Lecture 6

Closed Spec e
(1) Bandwidth wail
(1) $P M=100 \mathrm{~m}$
(a) LMM
(a) $M_{P}=e^{-\pi \xi_{1} / \sqrt{1-\xi^{2}}}$
(D) $t_{s}=\frac{4}{9} \omega_{0}$
(1) $t_{r}=\frac{\pi-\omega_{s}^{-1} \xi}{\omega_{0} \sqrt{1-s_{n}^{2}}}$
(1) $\begin{aligned} & \text { steady state } \\ & \\ & \text { behayor }\end{aligned}$
open-100p

$$
\omega_{B W}=(1-2-1.6) \omega_{g c}
$$

Can be read from the Bode of L
Can be read from the Bode of 2 $\xi_{\xi}=\frac{P M i n d g}{100}$
is dictated by the slope of the magnitude park of the Boole plot

Proportional-Integral Controllers:

$$
K=k_{p}+\frac{k_{I}}{s}=\frac{k_{I}}{s}\left[1+\frac{s}{k_{I} / k_{p}}\right]
$$

(1) PI controllers are prom ant used to better the steady state behavior; in particular they increase the type of the system
Example of PI controller design

$$
G(s)=\frac{500}{s^{2}+6 s+5}
$$

Design a PI controller to meet the following specifications
(1) $M_{p} \leqslant 16 \%$
(2) Css (steady state error) due to ramp input $\leqslant 0.1$
Solution:

$$
\begin{aligned}
& \quad \begin{array}{l}
M_{p} \leq 16 \% \\
\Rightarrow \quad e^{-\pi 4 / \sqrt{1-4}} \leq 0.16
\end{array} \quad \begin{array}{c}
\text { intuition berry } \\
\text { coned from } \\
\text { a ard order } \\
\text { protitype }
\end{array} \\
& \Rightarrow \quad c_{4} \geqslant 0.5039 \quad \rightarrow \text { PM 1 rule of } \\
& \therefore \quad P M_{d} \approx 100 \xi=50.39 \text { degrees the mb } \\
& \\
& P M_{d}=1004+(\text { satefy mayan })
\end{aligned}
$$

$$
=100 y+7=57 \text { desreen }
$$

ess dueto ramps:

$$
\begin{aligned}
& e(s)=\left(\frac{1}{1+L}\right) \gamma(s) \\
& ; r(s)=1 / 8^{2} \\
& =\left(\frac{1}{1+L}\right) \frac{1}{8^{2}} \\
& \begin{array}{c}
e_{s s}=\lim _{s \rightarrow 0} s e(s)=\lim _{s \rightarrow 0} \frac{1}{s+s L(s)}=\frac{1}{\lim _{s \rightarrow s} s \in(s)} \\
k_{v}=\lim _{s \rightarrow 0} s L(s)
\end{array} \\
& =\lim _{s \rightarrow 0} s\left(G_{k} k\right)=\lim _{s \rightarrow 0} s\left(\frac{500}{s^{2}+6 s+5}\right)\left(k_{p}+\frac{k I}{3}\right) \\
& =\lim _{8 \rightarrow 0}\left(\frac{500}{8^{2}+65+5}\right)\left(8 k_{p}+k_{I}\right) \\
& =G(0) k_{I}=K_{x} \\
& \therefore \quad e_{\text {s }} \leqslant 0.1 \\
& \Rightarrow \frac{1}{k_{v}} \leqslant 0.1 \Rightarrow k_{x} \geqslant 10 \\
& \Rightarrow \quad u(0) k_{I} \geqslant 10 \\
& \Rightarrow \quad e_{I} \geqslant \frac{10}{c_{1}(0)} \\
& =\frac{10}{100}=0.1 \\
& k_{I} \geqslant 0.1
\end{aligned}
$$

In Sumanay the closed-loop Specs tanskate to
$\left.\begin{array}{l}\text { (1) } P M_{d}=57^{\circ} \\ \text { (2) } k: \geqslant 0.1\end{array}\right\}$ in the opeal loop
Step 1: Lek meet the PMg requirement.

$$
k=k_{p}+\frac{k_{I}}{S}=\frac{k_{p}}{s}\left(t+\frac{s}{k_{I} / k_{p}}\right)
$$

Find the fresuency $\omega_{\text {ged }}$ where the
phase is Such that $L 4\left(T 0_{3}\right.$ d $)+180$
Find waged where
(Bode of 4) $-\cdots \quad: \quad 57-180=-123^{\circ}$

at about $4.31 \mathrm{rad} / \mathrm{se}$

$$
\begin{gathered}
L 4(4.397) \simeq-119^{\circ} . \\
\text { World } \approx 4.39^{\circ} \mathrm{rad} / \mathrm{fce} .
\end{gathered}
$$

(1) Choose k_{p} to Shift. the gain crossover to $4.39 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
k_{p} h\left(\pi \omega_{g} d\right) \mid=1 \\
k_{p}=\frac{1}{\left(h\left(\pi w_{j d a}\right)\right.}=0.06
\end{array} .\right.
\end{aligned}
$$

(1)

$$
\begin{gathered}
\frac{K_{I}}{k_{p}}=\frac{\omega_{\text {ged }}}{\alpha}=\left(\frac{4.39}{\alpha}\right) ; \alpha=6 \\
k_{I}=\left(\frac{4.39}{6}\right) k_{p}=\left(\frac{4.39}{6}\right)(0.06) \\
k_{I} \approx 0.044 .
\end{gathered}
$$

Note that

$$
k_{I} \geqslant 0.1
$$

is bern compromised.

Note that $k_{r}=4.4$ instead of 10.
(1). Note that the $M_{p}=0.157$ that barely meets $M_{p} \leqslant 0.16$ requirement Thus, mako k_{I} logger will lead to Saonfricy Mp Specification

Proportinal-differential Controller: (PD)

Example: $\quad G(s)=\frac{200}{s^{2}+4 s+4}$
It is desired that
(a) $M_{p} \leq 16 \%$
(b) Wgad; the desired gain crossover frequergis $14 \mathrm{rad} / \mathrm{sec}$.
Solution: $\quad M_{p} \leq 16 \% \Rightarrow P M_{d} \approx S$ degreas

$$
\operatorname{loged}=14 \mathrm{rad} / \mathrm{sec} \text {. }
$$

(1) we want L (juged) $+180=57$ deroes

$$
\begin{aligned}
& K\left(J^{\circ} g_{c a}\right) G\left(T^{\prime} g_{c d}\right)+180=57 \text { degrees } \\
& \Rightarrow \quad L K(T) \operatorname{sed})+L 4(T 0 \operatorname{sed})+180=57 d x \\
& \Rightarrow \quad L K\left(J \omega_{g c a}\right) \cong 47 \text { degrees } \\
& k_{p}+k_{D}\left(i w_{s c a l}\right) \approx 47 \text { degenes. } \\
& \tan ^{-1}\left[\frac{k_{D} \omega_{\text {gcd }}}{k_{p}}\right] \cong 47 \text { degr } \\
& \Rightarrow \quad-\frac{k_{p}}{k_{p}}=\frac{\tan \left(\frac{47}{\omega g e d}\right.}{\omega_{0}}=0.077
\end{aligned}
$$

Also we need

$$
\begin{aligned}
& \left|K\left(\rho \omega_{s c d}\right) G\left(\rho \omega_{g e d}\right)\right|=1 \\
& \Rightarrow k_{p}=\frac{1}{1+\frac{k_{n}}{k_{p}}\left(\omega_{g c a}\right) G\left(\mu_{s(\alpha)} \mid\right.} 0.077 \\
& =0.682 \\
& \left.k_{D}=1 k_{n}\right)\left(k_{D}\right)=0.522 .
\end{aligned}
$$

$$
\begin{aligned}
k_{D} & =\left(\frac{k_{n}}{n_{p}}\right)\left(k_{p}\right)=0.522 . \\
k(s) & =0.682+0.5228
\end{aligned}
$$

Look at the weak 10 notes on the ECU 235 weblink.

Lag Controller:
General form of a lag controller

$$
\begin{aligned}
K(s) & =k \frac{T_{s}+1}{\beta T s+1} ; \beta>1 . \\
& =k\left\{\frac{\left[\frac{s}{1 / T}+1\right]}{\left(\frac{s}{1 / \beta T}+1\right)}\right\} \\
\beta>1 & \Rightarrow \frac{11}{\beta T}<\frac{1}{T}
\end{aligned}
$$

Phase of the lag design is always -re.
\therefore choose $1 / T$ to be much below waged.

Example: Let $G(s)=\frac{1}{s(s+1)(0.5 s+1)}$ design a lag controller batsty
(*) $k_{x} \geqslant 5$
(*) $P M \geqslant 40^{\circ}$
(-) $\quad G M \geqslant 10$.
Solution: stay'

$$
\begin{aligned}
& \lim _{s \rightarrow 0} s(L(s))\left[\frac{T_{8}+1}{\beta T s+1}\right] k=5 \\
& \Rightarrow \quad k=5
\end{aligned}
$$

Step 2: Consider the new plant to be

$$
G_{1}=k G(s)=5 G(s) .
$$

Find $\omega_{\text {ged }}$ such that

$$
\begin{aligned}
& \text { cd sauce that } \stackrel{\text { Safer avn. }}{\downarrow} . \\
& \begin{array}{ll}
h_{1}(\text { proa })
\end{array}+180=\left(40+10^{\circ}\right) \\
&=50^{\circ} \\
& \omega_{\text {ged }} \approx 0.5 \mathrm{rad} / \mathrm{s} .
\end{aligned}
$$

Step $3:$
choose $I / T \simeq \frac{\omega_{\text {oed }}}{10}=0.05$

$$
\Rightarrow 7 \approx 20 .
$$

Step: Close β to satisty $i=20$.

1

$$
\begin{aligned}
& \left\{\begin{array}{l}
\beta T 5+1 \quad 1 \\
h=5=5 \\
\beta=10
\end{array}\right. \\
& \beta=10 .
\end{aligned}
$$

