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Preliminary Notation

• Column and row vectors

? A column vector x is a n−tuple of real or complex numbers

x =


x1
x2
...
xn



? A row vector

x =
[
x1 . . . xn

]
, xi ∈ C, R
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• m× n matrix is the following array

A =

 a11 . . . a1n
... . . . ...
am1 . . . amn

 , aij ∈ C, R
short hand notation is A = (aij)

It is useful to view A as a row vector of columns

A =
[
a1 a2 . . . an

]
, where ai =

 a1i
...
ami


View A as a collection of row vectors

A =


a1
a2
...
am

 , ai =
[
ai1 . . . ain

]
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• Upper and Lower triangular matrices

A = (aij) is the upper triangular if aij = 0, j < i

• Transpose: AT denotes the transpose of a matrix A whose elements are
AT = (aji) if A = (aij)

• Conjugate Transpose:

A∗ = (aji) if A = (aij)

• Symmetric:

A matrix A is Symmetric if A = AT

• Hermitian:

A matrix A is Hermitian if A = A∗
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• Multiplication:

C = AB, A ∈ Rm×p, B ∈ Rp×n

Cij =

p∑
k=1

aikbkj = (ith row of A)[jth column of B]

Fact:
If C = AB, then C∗ = B∗A∗
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Suppose B ∈ Rp×n

B =
[
b1 . . . bn

]
AB =

[
Ab1 Ab2 . . . Abn

]
A =

 a1
...
am



AB =


a1B
a2B
...
amB


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Orthogonal, Unitary Matrices, Linear Independence
Definition 1. • Orthogonal Matrix:

A is Orthogonal if ATA = AAT = I

• Unitary matrix:

A is unitary if A∗A = AA∗ = I

• Orthogonal Vectors:

Given two column vectors x, y with n-element, they are said to be
Orthogonal if x∗y = 0.
They are Orthonormal if x∗y = 0, x∗x = 1, y∗y = 1

• Linear Independence:

Given a set of column vectors with element each denoted by
x1, x2, . . . , xm.
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They are said to be independent if

m∑
i=1

cix
i = 0⇒ ci = 0, ci ∈ R

. If x1, x2, . . . , xm are not independent then they are said to be dependent.
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Determinants

• Determinants:

Suppose

B =

[
a b
c d

]
, then det(B) , ad− bc

Suppose A ∈ Rn×n then let Aij be defined as the (n− 1)× (n− 1) matrix
obtained by deleting the ith row and the jth column. Aij is called the
co-factor associated with aij. Determinant of A denoted by det(A) is
defined by

det(A) =
n∑
i=1

(−1)i+jaijdet(Aij).
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Properties of Determinants

• It can be shown that

det(A) =

n∑
j=1

(−1)i+jaijdet(Aij).

• If any two rows or any two columns of A are the same then det(A) = 0.

• If any two rows (columns) are interchanged then the sign of the
determinant changes but the magnitude remains same.

• If an row (column) is scaled by α then the det also gets scaled by α.

• deta(A) = det(AT ) and det(A∗) = det(A).
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• If a scalar multiple if a particular row (column) is added to another row
(column) then the determinant remains unchanged.

• det(AB) = det(A)det(B). (Not easy to prove).
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Matrix Inverse

• Inverse of a matrix: Suppose A ∈ Rn×n and there exists a matrix X such
that

AX = XA = I.

Then X is the inverse of A. An inverse of a matrix A is denoted by A−1.

If A is invertible then[
A B
C D

]
=

[
I 0
CA−1 I

] [
A B
0 D − CA−1B

]
and if D is invertible then

[
A B
C D

]
=

[
I BD−1

0 I

] [
A−BD−1C 0
C D

]
.
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Simultaneous Equations
Consider the following set of n equations in n unknowns x1, x2, . . . , xn.

a11x1 + a12x2 + . . . + a1nxn = b1
... ... ... ... ...

an1x1 + an2x2 + . . . + annxn = bn

Another way of representing this set of equations is

Ax = b, x :=


x1
x2
...
xn

 , b :=


b1
b2
...
bn

 and A := (aij)
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Gaussian Elimination
Theorem 1. Consider the equation

Ax = b

where x and b are vectors in Rn and A ∈ Rn×n. A and b are known and x is
the solution to be determined. Then Ax = b admits a unique solution x∗ if
det(A) 6= 0.

Proof: Ax = b is a notation for

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a1nxn = b2

... ... ... ... ...
an1x1 + an2x2 + . . . + annxn = bn

(1)

Note that there is at least one i such that ai1 6= 0 (as det(A) 6= 0). Without loss
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of generality assume that a11 6= 0. Perform the following operation: multiply the
first row by −ai1/a11 and add it to the ith row for i = 2, . . . , n. Replace the ith

row with this row. This leads us to the following set of equations

a
(1)
11 x1 + a

(1)
12 x2 + . . . + a

(1)
1nxn = b

(1)
1

0 + a
(1)
22 x2 + . . . + a

(1)
1nxn = b

(1)
2... ... ... ... ...

0 + a
(1)
n2x2 + . . . + a

(1)
nnxn = b

(1)
n

(2)

with the first row unchanged. The above set of equations can be denoted by
A(1)x = b(1) where A(1) = (a

(1)
ij ). Note that det(A) = det(A(1)) and therefore

det(A(1)) 6= 0. Using this fact we can assert that there is at least one
i ∈ {2, . . . , n} such that ai2 6= 0. Without loss of generality assume that
a
(1)
22 6= 0.

Perform the following operation: multiply the second row by −a(1)i2 /a
(1)
22 and

add it to the ith row for i = 3, . . . , n to obtain. Replace the ith for rows
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i = 3, . . . , n with the new rows. This leads us to the following set of equations

a
(2)
11 x1 + a

(2)
12 x2 + . . . + a

(2)
1nxn = b

(2)
1

0 + a
(2)
22 x2 + . . . + a

(2)
1nxn = b

(2)
2... ... ... ... ...

0 + 0 + . . . + a
(2)
nnxn = b

(2)
n

(3)

with the first two rows same as in (2). These iterations can be continued to
obtain

a∗11x1 + a∗12x2 + . . . + a∗1nxn = b∗1
0 + a∗22x2 + . . . + a∗1nxn = b∗2... ... . . . ... ...
0 + 0 + . . . + a∗nnxn = b∗n

(4)
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with a∗ 6= 0. Thus we have the unique solution

xn = b∗n/a
∗
nn

xn−1 =
b∗n−1−a

∗
(n−1)nxn

a∗
(n−1)(n−1)... ... ...

x1 =
b∗1−a

∗
12x2−a

∗13x3...a
∗
1nxn

a∗11

The method used to obtain the solution of Ax = b in the proof above is called
the Gaussian Elimination method.

Theorem 2. If A ∈ Rn×n, then det(A) 6= 0, if and only if A−1 exists.

Proof: Let ei denote a column vector with 1 in the ith position, a zero
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otherwise.

ei =



0
0
...
1
0
...
0


where eik = δik. From Theorem 1, Ax = ei has a unique solution xi. Let

X =
[
x1 x2 . . . xn

]
AX = A

[
x1 x2 . . . xn

]
=

[
Ax1 Ax2 . . . Axn

]
=

[
e1 e2 . . . en

]
= I
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If A−1 exists,then ∃ X such that

AX = I
det(AX) = det(I)
det(A) det(X) = det(I) = 1

⇒ det(A) 6= 0

Therefore, A−1 exists⇔ det(A) 6= 0.

Theorem 3. Suppose A is a n× n real or complex matrix, then the following
are equivalent:

1. det(A) 6= 0

2. ∃ a matrix A−1 such that A−1A = AA−1 = I

3. AX = b has a unique solution for every b ∈ Rn
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4. AX = 0 has the only solution X = 0

5. The rows and columns of A are independent.

Proof: We have shown that 1⇔ 2 from Theorem 2. We have also shown
2⇔ 3 and 3⇔ 4

To show 4⇒ 5: Assume that scalars c1, c2, . . . cn such that

c1a1 + c2a2 + . . .+ cnan = 0

[
a1 a2 . . . an

] 
c1
c2
...
cn

 = 0

Ac = 0
c = 0 (from 4)
ci = 0 for all i
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Thus a1, a2 . . . an are independent

To show 5⇒ 4:

Note that det(A) = det(AT )⇒ rows of A are independent⇒ columns of AT

are independent⇒ det(AT ) 6= 0⇒ det(A) 6= 0⇒ 4 holds which follows from
equivalence of 1 and 4
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Eigenvectors and Eigenvalues

Definition 2. Eigenvectors and Eigenvalues: Given a square matrix
A ∈ Rn×n, (or A ∈ Cn×n,) λ ∈ C is an eigenvalue of A if there exists a vector
x 6= 0 ∈ Cn such that

Ax = λx.

Such a vector x is called an eigenvector of A associated with eigenvalue λ.

Theorem 4. Let A ∈ Rn×n. Then the following statements hold.

1. λ is an eigenvalue of A if and only if det(A− λI) = 0.

2. If λ is an eigenvalue of A then λm is an eigenvalue of Am.

Proof: (1) Suppose λ is an eigenvalue of A. Then from the definition there
exists a x 6= 0 such that Ax = λx or in other words there exists x 6= 0 such that
(A− λI)x = 0. From Theorem 3 it follows that det(A− λI) = 0.



22

Suppose det(A− λI) = 0. Then from Theorem 3 it follows that there exists
x 6= 0 such that (A− λI)x = 0 which implied there exists x 6= 0 such that
Ax = λx. Thus λ is an eigenvalue of A.

This proves (1).

(2) Suppose λ is an eigenvalue of A. Then from the definition there exists a
x 6= 0 such that Ax = λx. Multiplying this equality by A on both sides we have
A2x = λAx = λ2x. Thus A2x = λ2x. Repeating this step m times we have
Amx = λmx. This proves the theorem.

Theorem 5. Let p(λ) = α0 + α1λ+ α2λ
2 + . . .+ αmλ

m and
p(A) = α0I + α1A+ . . .+ αmA

m.If λ0 is an eigenvalue of A then p(λ0) is an
eigenvalue of p(A).

Proof: λ0 is an eigenvalue, then ∃x 6= 0 such that Ax = λx
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p(A)x = (α0x+ α1Ax+ α2A
2x+ . . .+ αmA

mx)
= (α0x+ α1λx+ α2λ

2x+ . . .+ αmλ
mx)

= (α0 + α1λ+ α2λ
2 + . . .+ αmλ

m)x
= p(λ)x

Theorem 6. Suppose A is an n× n matrix with eigenvalues λ1, λ2, . . . , λn
and A is nonsingular(det(A) 6= 0)thenλ−11 , λ−12 , . . . λ−1n are eigenvalues of A−1.

Proof: If λ is an eigenvalue, then ∃x 6= 0 such that

Ax = λx
⇒ x = λA−1x
⇒ 1

λx = A−1x

Thus λ−1 is an eigenvalue of A−1
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Theorem 7. If A is an n× n matrix then A and AT have the same
eigenvalues. If A is an n× n matrix with eigenvalue λ then A∗ has an
eigenvalue λ.

Proof: Note that λ ∈ C is an eigenvalue of A if and only if

det(A− λI) = 0

⇔ det(A− λI) = 0

⇔ det(A− λI) = 0

⇔ det(A− λI)T = 0

⇔ det(A∗ − λI) = 0

Theorem 8. If A is a n× n matrix then

det(λI −A) = (λ− λ1)(λ− λ1) . . . (λ− λn)

where λi, i = 1, . . . n are eigenvalues of A. Thus det(A) = Πn
i=1λi.
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Proof: The proof follows from the fact that det(λI −A) is a nth order
polynomial and thus will have n roots. From Theorem 4 it follows that λi,
i = 1, . . . , n are all roots of polynomial det(λI −A). This proves the theorem.

Theorem 9. If A is a Hermitian matrix then all its eigenvalues are real.

Proof: Note that A = A∗. If λ is an eigenvalue of A then there exists a vector
x 6= 0 such that Ax = λx.

Ax = λx
⇒ x∗Ax = λx∗x
⇒ (x∗Ax)∗ = (λx∗x)∗

⇒ x∗A∗x∗ = λx∗x

⇒ x∗Ax∗ = λx∗x

⇒ x∗Ax∗

x∗x = λ

⇒ λ = λ
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This proves that λ is real.

Definition 3. A n× n matrix A is said to be

1. positive definite if x∗Ax > 0, for all x 6= 0.

2. positive semi-definite if x∗Ax ≥ 0, for all x.

3. negative definite if x∗Ax < 0, for all x 6= 0.

4. negative semi-definite if x∗Ax ≤ 0, for all x 6= 0.

Theorem 10. A n× n is a Hermitian matrix. Then

1. all its eigenvalues are positive if A is positive definite

2. all its eigenvalues are non-negative if A is positive semi-definite
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3. all its eigenvalues are negative if A is negative definite

4. all its eigenvalues are non-negative if A is negative semi-definite

Proof: We will prove (1). Let x 6= 0 and Ax = λx. As A is hermitian λ is real.
Note that

x∗Ax = λx∗x

⇒ x∗Ax∗

x∗x = λ
⇒ λ > 0

The last step follows as x∗Ax > 0, and x∗x > 0.
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General Vector Spaces

Definition 4. A linear Vector Space is a collection of objects called vectors
with two operations,” + ” and ”.” defined between two vectors and a vector
and scalar respectively which satisfy

1. x, y ∈ V ⇒ x+ y ∈ V

2. (x+ y) + z = x+ (y + z) ∀x, y, z ∈ V

3. x+ y = y + x ∀x, y ∈ V

4. There is an element 0 called the zero vector such that
0︸︷︷︸

scalar

.x = 0︸︷︷︸
vector

∀x ∈ V

5. 1.x = x ∀x ∈ V
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6. α(β.x) = (αβ).x where α, β are scalars and x ∈ V

7. (α+ β).x = αx+ βx, α, β are scalars and x ∈ V

8. α.(x+ y) = αx+ βy, α is a scalar and x, y ∈ V

Example 1.
Figure 1: (a) Scalar multiplication (b) vector addition.

Example 2. Let scalars be the real numbers and V = Rn.
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{x : x =

 x1
...
xn

 , xi ∈ R, } ′+′ : V × V → V

x+ y :=


x1 + y1
x2 + y2
...
xn + yn

 , x =

 x1
...
xn

 , y =

 y1
...
yn



xi ∈ R, yi ∈ R, α.x =

 αx1
...
αxn



x =

 x1
...
xn

, y =

 y1
...
yn

, z =

 z1
...
zn


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(x+ y) + z =

 x1 + y1
...
xn + yn

+

 z1
...
zn

 =

 x1 + y1 + z1
...
xn + yn + z1


similarly, x+ (y + z) =

 x1
...
xn

+

 y1 + z1
...
yn + zn

 =

 x1 + y1 + z1
...
xn + yn + z1


Example 3. Let

V := {set of all polynomials of order less than or equal to n}

and the scalars be the real numbers. The vector addition operation is defined
as follows: if

p(t) = p0 + p1t+ . . .+ pnt
n and q(t) = q0 + q1t+ . . .+ qnt

n

then
(p+ q)(t) := (p0 + q0) + (p1 + q1)t+ . . .+ (pn + qn)tn and
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(αp)(t) = αp0 + αp1t+ . . .+ αpnt
n.

Then V with the R as the scalars satisfies all the properties of a vector space.
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Definition 5. Linear Independence: Let V be a vector space and let

v1, v2, . . . , vn be vectors in V . If
n∑
i=1

civi ⇒ ci = 0 where c1, c2, . . . , cn are

scalars, then we say v1, v2, . . . , vn are independent.

Definition 6. Linear Combination: Suppose V is a vector space and

v1, v2, . . . , vn are any vectors in V . Then V =

n∑
i=1

civi is said to be a Linear

Combination of the vectors v1, v2, . . . , vn.

Definition 7. Subspace: Suppose X is a vector space. If V ⊂ X and V is a
vector space, then V is said to be a Subspace of X.
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Example 4.
Figure 2: (a) L is a subspace (b) L is not a subspace.

Definition 8. Span: Let X be a vector space and let x1, x2, x3, . . . , xn be
vectors in X. Span(x1, . . . , xn) is the set of all linear combination of vectors
x1, x2, . . . , xn.

Span(x1, . . . , xn) = {x ∈ X, X =

n∑
i=1

cixi , where ci are scalars }
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Example 5.

Figure 3: Span(e1, e2) = E2, and Span(v, w) = E2

Definition 9. Basis: Let X be a vector space. Then a set of independent
vectors x1, x2, . . . , xn are said to be a Basis if Span(x1, . . . , xn) = X.

Example 6. • e1, e2 is a Basis for E2.
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• X= all polynomials of degree ≤ n.

X = {α0 + α1t+ α2t
2 + . . .+ αnt

n|αi ∈ R}

{1, t, . . . , tn} forms a Basis for X.

{1, 1 + t, 1 + t+ t2, . . . , 1 + t, . . . ,+tn} also forms a Basis.

• X = {polynomials or order ≤ 3}

{1, 1 + t, t2, t, t3} is not a Basis (note that 1− (1 + t) + t = 0 and therefore
not independent).

Definition 10. Finite Dimensional Vector Space: X a Vector Space is said
to be finite dimensional if it has a Basis which has a finite number of elements.
Any Vector Space that is not finite dimensional is said to be Infinite
Dimensional Vector Space.

Example: X = { all polynomials of any degree } (infinite dimensional)
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Dimension is unique

Theorem 11. Let X be a Vector Space. Suppose x1, x2, . . . , xn and
y1, y2, . . . , yn are two set of basis Vectors for X, then n = m.

Proof: Assume without loss of generality that m > n. As {xj}j = 1n is a basis
there exist constants aji, i = 1, . . . ,m such that

yi =

n∑
j=1

ajixj.

Let
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A :=



a11 a12 . . . a1m
...
aj1 aj2 . . . ajm
...
an1 an2 . . . anm
...
0 0 . . . 0
...
0 0 . . . 0


m×m

det(A) = 0. It follows from Theorem 3 that ∃ an α ∈ Rm, α 6= 0 such that
Aα = 0.

Let us consider the linear combination
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m∑
i=1

αiyi, α =

 α1
...
αm

 ∈ Rm =

m∑
i=1

αi(

n∑
j=1

ajixj)

=

n∑
j=1

(

m∑
i=1

ajiαi)xj

= 0

Thus we have shown that there exist scalars α1, . . . , αm and
m∑
i=1

αiyi = 0⇒

y1, y2, . . . , ym are not linearly independent. This is a contradiction to the fact
that {yi}mi=1 are independent and thus m = n.

Definition 11. Dimension of a Finite Dimensional Vector Space: The
Dimension of a Finite Dimensional Vector Space is the number of vectors in
any basis of the vector space.
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Suppose V1, V2 are subspaces of a Vector space V , then

V1 ∩ V2 = {v ∈ V : v ∈ V1 and v ∈ V2}

V1 + V2 = {v ∈ V : v = v1 + v2, v1 ∈ V1, v2 ∈ V2}

V1 + V2 is called the Direct Sum of V1 and V2 if V1 ∩ V2 = {0}. The notation
V1 ⊕ V2 is used to denote a Direct Sum.

dim(V1 + V2) = dim(V1) + dim(V2)− dim(V1 ∩ V2)

dim(V1 ⊕ V2) = dim(V1) + dim(V2).
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Independent vectors extended to form a basis
Theorem 12. Let V be a n dimensional vector space and let vi, i = 1, . . . ,m
be independent vectors with m < n. Then there exist n independent vectors
v̂i, i = 1, . . . , n such that v̂i = vi for i = 1, . . . ,m.

Proof: Let
V0 := span{v1, . . . , v2}.

Let v̂m+1 ∈ V such that v̂m+1 6∈ V0. Such a vector exists from Theorem 11 and
as m < n. Let

V1 := span{v1, . . . , v2, v̂m+1}.
Clearly dim(V2) = m+ 1. Continuing the above process till we obtain

V(n−m) := span{v1, . . . , v2, v̂m+1, . . . , v̂n}.

From Theorem 11 these set of vectors has to form a basis for V. The theorem
follows by defining v̂i := vi for i = 1, . . . ,m.
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Coordinates

Figure 4: The coordinates of w1 in the basis e1 and e2 is [cos θ sin θ]′

Note that
−→w 1 = cos(θ)−→e 1 + sin(θ)−→e 2.
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We say [
cos(θ)
sin(θ)

]
are the coordinates of −→w 1 in the bases −→e 1 and −→e 2.

Note that −→w 1 and −→w 2 also forms a basis for E2. As

−→w 1 = 1−→w 1 + 0−→w 2.

And thus the coordinates of −→w 1 in the basis −→w 1 and −→w 2 is[
1
0

]
.

Let V be a vector space and suppose {vi}ni=1 be a set of basis vectors. Then
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any vector v ∈ V can be written as

v =

n∑
i=1

αivi.

Then α1, . . . , αn are coordinates in the basis {vi}ni=1 and

 α1
...
αn


is the coordinate vector in the basis {vi}ni=1. Note that if

v =

n∑
i=1

α̂ivi
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then

0 =

n∑
i=1

(α̂i − αi)vi

and as v1, . . . , vn are independent it follows that (α̂i − αi) = 0 for i = 1, . . . , n.
Thus αi = α̂i for all i = 1, . . . , n. This implies that coordinates are well defined.

Example 7. Suppose

V = {all polynomials with degree less than or equal to n}.

Note that the polynomials 1, t, t2, . . . , tn forms a basis for V. Suppose p is a
polynomial given by

p(t) = α0 + α1t+ α2t
2, . . . , αnt

n.
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The coordinate vector of p in the basis {ti}ni=0 is α0
...
αn

.


One can check that

{1, 1 + t, 1 + t+ t2, . . . , 1 + t+ t2 + . . .+ tn},

is also a set of basis vectors for V. Note that

p(t) = α0 + α1t+ α2t
2, . . . , αnt

n

= α0 + α1(1 + t− 1) + α2(1 + t+ t2 − (1 + t)) + . . .
+αn(1 + t+ . . .+ tn − (1 + t+ . . .+ tn−1))

= (α0 − α1) + (α1 − α2)(1 + t)+
. . .+ (αn−1 − αn)(1 + t+ . . .+ tn−1) + αn(1 + t+ t2 + . . .+ tn)

.



47

Thus in new basis the coordinate vector is
α0 − α1

α1 − α2
...

αn−1 − αn
αn

 .
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Linear Operator

Figure 5: A map

Let X and Y be vector spaces. A a mapping from X to Y which assigns a
vector Ax ∈ Y for every vector x ∈ X is a linear operator if

A(α1x
1 + α2x

2) = α1Ax1 + α2Ax2 for all x1, x2 ∈ X and α1, α2 scalars.

Example 8. Suppose V is the set of all polynomials of degree less than or
equal to n. Suppose W is the set of all polynomials of degree less than or
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equal to n− 1. Let A : V →W be defined by

Ap :=
dp

dt
.

Note that for every p ∈ V, Ap ∈W. Also note that

A(αp+ βq) = d(αp+βq)
dt

= αdpdt + βdqdt
= αAp+ βAq

proving that A is a linear operator.

Example 9. Suppose V = Rn and W = Rm. Suppose A : V →W id defined
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by

Ax :=

=:A︷ ︸︸ ︷ a11 . . . a1n
... ... ...
an1 . . . amn

 x1
...
xn


where x =

 x1
...
xn

 . Its evident that

A(α1x
1 + α2x

2) = A(α1x
1 + α2x

2) = α1Ax1 + α2Ax
2

= α1Ax1 + α2Ax2

Thus A is linear.
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Matrix Representation of a Linear Operator
Suppose A : V →W is a linear operator. Suppose {v1, . . . , vn} is a basis for

V and {w1, . . . , w2} is a basis for W. Suppose v ∈ V and suppose

 α1
...
αn

 is

its coordinate vector in the basis given. That is

v =

n∑
j=1

αjvj.

Note that Avj ∈W. Let the coordinate vector of Avj be

 a1j
...
amj

 for

j = 1, . . . , n. That is

Avj =

m∑
i=1

aijwi, j = 1, . . . , n.
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Note that
Av = A(

∑n
j=1αjvj)

=
∑n
j=1A(αjvj)

=
∑n
j=1αjA(vj)

=
∑n
j=1

∑m
i=1αjaijwi

=
∑m
i=1 (

n∑
j=1

aijαj)︸ ︷︷ ︸
:=βi

wi

=:
∑m
i=1 βiwi

where we have defined βi =
∑n
j=1 aijαj, i = 1, . . .m. Thus the coordinate

vector of Av is

β :=

 β1
...
βm

 ,
where

β = Aα,
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with A = (aij).

Thus the method to obtain the matrix representation of a linear operator given
a basis {vj}nj=1 of the domain space V and a basis {wi}mi=1 of the range space
W is to follow the steps below:

1. Obtain the coordinates of Avj in the basis {wi}mi=1. Let

 a1j
...
amj

 be the

coordinate vector for vj.

2. The coordinate vector of Av is β = Aα if α is the coordinate vector of v in
the basis {vj}nj=1.

Example 10. Consider

V = { all polynomials of degree ≤ n}
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and
W = { all polynomials of degree ≤ n− 1}.

Let A : V →W be defined by

Ap =
dp

dt
.

Let (1, t, t2, . . . , tn) be the basis for V and let (1, t, . . . , tn−1) be the basis for
W .

Avj =

m∑
i=1

aijwi.

Note that vj = tj−1, wi = ti−1 Thus

Avj =
dvj
dt

= (j − 1)tj−2

=

m∑
i=1

aijwi =

m∑
i=1

aijt
i−1
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This implies that

(j − 1)tj−2 =

m∑
i=1

aijt
i−1

and thus
aij = 0 if i 6= (j − 1)

= (j − 1) if i = (j − 1)

Let p in V be given by

p = α01 + α1t+ . . .+ αnt
n

which has coordinate vector  α0
...
αn


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Then Av has coordinates β = Aα where A = (aij) where

aij = 0 if i 6= (j − 1)
= (j − 1) if i = (j − 1)

Example 11. V = Rn, W = Rm


1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1


to be the basis for Rn and a similar basis for Rm.
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Let A : Rn → Rm be defined by

Av =

A︷ ︸︸ ︷ a11 . . . a1n
...
am1 . . . amn


v︷ ︸︸ ︷
α1

α2
...
αn



β = Aα.



58

Composition of Linear Operators

Figure 6: Composition of two operators

Theorem 13. Suppose U, V and W are vector spaces with bases
{u1, . . . , un}, {v1, . . . , vm} and {w1, . . . , wq} respectively. A : U → V and
B : V →W are linear operators with matrix representations A and B
respectively in the bases given. Then the matrix representation of the linear
operator BA : U →W has a matrix representation BA with
{u1, . . . , un}, and {w1, . . . , wq} as bases for U and W respectively.
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Change of basis
A : V →W is a linear operator, then the matrix representation of A depends
on the basis of V and W.

Example 12. V = R3, W = R3 and A : V →W is defined by Av = Av
where A = (aij).

v1 =

 1
0
0

 , v2 =

 0
1
0

 , v3 =

 0
0
1


w1 =

 1
0
0

 , w2 =

 0
2
0

 , w3 =

 0
0
3



Av1 =

 a11
a21
a31

 =

3∑
i=1

αi1wi =

 α11

2α21

3α31


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. Thus the coordinate vector of Av1 is given by

 α11

α21

α31

 =

 a11
1
2a21
1
3a31



Av2 =

 a12
a22
a32

 =

3∑
i=1

αi2wi =

 α12

2α22

3α32


Thus the coordinate vector of Av2 is given by

 α12

α22

α32

 =

 a12
1
2a22
1
3a32


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Av3 =

 a13
a23
a33

 =

3∑
i=1

αi3wi =

 α13

2α23

3α33


Thus the coordinate vector of Av3 is given by α13

α23

α33

 =

 a13
1
2a23
1
3a33


Matrix Representation of A is given by a11 a12 a13

1
2a21

1
2a22

1
2a23

1
3a31

1
3a32

1
3a33


Suppose V is a vector space with two sets of basis vectors given by
{vi}ni=1 and {v̂i}ni=1. Suppose the coordinate vector of a vector v ∈ V in the
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bases {vi}ni=1 and {v̂i}ni=1 is given by

α =

 α1
...
αn

 and α̂ =

 α̂1
...
α̂n


respectively. Suppose

v̂j =

n∑
i=1

qijvi

Note that
v =

∑n
j=1 α̂jv̂j

=
∑n
j=1 α̂j

∑n
i=1 qijvi

=
∑n
i=1(

∑n
j=1 qijα̂j)vi

Therefore we have
α = Qα̂ where Q = (qij).
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Lemma 1. The matrix Q above is invertible.

Proof: Suppose Q is not invertible. Then from Theorem 3 it follows that there
exists α̂ 6= 0 such that Qα̂ = 0. This implies that

n∑
j=1

qijα̂j = 0 for all i = 1, . . . , n.

Consider ∑n
j=1 α̂jv̂j =

∑n
j=1 α̂j(

∑n
i=1 qijvi)

=
∑n
i=1 (

n∑
j=1

qijα̂j)︸ ︷︷ ︸
=0

vi

= 0.

This implies there exists α̂ 6= 0 such that
∑n
j=1 α̂jv̂j = 0. This would imply that

{v̂j} is not an independent set. This is a contradiction.
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Example 13. V = R3, with basis
v1,v2,v3︷ ︸︸ ︷

(e1, e2, e3) and

v̂1,v̂2,v̂3︷ ︸︸ ︷
(e1,

1

2
e2,

1

3
e3)

v̂1 = (1)v1 + (0)v2 + (0)v3
v̂2 = (0)v1 + (12)v2 + (0)v3
v̂3 = (0)v1 + (0)v2 + (13)v3

Q =

 1 0 0
0 1

2 0
0 0 1

3



If α is the coordinate vector in (e1, e2, e3), then the coordinate vector in
(e1,

1
2e2,

1
3e3) is Q−1α.

Theorem 14. Suppose A : V →W is a linear operator from vector space V
to vector space w. Furthermore, suppose (v1, v2, . . . , vn), (v̂1, v̂2, . . . , v̂n) forms
two sets of basis for V with the associated change of basis matrix Q. Also,
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suppose (w1, . . . , wm) and (ŵ1, . . . , ŵm) form basis for W with change of basis
matrix T . Let A be the matrix representation of A in the basis (v1, . . . , vn) for
V and (w1, . . . , wm) for W . Let B be the matrix representation of A in the
basis (v̂1, . . . , v̂n) for V and (ŵ1, . . . , ŵm) for W . Then, B = PAQ, P = T−1.

Proof: Suppose α is the coordinate vector of v ∈ V in the basis (v1, . . . , vn).
Let α̂ be the coordinate vector in the basis (v̂1, . . . , v̂n). Then

α = Qα̂.

Suppose β is the coordinate vector of Av in the basis (w1, w2, . . . , wm). Then

β = Aα.

Suppose β̂ is the coordinate vector of Av in the basis (ŵ1, . . . , ŵm). Then

β = T β̂.
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β = T β̂ ⇒ β̂ = T−1β = T−1Aα = T−1AQ︸ ︷︷ ︸
B

α̂. Therefore, B = T−1AQ.

Example: C :

V︷︸︸︷
R3 →

W︷︸︸︷
R3

C =

 c11 c12 c13
c21 c22 c23
c31 c32 c33


⇒ Cv =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 α1
...
α3

 where v =

 α1
...
α3



Let (e1, e2, e3) be a basis for V and W . Then we have argued earlier that the
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matrix representation in these basis vectors is

A =

 c11 c12 c13
c21 c22 c23
c31 c32 c33



Let another set of basis vector for V and W be (e1, e2, e3) and (e1,
1
2e2,

1
3e3).

B = T−1AQ.

From the previous example, we have

T =

 1 0 0
0 1

2 0
0 0 1

3

 , Q = I.
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B = T−1A =

 1 0 0
0 2 0
0 0 3

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 =

 c11 c12 c13
2c21 2c22 2c23
3c31 3c32 3c33

 .



69

Equivalence and Similarity Transformations

Definition 12. • Equivalence Transformation: If A and B are m× n
matrices and P and Q are nonsingular m×m and n× n matrices
respectively. Then A and B are equivalent if B = PAQ. It immediately
follows that if A and B are two matrix representation of a linear operator
A : V →W then A and B are equivalent.

• Similarity Transformation: If A and B are m×m matrices, Q ∈ Rm×m is
invertible, then A and B are similar if B = Q−1AQ.

Theorem 15. If A : V → V be a linear operator with a matrix representation
A in the basis (v1, . . . , vn) and B in the basis (v̂1, . . . , v̂n). Then A and B are
similar.

Proof: We know from Theorem 14 that B = T−1AQ. T is the basis
transformation between (w1, . . . , wn)→ (ŵ1, . . . , ŵn). T = Q⇒ B = Q−1AQ.
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Definition 13. Range of a Linear Operator A: Let A be a linear operator
from vector space V to vector space W .

Range(A) = {w ∈W such that ∃v ∈ V with Av = w}

Figure 7: Range of a operator

Range(A) ⊂W .

Theorem 16. If (v1, . . . , vn) is a basis for a vector space and A : V →W
where W is a vector space with A is linear, then
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span(Av1,Av2, . . . , ,Avn) = Range(A)

Proof: To prove that Range(A) ⊂ span{Av1,Av2, . . . , ,Avn}

Let w ∈ Range(A)

From definition, it follows that ∃v ∈ V such that w = Av

v ∈ V ⇒ ∃(α1, α2, . . . , αn) such that v =

n∑
i=1

αivi

w = Av = A(

n∑
i=1

αivi)

=
∑

i = 1nαi(Avi)

⇒ w ∈ span({Av1,Av2, . . . , ,Avn}
⇒ Range(A ⊂ span{Av1,Av2, . . . , ,Avn}
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Suppose we have w ∈ span{Av1,Av2, . . . , ,Avn}. Then

∃(β1, . . . , βn) such that w =

n∑
i=1

βiAvi = A(

n∑
i=1

βivi) = Av

where v ∈ V

w ∈ Range(A)

span(Av1, . . . ,Av1) ⊂ Range(A)

Therefore,
span(Av1, . . . ,Av1) = Range(A)

We can show that Range(A) is a vector space.

Definition 14. Rank(A): Suppose A is a linear operator from vector space
V to vector space W . Then Rank(A) = dim(Range(A)).
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Example 14.

V = {set of polynomials of order ≤ 2} and W ≡ V

A : V →W be the operator defined by

AV =
dv

dt
.

Note that

Range(A) = {all polynomials with degree ≤ 1} and

Rank(A) = dim{Range(A)} = 2.

1, t, t2 forms a basis for V
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Range(A) = span{A(1),A(t),A(t2)}
= span{0, 1, 2t}
= span{1, 2t}

Example 15. Rank(A): Suppose A is a m× n matrix, then Rank(A) =
number of independent columns of A.

Theorem 17. Suppose A : V →W is a linear operator and A is the matrix
representation of A in the basis (v1, . . . , vn) for V and (w1, . . . , wn) for W .
Then Rank(A) = Rank(A).

Proof: Suppose that dim(Range(A)) = r = rank(A). Then, there should be r
independent vectors Av1,Av2, . . . ,Avn which follows from Theorem 16.

Let us assume without loss of generality that only Av1,Av2, . . . ,Avr are
independent.

The matrix A was defined by the following
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Avj =

m∑
i=1

aijwi.

Consider a linear combination of the first r columns of A

c1


a11
a21
...
am1

+ c2


a12
a22
...
am2

+ . . .+ c3


a1r
a2r
...
amr

 =



r∑
j=1

a1jcj

r∑
j=1

a2jcj

...
r∑
j=1

amjcj


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Suppose ∃ c1, c2, . . . , cr such that

c1a1 + c2a2 + . . .+ crar = 0.

that is

r∑
j=1

aijcj = 0; i = 1, 2, . . . ,m
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Consider the linear combination

c1Av1 + c2Av2 + . . .+ c1Avr = c1

m∑
i=1

ai1wi + c2

m∑
i=1

ai2wi + . . .+ cr

m∑
i=1

airwi

=

r∑
j=1

cj

m∑
i=1

aijwi

=

m∑
i=1

(

r∑
j=1

cjai1)wi

= 0

Because Av1,Av2, . . . ,Avr are independent, it follows that
cj = 0, j = 1, 2, . . . , r.

In summary, if c1a1 + c2a2 + . . .+ crar = 0 then cj = 0 ∀j = 1, 2, . . . , r.

We have shown that a1, a2, . . . , ar are independent.
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Therefore, Rank(A) ≥ r = Rank(A). The proof that Rank(A) ≥ Rank(A)
follows similarly.

Theorem 18. If A and B are two matrix representations of the linear operator
A, then Rank(A) = Rank(B).

Proof: Note that Rank(A) = Rank(A) = Rank(B).

In particular, let A be a m× n matrix.

P and Q are nonsingular m×m, n× n matrices respectively. Then,

Rank(A) = Rank(PA)
= Rank(AQ)
= Rank(PAQ)
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A : Rn → Rm and Av = Aα.

A, PA,AQ,PAQ are all matrix representations of A
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Null Space

Definition 15. Null Space: Suppose V and W are vector spaces and A a
linear operator from V →W . Then,

Null(A = {v ∈ V |Av = 0}

Note that Null(A) ⊂ V and Range(A) ⊂W.

Example 16.

V = {Vector space of all polynomials of degree ≤ 2}.

Let W ≡ V, Av = dv
dt . Then

Null(A) = {all constants}
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and
Basis(Null(A)) = 1.
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Rank Nullity Theorem

Theorem 19. Suppose V and W are vector spaces, and dim(V ) = n.
A : V →W be a linear operator. Then

dim(Null(A)) + dim(Range(A)) = n.

Proof: Suppose dim(Null(A)) = n. Therefore, ∃ independent vectors
v1, v2, . . . , vn such that

Av1 = Av2 = . . . = Avn = 0.

Because dim(V ) = n, v1, v2, . . . , vn forms a basis for V . Thus, given any
vector v ∈ V ,

v =

n∑
i=1

αivi, Av =

n∑
i=1

αiAvi = 0.
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Thus,
Range(A) = {0}.

Suppose dim(null(A)) = q < n. Then there exist independent vector
v1, v2, . . . , vq such that

Av1 = Av2 = . . . = Avq = 0.

From Theorem 12 one can extend the basis to v1, v2, . . . , vq, vq+1, . . . , vn. We
will show that Avq+1, . . . ,Avn are independent. Note that

n∑
q+1

ciAvi = 0.

Then we have

A(

n∑
q+1

civi) = 0
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n∑
q+1

civi ∈ null(A).

As vq+1, . . . , vn are independent it follows that ci = 0 ∀ i = q + 1, . . . , n. Thus
we have shown that

Avq+1, . . . ,Avn
are independent.

Suppose w ∈ Range(A). Let v ∈ V then v =

n∑
i=1

αivi. It follows that

Av =

n∑
i=1

αiAvi =

n∑
i=q+1

αiAvi.

{Avq+1,Avq+2, . . . ,Avn} is a basis for Range(A). Thus

Range(A) = span{Avq+1, . . . ,Avn}.
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Thus
dim(Range(A)) = n− q

and it follows that

dim(Range(A) + dim(null(A)) = n.

Theorem 20. Let B and C be m× n and n× p matrices with
rank(B) = b and rank(C) = c. Then

rank(BC) ≤ min(b, c).

Proof: Note that Range(BC) ⊂ RangeB. Indeed, suppose there exists a y
such that BCy = z with z ∈ Range(BC). It follows that By′ = z with y′ = Cy.
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Thus z ∈ Range(B). Thus it follows that Range(BC) ⊂ RangeB. Thus we can
conclude that dim(Range(BC) ≤ dim(Range(B)) = b.

Suppose V ∈ Null(C). Then Cv = 0 and therefore BCv = 0. Therefore
Null(C) ⊂ Null(BC). This implies that dim(Null(BC)) ≥ dim(Null(C)).
Also note that

p = dim(Null(C)) + dim(Range(C))
= dim(Null(BC)) + dim(Range(BC)).

Since dim(Null(BC)) ≥ dim(Null(C)) it follows that

rank(BC) = dim(Range(BC)) = p−dim(Null(BC)) ≤ p−dim(Null(C)) = dim(Range(C)) = c.

Thus
rank(BC) ≤ min(b, c)
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Theorem 21. Let A be a m× n matrix of rank r then A can be written as
A = BC where B is a m× r matrix of rank r and c is a r × n matrix of rank r.

Proof: Let A : Rn → Rm has rank r implies that there exist vectors
v1, v2, . . . , vr which forms a basis for Range(A). Now note that

A = [a1 a2 . . . an]

and ai ∈ Range(A). Therefore ci represents the coordinate vector of ai in the
basis v1, . . . vr then we have

ai =

r∑
j=1

cjivj.

Thus
A = [a1 a2 . . . an] = B[c1 c2 . . . cn]
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where B = [v1 v2 . . . vr]. As v1, . . . , vr are linearly independent it follows that
B has rank r. Note that r = rank(A) ≤ rank(C). However C has only r rows
and thus rank(C) = r.

Theorem 22. Suppose A ∈ Rm×n. Consider the equation

Aα = β (5)

where α ∈ Rn and β ∈ Rm. Then (5) has a solution if and only if
β ∈ Range(A). If a solution exists then it is unique if and only if Null(A) = {0}.

Proof: We will prove only the second part of the theorem. Suppose
NullA = {0}. If α1 and α2 are two elements such that Aα1 = Aα2 then
A(α1 − α2) = 0 and therefore α1 − α2 = 0. Thus α1 = α2. Thus the solution to
Aα = b is unique.
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Suppose Null(A) 6= {0}. Then there exists α1 6= 0 such that Aα1 = 0.
Suppose Aα = β then A(α+ α1) = β and therefore the solution is not unique.

Definition 16. Let A : V →W be a linear operator with V and W are vector
spaces.

A is said to be right invertible if there exist a map A−R : W → V such that
AA−R = Iw where Iw is the identity transformation on W.

A is said to be left invertible if there exist a map A−l : W → V such that
A−lA = Iv where Iv is the identity transformation on V.

A is invertible if it has both right and left inverses.

Theorem 23. Let A : V → V where A is linear and V is a vector space.

1. If there exists a unique right inverse to A then A is invertible.
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2. If there exists a unique left inverse to A then A is invertible.

Proof: (1) Suppose A−R is the right inverse of A. Note that

A(A−R +A−RA− I) = AA−R +AA−RA−A = I +A−A = I.

As the right inverse is unique it follows that

A−R +A−RA− I = A−R.

Thus
A−RA = I

and thus A−R is the left inverse of A. Thus A is invertible.

(2) follows in a similar way as (1).
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Definition 17. Onto and into: A : V →W is onto if Range(A) = W . If A is
such that Aα1 = Aα2 implies that α1 = α2 for any pair α1, α2 ∈ V then A is
into.

Example 17. Let A : R2 → R be defined by

Av = Av

where
A =

(
1 2

)
.

Notice that Range(A) = R. Indeed if α ∈ R then

[
1 2

] [ α
0

]
= α

and this A is onto.
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Now we will find a right inverse to A. Consider the equation

[
1 2

] [ β1
β2

]
= 1.

and thus β1 + 2β2 = 1 Thus any (β1, β2)
T is a right inverse if β1, β2 satisfy

β1 + 2β2 = 1. Evidently there are infinite number of right inverses.

(
1
0

)
is a right inverse.

(
3
−1

)
is a right inverse too.
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Example 18. A =

[
1
2

]
, A : R1 → R2.

Then A is one to one. (∵ Null(A) = 0)

A−l is a left inverse if
(
α1 α2

)( 1
2

)
= I where A−l ≡

(
α1 α2

)
(
α1 α2

)
is a left inverse if α1 + 2α2 = 1

Again this has infinite solutions and thus there are infinite left inverses for A.

Theorem 24. Consider A : V →W where dim(V ) = n, dim(W ) = m. Then
A is one to one if and only if m ≥ n and the rank of any matrix representation
of A is n. In particular, if n = m then rank(A) = n only if A is non singular.

Proof: Note that from Theorem 19 it follows that

dim(N(A)) + dim(R(A)) = n.
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If m < n, then dim(N(A)) = n− dim(R(A)) ≥ (n− dim(W )) = (n−m) > 0.
Therefore, if m < n, then A is not one to one as N(A) 6= {0}.

m ≥ n and rank(A) = n. Then dim(N(A)) = {0}). Therefore A is 1− 1.

Theorem 25. Let A : V →W be a linear operator where V and W are vector
spaces. Then

1. A is right invertible if and only if A is onto.

2. A is left invertible if and only if A is one to one.

Proof: Suppose A is onto. Then given any w ∈W there exists v ∈ V such
that Av = w (note that v is not unique).

Define A−Rw := v where v is any vector that satisfies Av = w. Then it follows
that A(A−Rw) = Av = w.
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Suppose A is not onto, then ∃w1, such that w1 6∈ Range(A)

Suppose ∃ a right inverse operator A−R Then for the given w1 ∈W ,
A(A−Rw1) = w1.

Then with v = A−Rw1, we have Av = w1. Thus, w1 ∈ Range(A) and we have
a contradiction.

This proves (1). (2) is left as an exercise.
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Eigenvalues and Eigenvectors of operators

Definition 18. Let A be a linear operator from V to W where V and W are of
the same dimension n. Then λ, a scalar is called an eigenvalue if Av = λv for
some v 6= 0, v ∈ V v is the eigenvector associated with λ.

Theorem 26. Let A : V → V be a linear operator, and let V be
n-dimensional. Then all matrix representations of A have the same
n-eigenvalues λ1, λ2, . . . , λn. Moreover, these eigenvalues are precisely the
eigenvalues of A.

Theorem 27. Similar matrices have the same characteristic polynomial and
therefore they have the same eigenvalues. Moreover, if Â = P−1AP and V is
an eigenvector of A, then Pv is an eigenvector of Â. A and Â are both matrix
representations of the linear operator A defined by Av = Av.
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Inner Product Spaces

Definition 19. Inner Product: (V, s) is a vector space V with scalar being s.
An inner product on (V, s) is a function <,>: (V, s)× (V, s)→ s which has the
following properties:

1. < v, v > ≥ 0 for all v ∈ V and < v, v >= 0 only if v = 0.

2. < v,w >=< w, v > v,w ∈ V, s ≡ R
< v,w >= < w, v > v,w ∈ V, s ≡ C

3. < αv,w >= α < v,w > v,w ∈ V, α ∈ s.

4. < v1 + v2, w >=< v1, w > + < v2, w >, v1, v,w ∈ V.
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Inner Product Spaces

Definition 20.

(V, s) is a vector space with an inner product defined is called an inner product
space.

Example 19. Let (V, s) ≡ (R2, R)

< v1, v2 >:= (v1)
Tv2 =

2∑
i=1

v1(i)v2(i)

where v1 =

[
v1(1)
v1(2)

]
v2 =

[
v2(1)
v2(2)

]
<,> is indeed an inner product on (R2, R)
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Orthogonal and orthonormal vectors

Definition 21. (V, s) be an inner product space. Then two non-zero vectors
v1, v2, v3, . . . , vn are orthogonal if < vi, vj >= 0 if i 6= j, j = 1, 2, . . . , n. They
are orthonormal if in addition < vi, vi >= 1 for i = 1, 2, . . . , n.
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Orthogonal complements

Definition 22. suppose X is an inner product space and V and W are
subspaces of X, then, V and W are said to be orthogonal complements of
one another if V ⊕W = X and < v,w >= 0 ∀v ∈ V,w ∈W.

Example 20. X ≡ R2

NOTE;DRAW FIGURE Let

V = {v : v = α(
1
0

), α ∈ R},

and
W = {w : w = β(

0
1

), β ∈ R}.

Then
V ∩W = {0},
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V ⊕W ≡ R2 = {v : v =

(
α
β

)
, α, β ∈ R}.

Also, for v ∈ V,w ∈W,

< v,w >= (
α
0

)T (
0
β

) = (α, 0)(
0
β

) = 0.

Thus V and W are orthogonal complements.

X ≡ R3, then

V = {

 α
0
0

 |α ∈ R}, and W = {

 0
α
0

 |α ∈ R}
are not orthogonal complements.
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Orthogonal Subspaces

Definition 23. V, and W subspaces of inner product space X are
orthogonal to each other. If for every v ∈ V, w ∈W, < v,w >= 0.

If V is a subspace of an inner product space X, then

V ⊥ = {x ∈ X| < x, v >= 0, ∀v ∈ V }.

It can be shown that

• V ⊥ is a subspace of X.

• V ∩ V ⊥ = 0

• V ⊕ V ⊥ = X.
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Adjoint Operator
Definition 24. Suppose V is an inner product space and let A : V →W be a
linear operator, where W is also an inner product space. Then the adjoint of
the operator A is an operator A∗ : W → V that is defined by

< v,A∗w >v=< Av, w >w, v ∈ V,w ∈W.

Example 21. Let V = Rn and W = Rm and let A : V →W be defined by

Av = Av,

where A = (aij). Let the inner product on V and W be defined by

< v1, v2 >v= vT1 v2 and < w1, w2 >w= wT1 w2, v1, v2 ∈ V and w1, w2 ∈W.

Note that
< v,ATw >v= vTATw = (Av)Tw =< Av,w >w .
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Thus the adjoint operator of A is given by the matrix AT .

If V ⊂ X,A : V →W then, N(A)⊥ ⊂ V , N(A) ⊂ V , R(A) ⊂W ,R(A)⊥ ⊂W ,
Range(A∗) ⊂ V ,N(A∗) ⊂W , R(A∗)⊥ ⊂ V , N(A∗)⊥ ⊂W

Let V and W be two vector spaces and let A : V →W be a linear operator.
Then,

• A is onto if R(A) = W

• A is one to one if N(A) = {0}.

Theorem 28. The following statements are equivalent:

1. N(A) = {0}

2. If Av1 = Av2, then v1 = v2.
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3. If v1 6= v2, then Av1 6= Av2.

Proof: Suppose N(A) = {0}. Also, if v1, v2 are such that Av1 = Av2, then

A(v1 − v2) = 0

⇒ (v1 − v2) ∈ N(A)

⇒ v1 − v2 = 0

∴ v1 = v2

Suppose that Av1 = Av2 ⇒ v1 = v2

Then if v ∈ N(A),Av = 0 is same as

A(v − 0) = 0

⇒ Av −A0 = 0
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⇒ v = 0

∴ N(A) = {0}

∴ 1⇔ 2

Theorem 29. Let A be a linear operator from an inner product space V to an
inner product space W . Then

1. N(A∗) = [R(A)]⊥

2. [N(A)]⊥ = R(A∗)

Proof: (1) Take w ∈ [Range(A)]⊥ then
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< w, γ >w= 0, ∀γ ∈ Range(A)
⇒< w,Av >w= 0, ∀v ∈ V
⇒< Av, w >w= 0, ∀v ∈ V
⇒< v,A∗w >v= 0, ∀v ∈ V

In particular, < A∗w,A∗w >v= 0. A∗w = 0 and thus w ∈ Null(A∗). This
shows that Range(A)]⊥ ⊂ Null(A∗).

Let w ∈ N(A∗), then A∗w = 0

∴< v,A∗w >v= 0 ∀v ∈ V

∴< Av, w >w= 0 ∀v ∈ V

⇒ w ∈ [Range(A)] ⊥

Thus, (Range(A))⊥ = N(A∗) [v 6∈ [N(A)]⊥ ⇔ v 6∈ Range(A∗).
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Gram-Schmidt Orthonormalization

Theorem 30. Let V be a vector space with the inner product <,> defined.
Let v1, . . . , vn be n independent vectors. Then there exist n orthonormal
vectors e1, . . . , en such that

span{v1, . . . , vn} = span{e1, . . . , en}.

Proof: Let
z1 := v1

and let
e1 :=

z1
‖z1‖

.

Let
z2 = v2− < v2, e1 > e1 and e2 :=

z2
‖z2‖

.
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Note that

< e2, e1 > = 1
‖z‖2

[< v2, e1 > − < v2, e1 >< e2, e2 >]

= 1
‖z‖2

[< v2, e1 > − < v2, e1 >] = 0

Thus e2 ⊥ e1. Given e1, e2, . . . , ei orthonormal define

zi+1 = vi+1− < vi+1, e1 > e1− < vi+1, e2 > e2 − . . .− < vi+1, ei > ei
= vi+1 −

∑i
j=1 < vi+1, ej > ej, and

ei+1 :=
zi+1
‖zi+1‖

.
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Let k ≤ i then

< zi+1, ek > = < vi+1, ek > −
∑i
j=1 < vi+1, ej >< ej, ek >

= < vi+1, ek > −
∑i
j=1 < vi+1, ej > δjk

= < vi+1, ek > − < vi+1, ek >
= 0 and

< ei+1, ek > =
<zi+1,ek>
‖zi+1‖

= 0.

Thus < ei+1, ej >= 0 for all j = 1, . . . , i. Thus this procedure yields vectors
e1, . . . , en that are orthonormal. Note that ei is a linear combination of
vj j = 1, . . . , n. Thus

span{e1, . . . , en} ⊂ span{v1, . . . , vn}.

Note that ei, i = 1, . . . , n forms an orthonormal set it also forms an
independent set. Therefore

dim(span{e1, . . . , en}) = dim(span{v1, . . . , vn}) = n
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and thus
span{e1, . . . , en} = span{v1, . . . , vn}.

Theorem 31. Let A be a n× n Hermitian matrix with eigenvalues
λ1, λ2, . . . , λn. There exists a unitary matrix P such that

P ∗AP = Λ =


λ1 0 . . . 0
0 λ2 . . . 0
... . . . ...
0 . . . 0 λn



Proof: Let x1 such that ‖x1‖2 = 1 and Ax1 = λ1x1. Let u2, u3, . . . , un be
orthonormal vectors such that {x1, u2, u3, . . . , un} form an orthonormal set.
Let

P1 = [x1 u2 . . . un],
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Then we have that

P ∗1P1 = I.

Let U1 = [u2 u3 . . . un]. Note that

P ∗1AP1 =

[
x∗1
U∗1

]
A
[
x1 U1

]
=

[
x∗1
U∗1

] [
Ax1 AU1

]
=

[
x∗1
U∗1

] [
λ1x1 AU1

]
=

[
λ1 x∗1AU1

0 U∗1AU1

]
.
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Note that

(P ∗1AP1)
∗ =

[
λ1 x∗1AU1

0 U∗1AU1

]∗
=

[
λ1 0
U∗1A

∗x1 U∗1A
∗U1

]
=

[
λ1 0
U∗1Ax1 U∗1AU1

]
.

However
(P ∗1AP1)

∗ = P ∗1A
∗P1 = P ∗1AP1 =

[
λ1 x∗1AU1

0 U∗1AU1

]
.

Thus [
λ1 0
U∗1Ax1 U∗1AU1

]
=

[
λ1 x∗1AU1

0 U∗1AU1

]
.

Thus
x∗1AU1 = 0 = U∗1A

∗x1 and

P ∗1AP1 =

[
λ1 0
0 U∗1AU1

]
.

Recall that
P ∗1P1 = I.
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Therefore eigenvalues of P ∗1AP1 are the eigenvalues of A and thus
eigenvalues of U∗1AU1 := A2 are λ2, . . . , λn. Let x2 such that ‖x2‖2 = 1 and
A2x2 = λ2x2. Let û3, û4, . . . , ûn be orthonormal vectors such that
{x2, û3, . . . , ûn} form an orthonormal set. Let U2 := [û3 . . . ûn]. Let

Q2 := [x2 U2] and P2 =

[
1 0
0 Q2

]
.

Note that P ∗2P2 = I. Note that

Q∗2A2Q2 =

[
λ2 0
0 U∗2A2U2

]
.
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Note that

(P1P2)
∗A(P1P2)

= P ∗2 (P ∗1AP1)P2

= P ∗2

[
λ1 0
0 A2

]
P2

=

[
1 0
0 Q∗2

] [
λ1 0
0 A2

] [
1 0
0 Q2

]

=

[
λ1 0
0 Q∗2A2Q2

]

=

 λ1 0 0
0 λ2 0
0 0 U∗2A2U2



.
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Continue the argument to obtain

P = P1P2 . . . Pn and P ∗AP = diag(λ1, . . . , λn).

Definition 25. Suppose A and B are matrices such that there exists a P with
P ∗P = I such that B = P ∗AP. Then A and B are unitarily similar.

Theorem 32. Any n× n Hermitian matrix A has n orthogonal eigenvectors
that form a basis for Cn. In this basis A has a diagonal representation.

Theorem 33. If A is a self adjoint operator on a finite dimensional space V
then A has real eigenvalues and corresponding eigenvectors form a basis for
V. In this basis A has a diagonal representation.

Theorem 34. Let A be a n× n Hermitian matrix with eigenvalues
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λ1 ≤ λ2 ≤ . . . ≤ λn. Then for all x ∈ Cn

λ1x
∗x ≤ x∗Ax ≤ λnx∗x.

Proof: Note that A = A∗ and that there exists a P such that P ∗AP = Λ and
P ∗P = I with Λ diagonal. Thus

x∗Ax = x∗PΛP ∗x

= (P ∗x)∗Λ

:=y︷ ︸︸ ︷
(P ∗x)

= y∗Λy
=

∑n
i=1 λiy

∗
i yi =

∑n
i=1 λi|yi|2

≤ λn‖y‖22
= λn‖x‖22

Note that as y = P ∗x, y∗y = x∗PP ∗x = x∗x.
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The fact that x∗Ax ≥ λ1x∗x is left as an exercise.

Theorem 35. Let A be a n× n Hermitian matrix.

1. A is positive definite if and only if its eigenvalues are positive.

2. A is positive semi-definite if and only if all its eigenvalues are nonnegative.

3. A is negative definite if and only if all its eigenvalues are negative.

4. A is negative semi-definite if and only if all its eigenvalues are non-positive.

Definition 26. Suppose A : Rn → Rn. Then

‖A‖2−in := max
‖x‖2=1

‖Ax‖2 = max
x 6=0

‖Ax‖2
‖x‖2

.
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Schur’s Theorem

Theorem 36. If A is a n× n matrix, then there is a unitary matrix P such that
P ∗AP = T (P ∗P = 1), where T is an upper triangular matrix.
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Theorem 37. n× n matrix A is a unitary matrix similar to a diagonal matrix if
and only if it commutes with its conjugate transpose (AA∗ = A∗A).

Proof: (⇒) There exists a P such that P ∗P = I and

P ∗AP = Λ.

Thus
A = PΛP ∗ and A∗ = PΛ∗P ∗.

Thus

AA∗ = PΛP ∗PΛ∗P ∗ = PΛΛ∗P ∗ = PΛ∗ΛP ∗ = PΛ∗P ∗PΛP ∗ = A∗A.

Note that we have used the fact that ss Λ is diagonal ΛΛ∗ = Λ∗Λ. The rest of
the proof is left to the reader.
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Definition 27. n× n matrix A commute with its conjugate transpose is called
Normal Matrix.

A is normal if AA∗ = A∗A.

Theorem 38. Let A be a n× n matrix, then A is similar to a diagonal matrix if
and only if A has n independent eigenvectors.

Proof: (⇐) : Assume there exists n independent eigen vectors x1, x2, . . . , xn.
Then

A

:=P︷ ︸︸ ︷
[x1, x2, . . . , xn] = [λ1x1, λ2x2, . . . , λnxn]

AP = PΛ(P is invertible )
P−1AP = Λ
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(⇒): There exists P (invertible) such that

P−1AP = Λ
AP = PΛ
P = [p1, p2, . . . , pn]
A[p1, p2, . . . , pn] = [p1λ1, p2λ2, . . . , pnλn]
Api = λipi

Thus A has i = n independent eigen vectors as P is invertible.

Theorem 39. If λ1, λ2, . . . , λm are distinct eigen values of A, then the
corresponding eigen vectors x1, x2, . . . , xm are independent.

Proof: Suppose to the contrary, λ1, λ2, . . . , λm are distinct but x1, x2, . . . , xm
are dependent. Then
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m∑
i=1

cixi = 0 and without loss of generality say cm 6= 0. Then

λ1(

m∑
i=1

cixi) = 0 (6)

A(

m∑
i=1

cixi) = 0 (7)

(7) - (6)⇒
m∑
i=1

ci(Axi − λ1xi) = 0

⇒
m∑
i=2

ci(λ1 − λi)xi = 0
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Multiply by λ2 and A and subtract each other and follow the same by λ3 and A
. . .. Then

cm(λ1 − λm)(λ1 − λm) . . . (λm−1 − λm) = 0

which is a contradiction to our assumption.

Theorem 40. If a n× n matrix A has n distinct eigenvalues then A is similar
to a diagonal matrix.

Proof: Follows from the previous two theorems

Theorem 41. Let A be a m× n matrix with rank r. Then there exist m×m
unitary matrix P and n× n unitary matrix Q such that

Σ = P ∗AQ
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where Σ is a m× n matrix with only the first r diagonal elements called the
singular values σ1, . . . , σr nonzero and rest of the elements zero. The first r
singular values are given by

σi = {λi(A∗A)}12.

Proof: Note that rank(A∗A) = rank(A) = r. Let the eigenvalues of A∗A be
given by λ1, . . . , λn with corresponding eigenvectors x1, . . . , xn that are
orthogonal (see Theorem 32). Note that A∗A is Hermitian positive
seim-definite and thus all its eigenvalues are non-negative. Define

σi = {λi(A∗A)}12.

Let
yi =

1

σi
Axi, i = 1, 2, . . . , r.
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Note that

y∗i yj = 1
σiσj

(Axi)
∗(Axj)

= 1
σiσj

x∗iA
∗Axj

= 1
σiσj

λjx
∗
ixj

=
σj
σi
δij.

{y1, y2, . . . , yr} forms an orthonormal and can be extended to {y1, y2, . . . , ym}
to form a orthonormal basis for Cm. Let

Q =
[
x1 . . . xn

]
and P =

[
y1 . . . ym

]

Note that P ∗P = PP ∗ = Q∗Q = QQ∗ = I. Note that for all
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j = 1, . . . , n and i = 1, . . . , r

(P ∗AQ)ij = y∗iAxj
= 1

σi
(Axi)

∗Axj
= 1

σi
x∗iA

∗Axj

=
λj
σi
x∗ixj

=
λj
σi
δij

.

Also, if j = 1, . . . , r and i = r + 1, . . . ,m then

(P ∗AQ)ij = y∗iAxj = y∗i (σjyj) = σjy
∗
i yj = 0.

Thus
y∗iAxj = σiδij for all i = 1, . . . , r and j = 1, . . . , n.

Note that
‖Axj‖22 = x∗jA

∗Axj = 0, for all j = r + 1, . . . , n.
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Thus
Axj = 0 for all j = r + 1, . . . , n.

Thus
y∗iAxj = σiδij for all i = 1, . . . , r and j = 1, . . . , r.

y∗iAxj = 0 for all i = 1, . . . , r and j = r + 1, . . . , n.

y∗iAxj = 0 for all i = r + 1, . . . ,m and j = 1, . . . , r.

Thus

P ∗AQ =

σ1 0
. . . ...

σr 0
0 . . . 0 0
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Two Induced Norm

Theorem 42. Let A ∈ Rn×n. Then

‖A‖2−ind =
√
ρ(A∗A).

where ρ(B) denotes the spectral radius of B.
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Jordan Canonical Form
Consider a matrix of the form

Ji =


λi 1

λi 1
. . . . . .

. . . 1
λi


r×r

Then Ji is said to be a Jordan block with eigenvalue λi and size r. Note that e1
is the only eigenvector of Ji.

Theorem 43. A n× n matrix A is similar to the matrix
J1

J2
. . .

Jp


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where Ji is the Jordan block with eigenvalue λi and size ri × ri given by

Ji =


λi 1

λi 1
. . . . . .

. . . 1
λi


ri×ri

and
p∑
i=1

ri = n.

Definition 28. The number of Jordan blocks associated with an eigenvalue
λi is said to be the geometric multiplicity of λi. The number of eigenvalues at
λi is called the algebraic multiplicity of the eigenvalue λi.
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Note that from Theorem 43 there exists a invertible matrix P such that

P−1AP =


J1

J2
. . .

Jp



Thus

AP = PJ =
[
p1 p2 . . . pn

] 
J1

J2
. . .

Jp

 .
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Thus[
Ap1 Ap2 . . . Apr1 . . . Apn

]
=

[
p1 p2 . . . pr1 . . . pn

]
.

J1
J2

. . .
Jp



This implies that
Ap1 = λ1p1
(A− λ1I)p2 = p1
(A− λ1I)p3 = p2
... ... ...
(A− λ1I)pr1 = pr1−1

pr1 is called the generator. p2, . . . , pr1 are called generalized eigenvectors.

Definition 29. Y is an invariant set with respect to A if for all y ∈ Y, Ay ∈ Y.
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S1 = span{p1, p2, . . . , pr1} associated with eigenvalue λ1 is invariant with
respect to A. Similarly Sj, the corresponding set with respect to λj is invariant
with respect to A for all j = 1, . . . , p

Theorem 44. Let A = P−1JP be the Jordan decomposition of A with

J =


J1

J2
. . .

Jp

 .
If Si is defined as above then S′is are invariant with respect to A and

Cn = S1 ⊕ S2 ⊕ . . .⊕ Sp.
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Cayley Hamilton Theorem

Theorem 45. The characteristic polynomial associated with matrix A is

f(λ) = (λ− λ1) . . . (λ− λn).

Then
f(A) = 0.

Proof: Let the Jordan decomposition be given by

J = P−1AP.

Thus
Am = PJmP−1.

Note that
f(λ) = (λ− λ1)r1(λ− λ2)r2 . . . (λ− λp)rp.
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Thus it follows that
f(A) = P (f(J))P−1

where f is any polynomial. Note that

f(J) = f



J1

J2
. . .

Jp




= (J − λ1I)r1(J − λ2I)r2 . . . (J − λpI)rp

= 0

Thus f(A) = 0.
.
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Minimal polynomial

Definition 30. The minimal polynomial of a square matrix A is the least
ordered polynomial p(λ) such that p(A) = 0.

Theorem 46. Suppose A has m distinct eigenvalues. Let ti be the size of the
largest Jordan block of A associated with eigenvalue λi. Then the minimum
polynomial is given by

Πm
i=1(λ− λi)ti.


