(Y1, · · · , Yi−1).

For stochastically degraded white Gaussian BC, Ozarow and Leung [8] developed a deter-
ministic coding scheme (Similar to one we described in MAC section) that achieved a region
strictly larger than the no feedback capacity. However, they could not prove a converse to show
that their achievable region is in fact the capacity, but they showed their scheme comes very close
to the established outer bound.

Before proceeding further, we define the system model. The model of a white Gaussian BC
is depicted in Fig. 2. If either N1 or N2 are zero, we have a physically degraded BC. So, we assume
both N1 and N2 are nonzero. The dotted arrow from one receiver to the other is used to establish
the upper bound on capacity and can be neglected for now. The following theorem describes the
achievable region derived by Ozarow and Leung [8].

Tx

Rx 2

Rx 1

w1;w2

ŵ1

ŵ2

z1 :N (0;N )

z2 :N (0;N 1)

z3 :N (0;N 3)

Y1

Y2

X

Figure 2: System model for Gaussian BC

Theorem 3 (Ozarow and Leung) For a white Gaussian BC channel as in Fig. 2 with an av-
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erage power constraint E[X2] ≤ P , there exists a code that achieves the rate region defined by:

Cbc =
⋃

g≥0

{
(R1, R2) : R1 ≤ 1

2
log

[
N + N1 + P

N + N2 + P
D∗ g

2(1− ρ∗2)

]
(5)

R2 ≤ 1
2

log
[

N + N2 + P

N + N2 + P
D∗ (1− ρ∗2)

]}
,

where D∗ = 1 + g2 + 2gρ∗, and g ≥ 0 allows trade-off between transmission rates to receivers 1 and
2, and ρ∗ is given by the following equation:

−ρ∗ =
(NΣ + N1N2)ρ∗ − PΣ

D∗ g(1− ρ∗2)
√

Π
√

N + N1 + P
D∗ g

2(1− ρ∗2)
√

N + N2 + P
D∗ (1− ρ∗2)

,

and

Σ = P + N + N1 + N2

Π = (P + N + N1)(P + N + N2).

Ozarow also derives a simple upper bound on capacity with feedback. To establish this upper
bound, suppose that receiver 1 somehow knows anything that receiver 2 receives. This is depicted
in Fig. 2 as the dotted arrow. The capacity region is enlarged by this process as receiver 1 has
more information available to decode its intended message. Now (X, (Y1, Y2), Y2) form a Markov
chain resulting in a physically degraded BC, for which we know the capacity region. The same
argument can be made with the rule of receivers 1 and 2 reversed yielding another region. The
feedback capacity lies in the intersection of these two regions.

Theorem 4 (Outer Bound for BC) Let us denote feedback capacity of the white Gaussian
channel by Cfb. Then Cfb ⊆ C1 ∩ C2, where:

C1 =
⋃

0≤α≤1

{
(R1, R2) : R1 ≤ 1

2
log

[
1 +

αP

N + N1N2
N1+N2

]

R2 ≤ 1
2

log
[
1 +

(1− α)P
N + N2 + αP

]}
,

and

C2 =
⋃

0≤α≤1

{
(R1, R2) : R2 ≤ 1

2
log

[
1 +

αP

N + N1N2
N1+N2

]

R1 ≤ 1
2

log
[
1 +

(1− α)P
N + N1 + αP

]}
.

Fig. 3 shows the outer bound versus the inner bound (no feedback) for the capacity of the white
Gaussian BC. Outer bound is the intersection of the two regions confined by the two solid curves.
Inner bound which is the no feedback capacity region is confined by the dashed curve. In this figure
we have assumed P = 10, N1 = N2 = 1, and N = 0. For this setting, Ozarow showed that the rate
pair of R1 = R2 = 0.70468 nats is achievable with his coding scheme. This is very close to the rate
given by the outer bound which is R1 = R2 = 0.71956, while it is a great improvement to the no
feedback rate of R1 = R2 = 0.59947. However, his code falls short of reaching the outer bound and
capacity for white Gaussian BC is not yet known.

6



0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

R
1
 in bits per channel use

R
2 in

 b
its

 p
er

 c
ha

nn
el

 u
se

Figure 3: Inner and outer bound for BC

4 A few more results...

Pombra and Cover [9] proved that capacity of a white Gaussian MAC with correlated noise is at most
doubled by feedback. Kramer [6] extended the feedback coding method of [10] to an interference
white Gaussian channel with arbitrary number of transmitters and receivers. His results are not in
closed form, and are given as a recursive equation. Given the channel gain matrix, the iterations
can be carried out by a computer. His results provide an achievable sum-rate, which for MAC
he showed can achieve the capacity found by Ozarow. One of his conclusions concerning a strong
interference channel is mentioned here. Consider an interference channel of the form:

Y1 = X1 + X2 + · · ·+ XK + Z1 (6)
Y2 = X1 + X2 + · · ·+ XK + Z2

...
...

YK = X1 + X2 + · · ·+ XK + ZK ,

where Yi is the intended receiver of transmitter Xi, and Zi is the channel noise. Each Yi re-
ceives interference from all other transmitters. Kramer’s coding strategy achieves a sum-rate of
(log K)/2 + log log K as K becomes large. This is a factor of log log K larger than the no feedback
sum-rate capacity which is [log(1 + PK)]/2 ≈ (log K)/2. Here P is the average power constraint
on each transmitter.

5 Concluding Remarks

Feedback can strictly enlarge the capacity for discrete memoryless MAC and white Gaussian MAC.
For discrete memoryless MAC with feedback, an achievable region and an outer bound exists but
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capacity is not known. For white Gaussian MAC with two transmitters capacity is known and it is
larger than the no feedback capacity region. Capacity of physically degraded discrete memoryless
BC and physically degraded white Gaussian BC can not be enlarged by feedback. This is not the
case for general white Gaussian BC where capacity is in fact increased by feedback. For Gaussian
BC, an outer bound is established. Also, codes were derived which achieve rates higher than the no
feedback capacity, and very close to the outer bound, but fall short of reaching it. So, the capacity
is still unknown.
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