
Lecture 7 Thursday, February 10, 2 8:08 AM 7 Lead Controller: K(s) = k Ts+1 $\propto Ts+1$ 0<2<1 770 k70 Bode plot of the lead controller $k(s) = k (\frac{s}{y_{r}} + 1)$ $(\frac{S}{1/4} + 1)$ break frequencies on at 1 c 1 1 20 dudeu de 7 xT The 20/910/ (20) 1/LT ٧_T Ømax, Ϋr TOLT YAT 1/2 -() features: positive phase throughout () Let won be the frequency where [K(JUD) is the maximum then it can be blown that WM= I TVX () The maximum phase for bothsfies $\sin \phi_m = \frac{1-\alpha}{1+\alpha}$ $|K(JW_m)| = k$ \odot

Steps for lead controller design

V2

() We will get
$$w_n = w_{qc}$$
; w_n is given by
 $w_n = \frac{1}{TT_z}$; Note that at $w_n = w_{qc}$
 $\left| \frac{TS+1}{\alpha TS+1} \right|^{-1} = \frac{1}{Tz}$
 $\frac{1}{\alpha TS+1} \left| \frac{1}{\beta = Tw_n} \right|^{-1} \left| \frac{1}{\alpha TS+1} \left(\frac{1}{\alpha} \left(\frac{1}{\beta} \right) \right|_{\frac{1}{\beta = Tw_n}} \right|^{-1}$
 \Rightarrow This provides w_n
 $w_n = \frac{1}{TT_x}$ determine T.

lecture7 Page 2

lecture7 Page 4

 $\boldsymbol{\sim}$

-

form' below. (15(M)) (norses 0.707 form
below 0.703)
© S(M) not to exceed certain prespeched
value at given frequences up, wz,- wm.
© 15(M) to have a maximum when below
M t ceptures robustness ontera. [Instel
-10 Rection
min [1+L(M)]
G max 15 (2003) = max [1+L(M)]
and this number has to be < M.
-3
$$\frac{dT/T}{dt/G} = S$$

-3 $\frac{dT/T}{T}$ = S
-3 $\frac{dT/T}{T}$ = S
-5 $\frac{dT/T}{T}$ = S
-5 $\frac{dT/T}{T}$ = S