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Preliminary Notation

e Column and row vectors

A column vector x is a n—tuple of real or complex numbers

A row vector



e m x n matrix is the following array

ai oo Q1n

A= : ., ,CLZ'jEC,R

short hand notation is A = (a;;)

It is useful to view A as a row vector of columns

I aiq
A:[al as ... an],whereai: ;
View A as a collection of row vectors
oy
a2
A= : 7ai:[az’1 am]




Upper and Lower triangular matrices

A = (a;;) is the upper triangular if a;; =0, j <

Transpose: A’ denotes the transpose of a matrix A whose elements are
AT = (az;) if A= (ay;)

Conjugate Transpose:
A* = (a5;) it A = (aiy)
Symmetric:

A matrix A is Symmetric if A = AT

Hermitian:

A matrix A is Hermitianif A = A*



e Multiplication:

C=AB, Ae R™"*P, Be RP*"

p
Ci; = Zaikbkj = (i"" row of A)[j'™ column of B]
k=1

Fact:
I1f C =AB, then C* = B*A*



Suppose B € RP*™

AB

AB




Orthogonal, Unitary Matrices, Linear Independence
Definition 1. e Orthogonal Matrix:
A is Orthogonal if ATA = AAT =1

e Unitary matrix:
Alisunitary if A*A = AA* =1

e Orthogonal Vectors:

Given two column vectors x, y with n-element, they are said to be
Orthogonal if z*y = 0.
They are Orthonormal if x*y =0, z*x =1, y*y =1

e Linear Independence:

Given a set of column vectors with element each denoted by

zt, 2%, ..., ™.



They are said to be independent if

m
Zcixi:Oﬁci:(), c; € R
i=1

Cfzt, 2%, ..., ™ are not independent then they are said to be dependent.



Determinants

e Determinants:

Suppose

c d

Suppose A € R™*" then let A;; be defined as the (n — 1) x (n — 1) matrix
obtained by deleting the i'" row and the j'" column. A;; is called the
co-factor associated with a;;. Determinant of A denoted by det(A) is
defined by

B = [ ‘ b],then det(B) = ad — be

n

d@t(A) = Z(—l)”jaijdet(flij).

1=1



Properties of Determinants

It can be shown that

n

det(A) = Z(—l)”jaijdet(Aij).

g=1

If any two rows or any two columns of A are the same then det(A) = 0.

If any two rows (columns) are interchanged then the sign of the
determinant changes but the magnitude remains same.

If an row (column) is scaled by o then the det also gets scaled by «.

deta(A) = det(AT) and det(A*) = det(A).



e If a scalar multiple if a particular row (column) is added to another row
(column) then the determinant remains unchanged.

o det(AB) = det(A)det(B). (Not easy to prove).



Matrix Inverse

e Inverse of a matrix: Suppose A € R"*™ and there exists a matrix X such
that
AX =XA=1.

Then X is the inverse of A. An inverse of a matrix A is denoted by A=1.
If Ais invertible then

A B1 [I 0][A B
C D| |cAa? I||0 D-—CA'B

and if D is invertible then

EHREE e Exad|



Simultaneous Equations

Consider the following set of n equations in n unknowns x1, zo, . . .

a11r1 + aiexs + ... + aipxr, = b
An1T1 + ap2T2 + ... + AppTn, = bn

Another way of representing this set of equations is

X1 I b1 |
Axr =0b, x = , b= ?2 and A .= (CLij)

Tn, by,




Gaussian Elimination

Theorem 1. Consider the equation
Axr =0

where x and b are vectors in R"™ and A € R"*". A and b are known and x is
the solution to be determined. Then Ax = b admits a unique solution =* if
det(A) # 0.

Proof: Ax = b is a notation for

ai1xy + appxs 4+ ... + apnT, = b
a1y + aoxxrs + ... + aiprn = bs (1)
an1ti1 + Gporo + ... + GppnTn, = b,

Note that there is at least one 7 such that a;; # 0 (as det(A) # 0). Without loss



of generality assume that a1, # 0. Perform the following operation: multiply the
first row by —a;; /a1, and add it to the it row for i = 2,...,n. Replace the i'"
row with this row. This leads us to the following set of equations

agl):zzl + a§2):132 + ... + a&) = bgl)
0 + a;;azg + ... + a,&)gcn = bél) 2)
0 + a?(ﬂ)ajg + ...+ aq(ﬁblyz:cn = Y

with the first row unchanged. The above set of equations can be denoted by
AW gz = p1) where A1) = (a§;>). Note that det(A) = det(A™")) and therefore
det(A(1>) £ 0. Using this fact we can assert that there is at least one

i € {2,...,n} such that a;> # 0. Without loss of generality assume that

a,22) 7 O

Perform the following operatlon multiply the second row by a /a§12> and
add it to the i*" row for i = 3, ..., n to obtain. Replace the i'" for rows



i = 3,...,n with the new rows. This leads us to the following set of equations

agl)xl + a&Q):L‘Q + ... + agn> = b(12)
0 + a%)xg + ... + agi)xn = ng) (3)
0 - 0 + ...+ afngxn = bg)

with the first two rows same as in (2). These iterations can be continued to
obtain

ajiTr1 + ajore + ... + ai,Tn
* *

0 + 0 + ... + a,x, = b



with a* # 0. Thus we have the unique solution

- * *
Ln T bn/ann
k

b3
n—1"%n—1)nTn

Lpn—-1 — ar
(n—1)(n—1)
by —aioro—a*13x3...a%. x
T — 21T %1p%27a 1o%3..01nTn

aqq

The method used to obtain the solution of Az = b in the proof above is called
the Gaussian Elimination method.

Theorem 2. /f A € R"*", thendet(A) # 0, ifand only if A=! exists.

Proof: Let e; denote a column vector with 1 in the *” position, a zero



otherwise.

-

0

where e!. = §;,. From Theorem 1, Az = ¢* has a unique solution z". Let
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If A—! exists,then 3 X such that

AX = 1

det(AX) = det([])

det(A)det(X) = det()=1
= det(A) #0

Therefore, A~! exists < det(A) # 0.

Theorem 3. Suppose A is an x n real or complex matrix, then the following
are equivalent:

1. det(A) #0
2. 3amatrix A~ suchthat A=A =AA"1 =1

3. AX = b has a unique solution for every b € R™



4. AX = 0 has the only solution X =0

5. The rows and columns of A are independent,

Proof: We have shown that 1 & 2 from Theorem 2. We have also shown
2 3and 3 < 4

To show 4 = 5: Assume that scalars ¢y, ¢, . . . ¢,, such that

ciar +coaz + ...+ cpan = 0
C1
[a,l as ... an] ?2 = 0
L Cn —
Ac = 0
c = 0(from4)

Ci 0 for all %



Thus ay,as...a, are independent
To show 5 = 4:

Note that det(A) = det(A?) = rows of A are independent = columns of A*
are independent = det(A%) # 0 = det(A) # 0 = 4 holds which follows from
equivalence of 1 and 4



Eigenvectors and Eigenvalues

Definition 2. Eigenvectors and Eigenvalues: Given a square matrix
Ae R"™™ (orAe (C™™)\e (' iIs an eigenvalue of A if there exists a vector
x # 0 € C™ such that

Axr = \x.

Such a vector x is called an eigenvector of A associated with eigenvalue ).

Theorem 4. Let A € R™"*". Then the following statements hold.

1. X\ is an eigenvalue of A if and only if det(A — A1) = 0.

2. If X is an eigenvalue of A then \™ is an eigenvalue of A™.

Proof: (1) Suppose X is an eigenvalue of A. Then from the definition there
exists a x # 0 such that Ax = Ax or in other words there exists x # 0 such that
(A — AX)x = 0. From Theorem 3 it follows that det(A — \I) = 0.



Suppose det(A — AI) = 0. Then from Theorem = it follows that there exists
x # 0 such that (A — AI)x = 0 which implied there exists = £ 0 such that
Ax = Mx. Thus X is an eigenvalue of A.

This proves (1).

(2) Suppose A is an eigenvalue of A. Then from the definition there exists a

x # 0 such that Ax = Az. Multiplying this equality by A on both sides we have
A%x = Mx = \?z. Thus A%z = \?z. Repeating this step m times we have
A™x = \z. This proves the theorem.

Theorem 5. Letp(\) = ag + a1 A + as\? + ... + a, A™ and
p(A) = apl + 1A+ ...+ a, A™.If \g is an eigenvalue of A then p(\y) is an
eigenvalue of p(A).

Proof: )\, is an eigenvalue, then dx = 0 such that Ax = \x



(aox + a1 Az + ap A%z + ... + a,,, A1)
(apx + al AT + N + . .. + a,, \T)
(g + i A + aa\? + ...+ apA™)x
p(A)x

Theorem 6. Suppose A is an n x n matrix with eigenvalues A, s, ..., \,
and A is nonsingular(det(A) # 0)thenA7', A\, ... A1 are eigenvalues of A~!.

Proof: If )\ is an eigenvalue, then dx # 0 such that

Ar = Mz
= X — M lz
= +r = Alp

Thus A1 is an eigenvalue of A1 .



Theorem 7. If A is ann x n matrix then A and A* have the same
eigenvalues. If A is ann x n matrix with eigenvalue X then A* has an
eigenvalue .

Proof: Note that A € C'is an eigenvalue of A if and only if

det(A—XI) = 0
& det(A—X) = 0
& det(A—XI) = 0
& det(A— N )T = 0
& det(A*—= X)) = 0

Theorem 8. If A is an x n matrix then
det( Al —A)=A=2)A=X1)...( A= A\p)

where \;, i = 1,...n are eigenvalues of A. Thus det(A) = 11} \;.



Proof: The proof follows from the fact that det(\I — A) is a n'"* order
polynomial and thus will have n roots. From Theorem 4 it follows that \;,
i =1,...,n are all roots of polynomial det(AI — A). This proves the theorem. =

Theorem 9. If A is a Hermitian matrix then all its eigenvalues are real.

Proof: Note that A = A*. If \ is an eigenvalue of A then there exists a vector
x # 0 such that Ax = \x.

Ax = A\
= x*Ax = \z*zx
= (2*Ax)* = (Az*x)*
= g*A*r* = \x*x
= g*Ax* = \r'r
= zdzm )
= A = A\



This proves that A is real.

Definition 3. An x n matrix A is said to be

1. positive definite if x*Ax > 0, for all x # 0.
2. positive semi-definite if x*Ax > 0, for all x.
3. negative definite if t* Ax < 0, for all x # 0.

4. negative semi-definite if t*Ax < 0, for all x # 0.

Theorem 10. A n x n is a Hermitian matrix. Then

1. all its eigenvalues are positive if A is positive definite

2. all its eigenvalues are non-negative if A is positive semi-definite



3. all its eigenvalues are negative if A Is negative definite

4. all its eigenvalues are non-negative if A is negative semi-definite

Proof: We will prove (1). Let x # 0 and Ax = Ax. As A is hermitian A is real.

Note that
*Ax = \x*x
> =2
= A > 0

The last step follows as z* Az > 0, and z*z > 0.



General Vector Spaces

Definition 4. A linear Vector Space is a collection of objects called vectors
with two operations,” +” and”.” defined between two vectors and a vector
and scalar respectively which satisfy

l.x,yeV=zxc+yeV
2. (x+y)+z=2+(y+z2) Vo,y,z €V
. r+y=y+zxzVr,yeV

4. There is an element 0 called the zero vector such that

0, x=_0,6 VeV

scalar vector

5 le=xVr eV



6. a(B.x) = (af).x where o, 5 are scalars andx € 'V

7. (a+ pB).x =ax+ Pz, o, are scalars andx € V

8. a.(r+y)=ax+ Py, aisascalarandz,y € V

Example 1.

E2A

(a)

(b)
Figure 1: (a) Scalar multiplication (b) vector addition.

Example 2. Let scalars be the real numbers andV = R".



{x:x

'+ VXV =V

Y1

Yn




(z+y)+z=

T1+ Y1

Tn + Yn

similarly, x + (y + z) =

Example 3. Let

_ Y1+ 21

| Yn T Zn

r1+yr+ 2

xn+yn+zl

1+ Y1+ 21

xn+yn+zl

V .= {set of all polynomials of order less than or equal to n}

and the scalars be the real numbers. The vector addition operation is defined

as follows: if

p(t) =po+pit+ ... +put" andq(t) = qo + it + ... + gut"

then

(p+q)(t) == (po+aqo0) + (pr +q )t + ...+ (pn + q,)t" and



(ap)(t) = apo + apit + ... + appt™.

Then V with the R as the scalars satisfies all the properties of a vector space.



Definition 5. Linear Independence: Let V' be a vector space and let

v1,02,...,0, be vectorsinV. Ifz c;v; = ¢; = 0 where cq,ca, ..., c, are
1 =1
scalars, then we say vy, vq, ..., v, are independent.

Definition 6. Linear Combination: Suppose V is a vector space and

mn
v1,vs, ...,y are any vectors in V. ThenV = Z c;v; is said to be a Linear
1=1
Combination of the vectors vy, v, . .., v,.

Definition 7. Subspace: Suppose X is a vector space. If V C X andV is a
vector space, then V' is said to be a Subspace of X.



61 /

Example4. 7~ 1) _ 40
Figure 2: (a) L is a subspace (b) L is not a subspace.

Definition 8. Span: Let X be a vector space and let x1, x>, x3,...,x, be
vectors in X. Span(x1,...,x,) is the set of all linear combination of vectors
L1yL2yeeeyLp.

n
Span(xi,...,xz,) ={z € X, X = cu;, wherec; are scalars }
1=1



v
\ /

Example 5.

Figure 3: Span(e',e?) = E?, and Span(v,w) = E*

Definition 9. Basis: Let X be a vector space. Then a set of independent
vectors x1, s, ..., x, are said to be a Basis if Span(x,...,z,) = X.

Example 6. e ¢;,¢; is a Basis for E2.



e X = all polynomials of degree < n.
X ={ag+ait +ast? + ...+ apt™|a; € R}
{1,¢t,...,t"} forms a Basis for X .

{1,1+¢t,14+t+t%,...,1+t,...,+t"} also forms a Basis.

e X = {polynomials or order < 3}

{1,1+t,t%,t,t3} is not a Basis (note that1 — (1 +t) +t = 0 and therefore
not independent).

Definition 10. Finite Dimensional Vector Space: X a Vector Space is said
fo be finite dimensional if it has a Basis which has a finite number of elements.
Any Vector Space that is not finite dimensional is said to be Infinite
Dimensional Vector Space.

Example: X = { all polynomials of any degree } (infinite dimensional)



Dimension is unique

Theorem 11. Let X be a Vector Space. Suppose x1, xs, ..., x, and
v1,Y2,...,Y, are two set of basis Vectors for X, thenn = m.

Proof: Assume without loss of generality that m > n. As {z;}j = 1" is a basis
there exist constants a;;, ¢ = 1,...,m such that

Yi = E Ajilyj.

j=1

Let



I ajp a2 A1m |
ajl ajg a]m
A= | ap1 an2 Anm
0 0 0
0o 0o ...0 |

det(A) = 0. It follows from Theorem = that 3 an a € R™, « # 0 such that
Aa = 0.

Let us consider the linear combination



1=1 O 1=1 7=1
- - n m
= 2 (D ajiae,
j=1 i=1
= 0
m
Thus we have shown that there exist scalars o, ..., «,, and Z a;y; = 0=

1=1
Y1, Y2, - - ., Ym are not linearly independent. This is a contradiction to the fact
that {y;}*, are independent and thus m = n.

Definition 11. Dimension of a Finite Dimensional Vector Space: The
Dimension of a Finite Dimensional Vector Space is the number of vectors in
any basis of the vector space.



Suppose Vi, Vy are subspaces of a Vector space V, then

VlmVQZ{’UGVZUEVlCLnd’UEVQ}
V1—|—V2={’U€VI’U:U1—|—’UQ, ’U1€V1, UQEVQ}

Vi + Va is called the Direct Sum of Vi and V5 if Vi NV, = {0}. The notation
Vi @ V; Is used to denote a Direct Sum.

dim(V1 + V5) = dim(V;) + dim(V3) — dim(V; N V)

dim(Vy @ Vo) = dim(Vy) + dim(V5).



Independent vectors extended to form a basis

Theorem 12. LetV be an dimensional vector space and letv;, i =1,...,m
be independent vectors with m < n. Then there exist n independent vectors
Vi, T = 1,...,nSUChthat®i:vi fori = 1,...,m.

Proof: Let

Vo := spanf{vy, ..., v2}.
Let 0,,41 € V such that v,,,1 € V,. Such a vector exists from Theorem and
as m < n. Let
Vi := spanf{vy, ..., U2, Upmatt
Clearly dim(V3) = m + 1. Continuing the above process till we obtain

Vin —m) := span{vi, ..., 02, Omy1,.-.,0n}.

From Theorem these set of vectors has to form a basis for V. The theorem
follows by defining v; := v, fori =1,...,m. "



Coordinates

1?2
wZ wl
9 >
—ee»l

Figure 4: The coordinates of w! in the basis e! and e? is [cosf sin ]’

Note that
W =cos(0)€?! +sin(h) €.



We say
cos(6)
sin(0)
are the coordinates of w! in the bases ¢! and ¢ 2.

Note that ='! and w2 also forms a basis for £E2. As
W= 1w + 0w

And thus the coordinates of ! in the basis W' and w2 is
1
0|

Let V' be a vector space and suppose {v;} , be a set of basis vectors. Then



any vector v € V can be written as

n
U = E ;U5
1=1

Then aq, ..., «a, are coordinates in the basis {v;}?_; and

a1

Qn

is the coordinate vector in the basis {v;}_,. Note that if

mn
v = E QU5
i=1



then

and as vy, ..., v, are independent it follows that (&; —a;) =0fori=1,... n.
Thus o; = @; forall 7 = 1,...,n. This implies that coordinates are well defined.

Example 7. Suppose
V' = {all polynomials with degree less than or equal to n}.

Note that the polynomials 1,t,t2,...,t" forms a basis for V. Suppose p is a
polynomial given by

p(t) = ap + aqt + ant?, ..., apt™.



The coordinate vector of p in the basis {t'}"_, is

One can check that
(1,14t 14+t+¢2, . 14+t +t2+. .+ 1",

IS also a set of basis vectors for V. Note that

ag + ot + aot?, ..., apt”
ag+ar(1+t—1)+ag(1+t+t>—(1+1¢)+...
toa,(1+t+...+t"— (A +t+...+t" 1)

(o — a1) + (a1 — ag)(1 + )+

p(t)

ot (apor —a) A+t + .+t a4

)



Thus in new basis the coordinate vector is

Qo — 1
a1 — 02




Linear Operator

~ A Ny
X

Figure 5: A map

Let X and Y be vector spaces. A a mapping from X to Y which assigns a
vector Az € Y for every vector x € X is a linear operator if

A(alxl + ozng) = a1 Az + as Az, for all 21, 2% € X and ay, as scalars.

Example 8. Suppose V is the set of all polynomials of degree less than or
equal to n. Suppose W is the set of all polynomials of degree less than or



equalton — 1. Let A:V — W be defined by

dp

Note that for every p € V, Ap € W. Also note that

d(a
Alap+fq) = H5E0
aTr +

aAp + BAq

proving that A is a linear operator.

Example 9. SupposeV = R™ and W = R™. Suppose A :V — W id defined



where ©r =

X1

Ln

. Its evident that

A(arzt + a2?) = A(aqzt + agx?)

Thus A is linear.

a1 Ax1 + apAx?
ar Azt + azAx?



Matrix Representation of a Linear Operator

Suppose A : V — W is a linear operator. Suppose {v1, ..., v,} is a basis for
aq

V and {wy,...,ws} is a basis for W. Suppose v € V and suppose | : IS
Qp, |

its coordinate vector in the basis given. That is

n
vV = E Oéj’Uj.
J=1

Note that Av; € . Let the coordinate vector of Av; be | : for

j=1,...,n. Thatis

m

.A?Jj :Zaijwi, ]:1,,7?,

1=1



Note that
Av = A(Z?:l jV;)
= > Alajvy)
= 2?21 a; A(vj)

— Z?ﬂ D i 0w
mn

= Y aiag) w
\’]:1
n =
= Zizl Biw;
where we have defined 8; = > 7|
vector of Av is

7

a;;ja;,1 = 1,...m. Thus the coordinate

B
b

where
B = Aa,



Thus the method to obtain the matrix representation of a linear operator given
a basis {v;}7_, of the domain space V' and a basis {w;}]~, of the range space
W is to follow the steps below:

1. Obtain the coordinates of Av, in the basis {w;}/* . Let | : be the

coordinate vector for v;.

2. The coordinate vector of Avis 8 = A« if a is the coordinate vector of v In
the basis {v;}7_;.

Example 10. Consider

V = { all polynomials of degree < n}



and
W = { all polynomials of degree < n — 1}.

Let A:V — W be defined by

dp
Let (1,t,t%,...,t") be the basis forV and let (1,t,...,t"" ') be the basis for
W.

A?}j: E Q5 W;5.

1=1
Note that v; = t/~!, w; = t'~! Thus

Avj = G
(j -1~

m m

_ E _ E ! 1—1

= aijwi = aijt
1=1

1=1



This implies that

(] — 1)tj_2 = Zaijti_l
i=1
and thus
aij = 0 if i#(—1)

-1 if i=@G—-1)
Letp inV be given by
p=oapl +a1t+ ...+ a,t"

which has coordinate vector




Then Av has coordinates = Aa where A = (a;;) where

0 if i#(j—1)
(j—1) if i=(j—1)

CLij

Example 11. V=R", W =R™

1 0 0
0 1 0
0 [ 0] 1

to be the basis for R™ and a similar basis for R™.



Let A: R — R™ be defined by

b

£ = Aa.




Composition of Linear Operators

Figure 6: Composition of two operators

Theorem 13. Suppose U, V and W are vector spaces with bases
{ui,...;un}, {v1,..., v} @and{wy,...,w,} respectively. A:U — V and

B :V — W are linear operators with matrix representations A and B
respectively in the bases given. Then the matrix representation of the linear
operator BA : U — W has a matrix representation BA with

{u,...,un}, @and{ws,...,w,} as bases forU and W respectively.



Change of basis

AV — W is a linear operator, then the matrix representation of .4 depends
on the basis of V and W.

Example12. V =R?, W =R3and A:V — W is defined by Av = Av
where A = (a;;).

1 0 0
vi=1|0|,vo=1|11|,v3=10
_O_ _0_ _1_
1] [0 | [0 |
w1 = 0 , Wo — 2 , W3 = 0
_O_ _O_ _3_
_CL11_ 3 _0411 ]
Avy = | ag; ZZOéu’LUi: 2091
| asz1 | i=1 | 3asy |




. Thus the coordinate vector of Av, is given by

11 i1
21 = lCL21
| 31 | | 3431 |
i a9 | 3
Avg = a22 — Z QW5 =
i as2 i 1=1

Thus the coordinate vector of Av, is given by

12 ai2

1
22 = 5022
| 32 | | 332 |




3 13
Avs = | ao3 | = Z Qisw; = | 2003
] ass i =1 30&33
Thus the coordinate vector of Avs is given by

13 a13
1
23 — 5023
| (33 | | 3433 |

Matrix Representation of A is given by

aii ai2 ais

1 1 1

5021 ?022 5023

| 3431 30432 3433 |

Suppose V is a vector space with two sets of basis vectors given by
{v;}7_, and {v;}7_,. Suppose the coordinate vector of a vector v € V in the



bases {v;}I ; and {v;}?_, is given by

respectively. Suppose

Note that

Therefore we have

and a =

n
UVj = E qijVi
i=1

2.

n
J

=1 Q5Uj

Do O D il €U

2.

n
=1

(> 5—1 €ijj)vi

a = Qa where Q = (gi;).




The matrix () above is invertible.
it follows that there

Lemma 1.
Proof: Suppose () is not invertible. Then from Theorem

exists a # 0 such that Qa = 0. This implies that

n
Zqij@j =(0forallz = 1,...,n.
J=1

Consider A N N
Zj:l Qv = 23:1 G5 (2521 Gijvi)

mn
= Y O aib)) v
j=1

~N"

=0

= 0.
This implies there exists & # 0 such that 7, 4;9; = 0. This would imply that
{9} is not an independent set. This is a contradiction.



v1,V2,V3
A

U1,02,03 e ~
Example 13. V = RB, with basis (61, €2, 633 and (61, %62, %63)
@1 = (1)?)1 + (O)Ug -+ (0)’03
@2 = (O)Ul + (%)02 + (O)’Ug
’IAJ3 = (9)’01 + (O)U_ + (%)’03
1 0 0
Q = |0 % 0
00 5

If o is the coordinate vector in (e1, e2, €3), then the coordinate vector in
1 1 : —
(617 5€2, §€3> IS Q 105'

Theorem 14. Suppose A : V — W is a linear operator from vector space V
to vector space w. Furthermore, suppose (vy,vs, ..., vy), (01,09, ...,0,) forms
two sets of basis for V' with the associated change of basis matrix (). Also,



suppose (w1, ..., wy,) and (w1, ..., w,,) form basis for W with change of basis
matrix T'. Let A be the matrix representation of A in the basis (v1,...,v,) for
V and (wy,...,w,) for W. Let B be the matrix representation of A in the
basis (01,...,0,) forV and (w1, ...,w,,) forW. Then, B= PAQ, P =T

Proof: Suppose « is the coordinate vector of v € V' in the basis (vy,...,v,).
Let & be the coordinate vector in the basis (04, ...,7,). Then
a = Qa.
Suppose S is the coordinate vector of Av in the basis (wq,ws, ..., w,,). Then
£ = Aa«.
Suppose £ is the coordinate vector of Av in the basis (i1, .. ., w,,). Then



_ma_wp_m=lap_m=1A4 _T=1ANA _ -1
B=TB=p=T""6=T Aa_TBAQa.Therefore,B_T AQ).

v W
e
Example: C: R> — R?

C11 Ci12 (13
C — C21 C22 C23
| €31 €32 €33 | ) ) )
C11 Ci12 (13 03] ]
= Cv = Co1 Coo (93 : where v =
| €31 €32 (€33 | [ @3 | | a3

Let (e1, €2, e3) be a basis for V-and W. Then we have argued earlier that the



maitrix representation in these basis vectors is

Ci11 Ci2 (13
A= C21 C22 (23

C31 C32 C33

Let another set of basis vector for V-and W be (e1, €2, e3) and (e1, 5e2, 5€3).
B =T-1AQ.

From the previous example, we have

1 0 0
T=10 3 01],Q=1I
00 5




B=T"1A4=

o =

N}

C12

C32

C13

C33

C11
2021

331

2622
332

C13
2623
3633




Equivalence and Similarity Transformations

Definition 12. e Equivalence Transformation: If A and B are m x n
matrices and P and () are nonsingular m x m and n x n matrices
respectively. Then A and B are equivalent if B = PAQ). It immediately
follows that if A and B are two matrix representation of a linear operator
A:V — W then A and B are equivalent.

e Similarity Transformation: /f A and B are m x m matrices, Q € R™*™ is
invertible, then A and B are similar if B = Q1 AQ.

Theorem 15. If A:V — V be a linear operator with a matrix representation
A in the basis (vy, . ..,v,) and B in the basis (01, ...,0,). Then A and B are
similar.

Proof: We know from Theorem 14 that B = T—'AQ. T is the basis
transformation between (wy, ..., w,) — (01,...,0,). T =Q = B=Q 1AQ. »



Definition 13. Range of a Linear Operator A: Let A be a linear operator
from vector space V to vector space W .

Range(A) = {w € W such that Jv € V with Av = w}

A

1%
WF

Figure 7: Range of a operator
Range(A) C W.

Theorem 16. /f(v4,...,v,) is a basis for a vector space and A:V — W
where W is a vector space with A is linear, then



span(Avy, Avs, ..., , Av,) = Range(A)
Proof: To prove that Range(A) C span{Avy, Avs, ..., , Av,}
Let w € Range(A)

From definition, it follows that 3v € V' such that w = Av

veV = Ia,as,...,a,)suchthat v = Z%’Ui
i=1

w=Av = A aw)
1=1

= w € span({Avi, Avs, ..., Av,}
= Range(A C span{Avy, Avs, ..., Av,}



Suppose we have w € span{Avy, Avs, ..., , Av,}. Then

n

3(B1s- -, Bn) suchthatw = Bidv; = A Bw;) = Av

i=1 i=1
wherev e V

w € Range(A)

span(Avy, ..., Avy) C Range(A)

Therefore,
span(Avy, ..., Avy) = Range(A)

We can show that Range(A) is a vector space.

Definition 14. Rank(A): Suppose A is a linear operator from vector space
V to vector space W. Then Rank(A) = dim(Range(A)).



Example 14.
V' = {set of polynomials of order <2} andW =V

AV — W be the operator defined by

dv
V = —.
A =

Note that
Range(A) = {all polynomials with degree < 1} and
Rank(A) = dim{Range(A)} = 2.

1,t,t% forms a basis for V



Range(A) span{A(1), A(t), A(t*)}
spand0, 1, 2t}

span{l, 2t}

Example 15. Rank(A): Suppose A is a m x n matrix, then Rank(A) =
number of independent columns of A.

Theorem 17. Suppose A : V — W is a linear operator and A is the matrix
representation of A in the basis (vy,...,v,) forV and (wy,...,w,) for W.
Then Rank(A) = Rank(A).

Proof: Suppose that dim(Range(A)) = r = rank(A). Then, there should be r
independent vectors Avq, Avo, ..., Av,, which follows from Theorem

Let us assume without loss of generality that only Av, Avs, ..., Av, are
independent.

The matrix A was defined by the following



Consider a linear combination of the first » columns of A

E :aljcj

j=1

E :a2jcj

g=1

E :a’mjcj

g=1




Suppose 3 ¢y, ¢a, ..., ¢, such that
cia1 + ceas + ... + cra, = 0.

that is

r
E CLZ'jCj:O; i:1,2,...,m
j=1



Consider the linear combination

c1tAvy + o Avs + ... + c1 Av,

Because Avq, Avs, ..
c;=0, j=1,2,...,m

In summary, if cia; +caa2+ ... +cra, =0thenc; =05 =1,2,...

We have shown that a1, as, . .

m m
C1 E a;1W; + Co E A oW; + ...

T m
;ch ;Jaijwi
1=1

j=1
m T

(Z cjail)wz-

i=1 j=1

-

., Av,. are independent, it follows that

., a, are independent.

+ Cr § AWy

1=1

, I



Therefore, Rank(A) > r = Rank(A). The proof that Rank(A) > Rank(A)
follows similarly. "

Theorem 18. If A and B are two matrix representations of the linear operator
A, then Rank(A) = Rank(B).

Proof: Note that Rank(A) = Rank(A) = Rank(B).

In particular, let A be a m x n matrix.

P and @) are nonsingular m x m, n x n matrices respectively. Then,

Rank(A) Rank(PA)
Rank(AQ)

Rank(PAQ)



A: R*"— R™and Av = Aa.

A, PA, AQ, PAQ are all matrix representations of A



Null Space

Definition 15. Null Space: Suppose V' and W are vector spaces and A a
linear operator fromV — W . Then,

Null(A ={v € V]|Av = 0}

Note that Null(A) C V and Range(A) C W.

Example 16.
V' = { Vector space of all polynomials of degree < 2}.
LetW =V, Av = %. Then

Null(A) = {all constants}



and
Basis(Null(A)) = 1.



Rank Nullity Theorem

Theorem 19. Suppose V and W are vector spaces, and dim(V') = n.
AV — W be a linear operator. Then

dim(Null(A)) + dim(Range(A)) = n.

Proof: Suppose dim(Nwull(.A)) = n. Therefore, 3 independent vectors
v1, V2, ..., U, Such that

A?Jl:AUQ:...:.Avn:O.
Because dim(V') = n, vy, vs, ..., v, forms a basis for V. Thus, given any

vectorv e V,
mn n
v = Z%Uu Av = ZaiAvi = 0.



Thus,
Range(A) = {0}.

Suppose dim(null(A)) = ¢ < n. Then there exist independent vector
V1,2, ...,V SUCHh that

Avy = Avy = ... = Ay, = 0.
From Theorem 12 one can extend the basis to vy, va, ..., vq, Vg41,. .., vn. We
will show that Av,4,..., . Av, are independent. Note that
Z CZ‘A’UZ' = 0.
g+1
Then we have N
.A(Z C@'UL‘) =0

q+1



n

Z civ; € null(A).

g+1
AS v411,...,v, are independent it follows thatc; =0 Vi=¢g+1,...,n. Thus
we have shown that
./4’Uq_|_1, ce ,A’Un

are independent.
Suppose w € Range(A). Letv € V then v = Z a;v;. It follows that
1=1
Av = Z o; Av; = Z o; Av;.
1=1 1=q+1

{Av441, Avgia, . .., Av, } is a basis for Range(A). Thus

Range(A) = span{Avgy1, ..., Av,}.



Thus
dim(Range(A)) =n —q
and it follows that

dim(Range(A) + dim(null(A)) = n.

Theorem 20. Let B and C be m x n andn x p matrices with
rank(B) = b and rank(C') = c. Then

rank(BC) < min(b, c).

Proof: Note that Range(BC') C RangeB. Indeed, suppose there exists a y
such that BC'y = z with z € Range(BC). It follows that By’ = z with ¢’ = Cl.



Thus z € Range(B). Thus it follows that Range(BC) C RangeB. Thus we can
conclude that dim(Range(BC) < dim(Range(B)) = b.

Suppose V € Null(C). Then Cv = 0 and therefore BC'v = 0. Therefore
Null(C) C Null(BC). This implies that dim(Null(BC')) > dim(Null(C)).
Also note that

dim(Null(C)) + dim(Range(C'))
dim(Null(BC)) + dim(Range(BC)).

§S
|

Since dim(Null(BC)) > dim(Null(C)) it follows that
rank(BC) = dim(Range(BC)) = p—dim(Null(BC)) < p—dim(Null(C)) = dim(R.

Thus
rank(BC) < min(b, c)



Theorem 21. Let A be a m x n matrix of rank r then A can be written as
A = BC where B is am x r matrix of rank r and c is ar x n matrix of rank r.

Proof: Let A: R — R™ has rank r implies that there exist vectors
v1, Vs, . . ., v Which forms a basis for Range(A). Now note that

A=layas ... a,]

and a; € Range(A). Therefore c¢; represents the coordinate vector of a; in the
basis vy, ...v, then we have

r
a; — E Cjﬂ)j.
J=1

Thus

A=layas ...an] = Blcr ca. .. ¢y



where B = [v; vy ... v.]. As vy, ..., v, are linearly independent it follows that
B has rank r. Note that » = rank(A) < rank(C). However C has only r rows
and thus rank(C) = r.

Theorem 22. Suppose A € R™*". Consider the equation
Aa = (5)

where o € R™ and 3 € R™. Then (5) has a solution if and only if
B € Range(A). If a solution exists then it is unique if and only if Null(A) = {0}.

Proof: We will prove only the second part of the theorem. Suppose

NullA = {0}. If a; and a4 are two elements such that Aa; = Aas then

A(a1 — a2) = 0 and therefore a; — ay = 0. Thus oy = a. Thus the solution to
Aa = b is unique.



Suppose Null(A) # {0}. Then there exists a; # 0 such that Aa; = 0.
Suppose Aa = g then A(a + a1) = B and therefore the solution is not unique.

Definition 16. Let A: V — W be a linear operator with Vand W are vector
spaces.

A is said to be right invertible if there exist a map A= : W — V such that
AA~T = I, where I, is the identity transformation on W.

A is said to be left invertible if there exist a map A~! : W — V such that
A~' A = I, where 1, is the identity transformation on V.

A is invertible if it has both right and left inverses.

Theorem 23. Let A:V — V where A is linear and 'V is a vector space.

1. If there exists a unique right inverse to A then A is invertible.



2. If there exists a unique left inverse to A then A is invertible.

Proof: (1) Suppose A~ is the right inverse of A. Note that
AA T+ A BA-D=AA "+ AA A - A=T+A-A=1
As the right inverse is unique it follows that
A AEA—T=AE,
Thus

ABRA=T
and thus A% is the left inverse of A. Thus A is invertible.

(2) follows in a similar way as (1).



Definition 17. Onto and into: A : V — W is onto if Range(A) = W. If A is
such that Aoy = Aas implies that oy = oy for any pair o, as € V then A is
into.

Example 17. Let A: R* — R be defined by
Av = Av

where
A=(1 2).

Notice that Range(A) = R. Indeed if « € R then

[12][3]2&

and this A is onto.



Now we will find a right inverse to A. Consider the equation

! 2}[%]:1.

and thus 81 + 28, = 1 Thus any (81, 32)* is a right inverse if 3,, B, satisfy
B1 + 282 = 1. Evidently there are infinite number of right inverses.

Is a right inverse.

Is a right inverse too.



1

Example 18. A = [ 5

], A: R' - R?

Then A is one to one. (.- Null(A) =0)

1

A~tis aleftinverseif ( an a3 ) ( )

) — | where A~ = ( a1 Qo )

(a1 a2 ) isaleftinverse if ay + 2as =1
Again this has infinite solutions and thus there are infinite left inverses for A.

Theorem 24. Consider A :V — W where dim(V) = n, dim(W) = m. Then
A is one to one if and only if m > n and the rank of any matrix representation
of A is n. In particular, if n = m then rank(A) = n only if A is non singular.

Proof: Note that from Theorem it follows that

dim(N(A)) + dim(R(A)) = n.



If m < n, then dim(N(A)) =n —dim(R(A)) > (n —dim(W))=(n—m) > 0.
Therefore, if m < n, then A is not one to one as N(A) # {0}.

m > n and rank(A) = n. Then dim(N(A)) = {0}). Therefore Ais 1 — 1. .

Theorem 25. Let A:V — W be a linear operator where V_and W are vector
spaces. Then

1. A is right invertible if and only if A is onto.

2. A is left invertible if and only if A is one to one.
Proof: Suppose A is onto. Then given any w € W there exists v € V such
that Av = w (note that v is not unique).

Define A~ w := v where v is any vector that satisfies .Av = w. Then it follows
that A(A™Fw) = Av = w.



Suppose A is not onto, then Jw!, such that w! & Range(A)

Suppose 3 a right inverse operator A~ Then for the given w! ¢ W,
A(ABwl) = wl.

Then with v = A~ Fw!, we have Av = w'. Thus, w! € Range(A) and we have
a contradiction.

This proves (1). (2) is left as an exercise.



Eigenvalues and Eigenvectors of operators

Definition 18. Let A be a linear operator fromV to W where V_and W are of
the same dimension n. Then \, a scalar is called an eigenvalue if Av = \v for
somev # 0,v € V v Is the eigenvector associated with .

Theorem 26. Let A:V — V be a linear operator, and let V be
n-dimensional. Then all matrix representations of A have the same
n-eigenvalues \1, \s, . .., \,,. Moreover, these eigenvalues are precisely the
eigenvalues of A.

Theorem 27. Similar matrices have the same characteristic polynomial and
therefore they have the same eigenvalues. Moreover, if A = P~1AP andV is
an eigenvector of A, then Pv is an eigenvector of A. A and A are both matrix
representations of the linear operator A defined by Av = Av.



Inner Product Spaces

Definition 19. Inner Product: (V. s) is a vector space V' with scalar being s.
An inner product on (V, s) is a function <, >: (V,s) x (V,s) — s which has the
following properties:

1. <v,v> > OforallveV and < v,v >=0onlyifv=0.

2. <v,w>=<w,v> v,weV,s=R
<v,w>=< w,v > v,weV,s=C

3. <av,w>=a<v,w > v,we V,a € s.

4. <vi+v,w>=<v,w >+ < vy, w> v,vwelV.



Inner Product Spaces
Definition 20.

(V,s) is a vector space with an inner product defined is called an inner product
space.

Example 19. Let(V,s) = (R% R)

where v, = [ 518 ] Vg = [ v2(1) ]

<, > is indeed an inner product on (R?, R)



Orthogonal and orthonormal vectors

Definition 21. (V. s) be an inner product space. Then two non-zero vectors
V1,V2,03,...,V, a@re orthogonal if < v;,v; >=01ifi # 3, j=1,2,...,n. They
are orthonormal if in addition < v;,v; >=1fori=1,2,...,n.



Orthogonal complements

Definition 22. suppose X is an inner product space andV and W are
subspaces of X, then, V and W are said to be orthogonal complements of
one anotherif VoW =X and < v,w >=0 Yo e V,w € W.

Example 20. X = R?
NOTE;DRAW FIGURE Let

V:{U:U:Oé((l)),OéER},

and
W= {wsw=5( | )5 € R}

Then
VNnWw ={0},



V@WERQZ{U:v:<g),Oz,BER}.

Also, forv e V,w € W,

<vw>= ()75 ) = (@,0)

Thus V and W are orthogonal complements.

X = R3, then

v

o)
0
0

la € R}, and W = {

are not orthogonal complements.

0
B

-

S

)= 0.

la € R}



Orthogonal Subspaces

Definition 23. V., and W subspaces of inner product space X are
orthogonal to each other. If foreveryv e V, we W, <wv,w >=0.

IfV is a subspace of an inner product space X, then

Vi={zeX|<z,0>=0 Yoe V]

It can be shown that
e V=1 is asubspace of X.
e VNV+E=0

e VopVl=X.



Adjoint Operator

Definition 24. Suppose V' is an inner product space and let A : V — W be a
linear operator, where W is also an inner product space. Then the adjoint of
the operator A is an operator A* : W — V that is defined by

<v, A*w >,=< Av,w >, ve V,w e W.

Example 21. LetV = R"andW = R™ andlet A:V — W be defined by
Av = Av,
where A = (a,;). Let the inner product on V-and W be defined by
< V1, Vg >p= virvg and < wi,wy >,= wlng, v1,v9 € V andwy,wy € W.

Note that
< v, ATw >,= vl ATw = (Av) ' w =< Av,w >, .



Thus the adjoint operator of A is given by the matrix A*.

fVcX, A:V — Wthen, N(A+ CcV,NA) CcV,R(A Cc W,R(A)+ cCc W,
Range(A*) C V,N(A*) c W, R(A*t CcV,N(A)Lt c W

Let V and W be two vector spaces and let A: V — W be a linear operator.
Then,

e Aisontoif R(A) =W

e Aisonetooneif N(A) = {0}.

Theorem 28. The following statements are equivalent:

1. N(A) = {0}

2. IfAUl = ./4?}2, then V1 = V9.



3. lf?)l # V9, then Avq # Avs.

Proof: Suppose N(A) = {0}. Also, if vy, v, are such that Av; = Aws, then
A(vy —v9) =0

= (v1 —vg) € N(A)

= v — vy =0

.U = V2

Suppose that Av, = Avy = v1 = v9

Thenifv e N(A), Av =0 is same as

A(v —0) =0

= Av—-A0=0



=v =0
S.N(A) = {0}

S 1le 2 n

Theorem 29. Let A be a linear operator from an inner product space V' to an
inner product space W. Then

1. N(A*) = [R(A)]

2. [N(A)* = R(A")

Proof: (1) Take w € [Range(A)]* then



<w,y >,=0, Vv €& Range(A)
=< w,Av >,=0, YveV
=< Av,w >,=0, YveV
=< v, A"w >,=0, YveV

In particular, < A*w, A*w >,= 0. A*w = 0 and thus w € Null(A*). This
shows that Range(A)]*+ € Null(A*).

Let w € N(A*), then A*w =0

S< v, A >,=0 YvoeV

< Av,w >,=0 YveV

= w € [Range(A)] L

Thus, (Range(A))* = N(A*) [v & [N(A)]*+ < v € Range(A*).



Gram-Schmidt Orthonormalization

Theorem 30. LetV be a vector space with the inner product <, > defined.

Letvy,...,v, ben independent vectors. Then there exist n orthonormal
vectors e, ..., e, such that
spanf{vi, ..., v} = spandey,...,en}.
Proof: Let
21 «— M
and let
<1
€1 :— —.
|1 ]]
Let
<2

o = Vog— < Vg,€1 > €1 and €y 1= HZ ||
2



Note that

1
<eg,e1> = ||2||2[< Vg, e1 > — < Ug,e1 >< €g, €9 >
Thus ey L e1. Given eq, eq, ..., e; orthonormal define
Zitl = Vig1— < Vi+1, €1 >e1— < Vig1,62 > €3 — ... — < Vijy1,€; > €
= Vi1 — 23:1 < Vit1,€5 > €4, and

I Zi41
| zig1]l

€i+1



Let £k < 4 then

< Zit1,€k > = < Ujt1,€ > — Zzzl < Vi41,€5 >< €5, € >
< Vi+41,€k > — Zézl < Vit1,€5 > 5jk

< Vi1, €k > — < Vi4+1, €k >

0 and

<ZzZj41,€[> _ O
lzig1l

< €j+1,€k >

Thus < e;y1,e;, >=0forall 5 =1,...,: Thus this procedure yields vectors
e1,...,e, that are orthonormal. Note that ¢; is a linear combination of
Ujj: 1,...,77,. Thus

spaniey,...,en} C span{vy, ..., v,}.

Note that e;, + = 1,...,n forms an orthonormal set it also forms an
iIndependent set. Therefore

dim(spaniey,...,e,}t) = dim(span{vy,..., v }) =n



and thus
spaniey,...,en} = spanf{vy, ..., v,}.

Theorem 31. Let A be an x n Hermitian matrix with eigenvalues

A, Ao, ..., \,. There exists a unitary matrix P such that
A 0 ... 0 ]
pap=pn=|" 2 -0
0 ... 0 A
Proof: Let z; such that ||z1||s = 1 and Az, = A\yxy. Let us, us, ..., u, be
orthonormal vectors such that {z1, us, us,...,u,} form an orthonormal set.
Let

Plz[ajlchQ un],



Then we have that
PP =1.

Let U; = ['UQ us. .. un] Note that

PrAP, = Al z1 Uy |

— « [ AZCl AUl }

= « [ )\15131 AUl }

. )\1 ZIL‘){AUl
— |0 UrAU, |



Note that

* o )\1 CIZTAU;[ i . )\1 0 L >\1
(Pl Apl) N [ 0 UfAUl ] o [ Ui A*xq UfA*Ul o Ui Axq
However \ A

* * * Ak * 1 X 1
(PlAPl) :PlA Py :PlAPl — [ 0 Ull*AUl ] .
Thus
)\1 0 . )\1 .CETAUl
UfA:z:l Ul*AUl 10 UfAUl '
Thus
r]AU; = 0=U{A"z; and
" - A O
}%‘4P3“[ 0 UpAU; ]'
Recall that

PP =1.

0
Ur AU,

|



Therefore eigenvalues of P AP, are the eigenvalues of A and thus
eigenvalues of U AU, := Ay are Ag, ..., \,. Let x5 such that ||z2]|2 = 1 and
Asxg = Aoxo. Let us, g4, ..., U, be orthonormal vectors such that

{xo, 13, ..., Uy} form an orthonormal set. Let Us := [a3 ... u,]. Let

Note that P; P, = I. Note that

* . )\2 0
Q2A2Q2 — [ 0 UZ*AQUQ ] .



Note that

e P} (P AP,)P;
| — 2

A ?4 ]P2
:p;lo ;

10].
% Lo e
EEAIERAE
T l0 Q3




Continue the argument to obtain

P=PP.. P,and P*AP:dzag()\l,,)\n)

Definition 25. Suppose A and B are matrices such that there exists a P with
P*P =1 such that B = P*AP. Then A and B are unitarily similar.

Theorem 32. Anyn x n Hermitian matrix A has n orthogonal eigenvectors
that form a basis for C™. In this basis A has a diagonal representation.

Theorem 33. [f A is a self adjoint operator on a finite dimensional space V
then A has real eigenvalues and corresponding eigenvectors form a basis for
V. In this basis A has a diagonal representation.

Theorem 34. Let A be an x n Hermitian matrix with eigenvalues



M<<...<M\,. Thenforall x € C"

Mrtr < zAx < \,x"z.

Proof: Note that A = A* and that there exists a P such that P*AP = A and
P*P = I with A diagonal. Thus

x*Ax t*PAP*x

=y
(P*2)*A P*z)

y* Ay

S NYIYs = > Nalyal?
Anllyll3

Anllz]|3

A

Note thatas y = P*x, y*y = «*PP*x = z*x.



The fact that z*Ax > A\ix*x is left as an exercise.

Theorem 35. Let A be an x n Hermitian matrix.

1. A is positive definite if and only if its eigenvalues are positive.
2. A is positive semi-definite if and only if all its eigenvalues are nonnegative.
3. A is negative definite if and only if all its eigenvalues are negative.

4. A is negative semi-definite if and only if all its eigenvalues are non-positive.

Definition 26. Suppose A : R — R™. Then

| Ax||2
Allo_.. := max ||[Azxl|lo = max .
1All-n = e 1A = 08



Schur’s Theorem

Theorem 36. I/f A is an x n matrix, then there is a unitary matrix P such that
P*AP =T (P*P =1), whereT is an upper triangular matrix.



Theorem 37. n x n matrix A is a unitary matrix similar to a diagonal matrix if
and only if it commutes with its conjugate transpose (AA* = A*A).

Proof: (=) There exists a P such that P*P = I and
P*AP = A.
Thus
A= PAP*" and A* = PA"P~.
Thus

AA* = PAP"PAN"P* = PAAN"P* = PN"AP" = PAN"P*PAP* = A™A.

Note that we have used the fact that ss A is diagonal AA* = A*A. The rest of
the proof is left to the reader. "



Definition 27. n x n matrix A commute with its conjugate transpose is called
Normal Matrix.

A isnormal if AA* = A*A.

Theorem 38. Let A be an x n matrix, then A is similar to a diagonal matrix if
and only if A has n independent eigenvectors.

Proof: (<) : Assume there exists n independent eigen vectors x1, s, ..., Ty,.
Then

7~ N

A[azl,azg,...,a}n] = [)\11’1,)\25172,...,)\711'”]
AP = PA(P is invertible)
P~lAP = A



(= ): There exists P (invertible) such that

P-lAP = A

AP = PA

P — [plap27'°'7pn]
Alp1,p2,---,Pn] = [P1AL,D2A2, ..., PpAn)
Ap; = \iDi

Thus A has ¢ = n independent eigen vectors as P iIs invertible.
Theorem 39. I/f A\, o, ..., )\, are distinct eigen values of A, then the
corresponding eigen vectors 1, xo, . .., x,, are independent.

Proof: Suppose to the contrary, \1, Ao, ..., \,, are distinct but x,xs, ..., T,
are dependent. Then



m

Y ciw; = 0 and without loss of generality say c,, # 0. Then
1=1

A1 (

= Zci()q — )\i)% =0



Multiply by A» and A and subtract each other and follow the same by A3 and A
.... Then

Cm( A — Am) (A= Am) oo (A1 — Am) =0
which is a contradiction to our assumption. "

Theorem 40. [/fan x n matrix A has n distinct eigenvalues then A is similar
fo a diagonal matrix.

Proof: Follows from the previous two theorems "

Theorem 41. Let A be a m x n matrix with rank r. Then there exist m x m
unitary matrix P and n x n unitary matrix () such that

Y = P*AQ



where X is a m x n matrix with only the first r diagonal elements called the
singular values o+, . .. ,o0, nonzero and rest of the elements zero. The firstr

singular values are given by

N[ —

Proof: Note that rank(A*A) = rank(A) = r. Let the eigenvalues of A*A be
given by A, ..., A\, with corresponding eigenvectors z4, ..., z, that are
orthogonal (see Theorem =2). Note that A* A is Hermitian positive
seim-definite and thus all its eigenvalues are non-negative. Define

Do —

Let |
v, = —Ax;, 1=1,2,...,r.
¥



Note that

iy = 5o (Axi)*(Axj)

_ 1 * Ak ,
o O‘Z‘O'jx’iA A:CJ
N D .

O'¢
— 1.
= Loy

{y1,92,...,y.-} forms an orthonormal and can be extended to {y1,y2,...,Ym}
to form a orthonormal basis for C™. Let

Q=21 ... zp|andP=]y1 ... Ym |

Note that P*P = PP* = Q*Q = QQ* = I. Note that for all



j=1,...,nandi=1,...,r

(P*AQ)q; y; Ax;
JL(AZCZ)*ACCJ
Jix;kA*Aa:]
= %1’2‘%‘

.
—  1)..
= 2§,

Also,if j=1,...,rand7i=r+1,...,mthen

(P*AQ)i; = y; Axj = y; (05y;) = o5y;y; = 0.

Thus
yiAr; = o0, foralli=1,...;,randj=1,...,n.

Note that
|Az;||5 = r;A"Az; =0, forallj=r+1,...,n.



Thus
Az;=0forallj=r+1,...,n.

Thus
y; Ax; = o0, foralli=1,...,randj=1,...,r
y; Ar; =0foralli=1,...,randj=r+1,...,n.
y; Az, =0foralli=r+1,... o mandj=1,...,n
Thus
01 0
P*AQ = o 0
0 0




Two Induced Norm
Theorem 42. Let A € R™"*"™. Then

|All2—inda = V/ p(A*A).

where p(B) denotes the spectral radius of B.



Jordan Canonical Form

Consider a matrix of the form

A1
Ai 1

1
A

L < rXr

Then J; is said to be a Jordan block with eigenvalue \; and size r. Note that ¢,
Is the only eigenvector of J;.

Theorem 43. A n x n matrix A Is similar to the matrix




where J; is the Jordan block with eigenvalue \; and size r; x r; given by

A1

u - T X1y

and

E r; =— N.

1=1

Definition 28. The number of Jordan blocks associated with an eigenvalue
\; Is said to be the geometric multiplicity of \;. The number of eigenvalues at
\; Is called the algebraic multiplicity of the eigenvalue X;.



Note that from Theorem there exists a invertible matrix P such that

P~lAP =

Thus

AP=PJ=|p1 p2 ... Dn |




Thus

| Apr Apy .o Ape oo App ] = [ p1op2 o Py o Do

This implies that

Ap1 = A\ip1
(A=Xil)p2 = m
(A — )\1[)203 — P2
(A — /\1])]77“1 = DPri—1

pr, IS called the generator. p», ..., p,, are called generalized eigenvectors.

Definition 29. Y is an invariant set with respectto A if forally €Y, Ay €Y.



S1 = span{pi,p2,...,pr } associated with eigenvalue A, is invariant with
respect to A. Similarly S;, the corresponding set with respect to \; is invariant
with respectto A forall j =1,...,p

Theorem 44. Let A = P~ 1JP be the Jordan decomposition of A with

J1
J2

Jp

If S; is defined as above then S]s are invariant with respect to A and

C"=51D5@...05,.



Cayley Hamilton Theorem

Theorem 45. The characteristic polynomial associated with matrix A is
fA)=A=A1) . (A= An).

Then
f(A) =0.

Proof: Let the Jordan decomposition be given by

J =P AP

Thus
A™ =pJjmp1,

Note that
f()\) — ()\ — )\1)T1 ()\ — )\2)T2 e ()\ — )\p)?"p.



Thus it follows that
f(A) = P(f(J)P~!

where f is any polynomial. Note that

J1
1) = f &
L Jp A
= (J— )\1[)T1(J— )\2])T2 ce (J— )\pI)Tp
= 0

Thus f(A) = 0.



Minimal polynomial

Definition 30. The minimal polynomial of a square matrix A is the least
ordered polynomial p(\) such that p(A) = 0.

Theorem 46. Suppose A has m distinct eigenvalues. Lett; be the size of the
largest Jordan block of A associated with eigenvalue X\;. Then the minimum
polynomial is given by

17 (X — )"



