Linear Coding for Fading Channels

Jinjun Xiao

EE 8510 Project Presentation

Spring 2005
Problem Formulation

- Consider a **memoryless Gaussian source** \(\{ s(i) : i \in \mathbb{Z}^+ \} \) transmitted through a **discrete memoryless fading channel**

\[
y(i) = h(i)x(i) + w(i),
\]

- \(w(i) \) are **AWGN** with unitary variance
- \(h(i) \) are i.i.d. fading with known distribution \(h \)

- There is **channel state information (CSI)** at receiver only.

- A **source-channel coding system** is illustrated as

\[
\begin{array}{cccc}
P_S(s) & S^n & f & X^n \\
& & P_{Y|X}(y|x) & Y^n \\
& & g & \hat{S}^n
\end{array}
\]

- there is average **power constraint** \(P \) on \(X^n \)
- the distortion measure is **mean squared distortion**
Problem Formulation

- Consider a **memoryless Gaussian source** \(\{ s(i) : i \in \mathbb{Z}^+ \} \) transmitted through a **discrete memoryless fading channel**

\[
y(i) = h(i)x(i) + w(i),
\]

- \(w(i) \) are **AWGN** with unitary variance
- \(h(i) \) are **i.i.d. fading** with known distribution \(h \)

- There is **channel state information (CSI)** at receiver only.

- A **source-channel coding system** is illustrated as

\[
\begin{array}{c}
\text{PS}(s) \rightarrow S^n \rightarrow f \rightarrow X^n \rightarrow P_{Y|X}(y|x) \rightarrow Y^n \rightarrow g \rightarrow \hat{S}^n
\end{array}
\]

- there is average **power constraint** \(P \) on \(X^n \)
- the distortion measure is **mean squared distortion**

- Although optimal performance can be achieved by **separate source and channel coding**, it is worthwhile to consider joint source/channel coding with **low complexity and short delay**, such as **linear coding**.
A single-letter linear coding \((n = 1)\):

\[
S(i) \rightarrow f(i) \rightarrow X(i) \rightarrow \text{channel} \rightarrow Y(i) \rightarrow g(i) \rightarrow \hat{S}(i),
\]

in which

\[
X(i) = \sqrt{\frac{P}{\sigma_s^2}} S(i); \quad \hat{S}(i) = \frac{P h^2}{P h^2 + 1} y(i).
\]

The achieved mean squared distortion

\[
D_u(P) = \sigma_s^2 E_h \left\{ \frac{1}{1 + h^2 P} \right\}.
\]

When \(h\) is deterministic (the channel is AWGN), the single-letter linear coding is optimal.

How about the case if \(h\) is random? What is the performance of linear coding (of block length \(n = 1\), or when block length increases)?
Linear Coding is Optimal Among All Single-letter Codes

- A single-letter coding system:

 \[S(i) \rightarrow f(i) \rightarrow X(i) \rightarrow \text{channel} \rightarrow Y(i) \rightarrow g(i) \rightarrow \hat{S}(i) \]

- Lemma: Let \(S \) be a Gaussian random variable with variance \(\sigma^2_S \), and \(\hat{S} \) be any random variable jointly distributed with \(S \). Then

 \[
 \frac{E(|S - \hat{S}|^2)}{\sigma^2_S} \geq \exp \left(-2I(S; \hat{S}) \right).
 \]

- By data processing inequality, we obtain that for any single-letter coding \(\{f(i), g(i)\} \) when there is power constraint \(P(i) \), and the fading coefficient is \(h(i) \), then the achieved distortion at time \(i \):

 \[
 E \left(|S(i) - \hat{S}(i)|^2 \middle| h(i) \right) \geq \frac{\sigma^2_S}{1 + h^2(i)P(i)}.
 \]
Linear Coding is Optimal Among All Single-letter Codes

- Therefore the average distortion for letter $S(i)$

$$E(|S(i) - \hat{S}(i)|^2) = E_{h(i)} \left\{ E \left(|S(i) - \hat{S}(i)|^2 \mid h(i) \right) \right\} \geq \sigma^2_S E_{h(i)} \left\{ \frac{1}{1 + h(i)^2 P(i)} \right\},$$

where equality is obtained by linear coding.

- Finally, uniform power allocation is optimal due to the convex property of

$$D(P(i)) \overset{\text{def}}{=} \sigma^2_S E_h \left\{ \frac{1}{1 + h^2 P(i)} \right\}$$

- Therefore linear coding with uniform power allocation is optimal among all single-letter codes.

- Is linear coding optimal in Shannon’s sense?
Condition for Linear Coding Achieving Shannon’s Bound

- The rate-distortion function and channel capacity are

\[R(D) = \frac{1}{2} \log + \frac{\sigma_S^2}{D}, \quad C(P) = E_h \left\{ \frac{1}{2} \log (1 + h^2 P) \right\}. \]

Combining the above two formulas, we obtain the Shannon’s bound

\[D_c(P) = \sigma_S^2 \exp \left(E_h \left\{ \log \frac{1}{1 + h^2 P} \right\} \right). \]

- The linear coding with block length \(n = 1 \) has average distortion

\[D_u(P) = \sigma_S^2 E_h \left\{ \frac{1}{1 + h^2 P} \right\}. \]

- \(D_u(P) \geq D_c(P) \) from concavity of the log-function. The equality holds iff \(\frac{1}{1 + h^2 P} = \text{const}. \)

- Linear coding (with block length \(n = 1 \)) is optimal in Shannon’s sense iff \(|h| \) is deterministic.
 - If \(h \) is real, \(h \equiv \pm c \).
 - If \(h \) is complex, then \(h \) should be distributed on a circle.
Linear Coding of Finite Block Length

- We consider a **linear coding with block length** \(n \). The encoder is given by a \(n \times n \) matrix \(F \), and the decoder is a MMSE decoder.

\[
S^{(n)} \rightarrow F \rightarrow X^{(n)} \rightarrow \text{channel} \rightarrow Y^{(n)} \rightarrow \text{MMSE} \rightarrow \hat{S}^{(n)}
\]

- Under such a set-up, the **achieved MMSE** is

\[
D(H; F) = \frac{1}{n} \text{tr} \left((HF\Omega_S F^T H^T + I)^{-1} \Omega_S \right).
\]

The **power constraint** implies

\[
P(F) = \text{tr}(F\Omega_S F^T) \leq nP.
\]

- Thus, we can solve the following problem for **optimal** \(F \)

\[
\min_{EH} \left\{ \text{tr} \left((HF\Omega_S F^T H^T + I)^{-1} \Omega_S \right) \right\}
\]

\[
\text{s.t.} \quad \text{tr}(F\Omega_S F^T) \leq nP.
\]
Linear Coding of Finite Block Length

- When channel is DMC and source is memoryless, we have
 \[H = \text{diag}(h(1), \ldots, h(n)), \quad \Omega_S = \sigma_S^2 I \]

- Introducing \(Q = FF^T \succeq 0 \), the problem is changed to
 \[
 \min_{E_H} \left\{ \text{tr}(HQH^T + \sigma_S^{-2} I)^{-1} \right\} \\
 \text{s.t.} \quad \text{tr}(Q) \leq nP/\sigma_S^2, \quad Q \succeq 0.
 \]

- **Lemma:** For any \(R \succ 0 \), \(\text{tr}(R^{-1}) \geq \sum_{i=1}^{n} R_{ii}^{-1} \), and equality holds iff \(R \) is diagonal.

- Optimal solution gives **diagonal** \(Q^* = FF^T \). Thus, any \(F^* = \sqrt{Q^*}U \) where \(U \) is unitary is an optimal solution. Specifically, if we take \(U = I \), we can obtain a **diagonal** \(F^* \).

- Any linear coding can be achieved in a single-letter form without performance loss.
A Lower Bound on the Performance of Linear Coding

- Introducing $h_0^2 = E(|h^2|)$, then we obtain

$$D_c(P) = \sigma_s^2 \exp \left(E_h \left\{ \log \frac{1}{1 + h^2 P} \right\} \right) \geq \sigma_s^2 \frac{1}{1 + h_0^2 P}.$$

- The linear coding achieves distortion

$$D_u(P) = E_h(D(h)) = \sigma_s^2 E_h \left\{ \frac{1}{1 + h^2 P} \right\}.$$

- We can verify that

$$0 \leq \frac{D_u(P) - D_c(P)}{D_c(P)} \leq E_h \left\{ \frac{(h^2 - h_0^2)P}{1 + h^2 P} \right\} \leq P \sqrt{\text{Var}(|h|^2)}.$$

- **Linear coding** is close to optimal in Shannon’s sense if
 - $\text{Var}(|h|^2)$ is small, or
 - If P is small such as applications in sensor networks.
• Rayleigh fading with $P = 1$; source $\sigma_S^2 = 10$
Linear Coding When There is TX CSI

- It still holds that
 - every linear coding is equivalent to a linear coding of block length $n = 1$;
 - linear coding is optimal among all single-letter codes.

- The **optimal power loading** can be solved from

\[
\min \sigma_S^2 E_h \left\{ \frac{1}{1 + h^2 P(h)} \right\}
\]
\[
s.t. \ E_h \{P(h)\} = P, \ P(h) \geq 0.
\]

The optimal power loading (in terms of fading state h) can be solved analytically,

\[
P^{opt}(h) = \frac{1}{|h|} \left(u_0 - \frac{1}{|h|} \right)^+, \quad \text{for some } u_0 > 0.
\]

- **Performance loss** compared to the optimal coding can also be lower bounded in terms of the statistic of $|h|$ and power constraint P.
Concluding Remarks

Considered a memoryless Gaussian source transmitted through a DMC fading channel with AWGN:

- Among all single-letter codes, linear coding is optimal;
- Every linear coding is equivalent to a linear coding of block length $n = 1$;
- Linear coding in general can not approach Shannon’s bound;
- The performance loss of linear coding compared to the optimal coding can be lower bounded in terms of $\text{Var}(|h|^2)$ and power constraint P.
Thanks!