EE 8510 Advanced Topics in Communications Tuesday, Feb. 15, 2005 Prof. N. Jindal

Homework Set 4

Due: Tuesday, Feb. 22, 2005

- 1. Channel Reciprocity. In this problem we consider two reciprocal MIMO systems, one with channel \mathbf{H} and the other with channel matrix \mathbf{H}^{\dagger} :
 - (a) Show that if **H** is fixed (i.e. there is perfect TX and RX CSI), then the capacity of the channels described by matrices **H** and \mathbf{H}^{\dagger} are the same.
 - (b) Show that if **H** is fading and there is only RX CSI, then the capacities of **H** and **H**[†] are not necessarily the same. Provide a simple example of this.
- 2. Colored Noise. Consider a standard MIMO channel:

$$y = Hx + z$$

where $\mathbf{H} \in \mathcal{C}^{N \times N}$ is fixed, but the covariance of the noise is given by $E[\mathbf{z}\mathbf{z}^{\dagger}] = \mathbf{\Sigma}_{z} \neq \mathbf{I}$. Calculate the capacity of this channel, subject to a power constraint P on the input. For simplicity, assume that the inverse of $\mathbf{\Sigma}_{z}$ exists.

- 3. Matrix Identities. A matrix **B** is Hermitian if $\mathbf{B} = \mathbf{B}^{\dagger}$. A Hermitian matrix **A** is positive semi-definite iff $\mathbf{x}^{\dagger}\mathbf{A}\mathbf{x} \geq 0$ for all vectors \mathbf{x} , and is positive definite iff $\mathbf{x}^{\dagger}\mathbf{A}\mathbf{x} > 0$ for all vectors $\mathbf{x} \neq \mathbf{0}$. Consider an arbitrary $N_r \times N_t$ matrix **H**.
 - (a) Show that the matrices $\mathbf{H}\mathbf{H}^{\dagger}$ and $\mathbf{H}^{\dagger}\mathbf{H}$ are each Hermitian.
 - (b) Show that the matrices $\mathbf{H}\mathbf{H}^{\dagger}$ and $\mathbf{H}^{\dagger}\mathbf{H}$ are positive semi-definite, and that the matrix $\mathbf{I} + \mathbf{H}^{\dagger}\mathbf{H}$ is positive definite.
 - (c) How are the eigenvalues and eigenvectors of $\mathbf{H}^{\dagger}\mathbf{H}$ related to the eigenvalues and eigenvectors of $\mathbf{I} + \mathbf{H}^{\dagger}\mathbf{H}$?
 - (d) Prove that if a Hermitian matrix is positive definite, then its columns are linearly independent.

- 4. Asymptotic Capacity. Consider a MIMO channel with iid Rayleigh fading. In this problem you will use the fact that if \mathbf{h} is an $N \times 1$ vector with iid circularly symmetric complex Gaussian components, then $||\mathbf{h}||^2$ is chi-square distributed with 2N degrees of freedom. Thus, $||\mathbf{h}||^2 \to N$ (roughly) as N goes to infinity.
 - (a) Calculate the limit of the capacity when only the RX has CSI, with $N_t = 1$ and $N_r \to \infty$.
 - (b) Calculate the limit of the capacity when only the RX has CSI, with $N_r = 1$ and $N_t \to \infty$.
 - (c) Why do these results differ so drastically?
 - (d) If the TX also has CSI, would the results be the same?
- 5. Unitary transformation of a Gaussian. Assume that $\mathbf{z} \in \mathcal{C}^n$ is complex circularly symmetric Gaussian with $E[\mathbf{z}] = 0$ and $E[\mathbf{z}\mathbf{z}^{\dagger}] = \mathbf{I}$. Show that $\mathbf{U}\mathbf{z}$ has the same distribution as \mathbf{z} for any unitary matrix \mathbf{U} (i.e. $\mathbf{U}\mathbf{U}^{\dagger} = \mathbf{U}^{\dagger}\mathbf{U} = \mathbf{I}$).