Fundamental Limitations.
Thursday, February 24, 2011
8:15 AM

S : Sensitivity transfer function $=\frac{1}{1+G K}$
T : Complimentary transfer function $=\frac{c k}{1+a k}$
First fundamental limitation:

$$
\begin{aligned}
& S+T=1 \\
& S(T \omega)+T(T \omega)=1 \quad \forall \omega \in R
\end{aligned}
$$

Preliminanes on Complex Analysis:
Definitions: Analytic functions, holomorphic functions
A function $f: D \rightarrow \$$ is Said to be analytic at sot t if $\left.\frac{d f}{d s}\right|_{s=s}$ exists.
It is said to be holmorphic if it is analytic in the entire domain D.
Definition: (Rectifiable Curve, simple curve, closed curve)
[is A rectifiable curve is there exists an interval
$[a, b] \subset R$ and function $\gamma:[a, b] \longrightarrow \Phi$
Such that $\Gamma=\{\gamma(x): x \in[a, b]\}$
I is a Simple Curve if ot does not intersect itself le.

$$
r(x)=r(y) \Rightarrow x=y
$$

I "is a closed Curve if $r(a)=\gamma(b)$ ie the "starting point" and the end point are the Same.
Example:
$T_{A B}$

$\gamma_{A C B}\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \phi^{A}$ defined by

$$
\underset{A \in B}{\gamma(\theta)}=a e^{J \theta}
$$

defines the Segment from A to B.

$$
\begin{gathered}
\gamma_{A B}:[-a, a] \longrightarrow \Varangle \\
r_{A B}(\omega)=J \omega
\end{gathered}
$$

Definition: Contour
A contour is a union of rectifiable curves T_{J} with the end point of T_{T} berg the starting point of T_{J+1}
Closed Contours and Simple contours are defined in an analogous manner
Definition: Positively onented Contour:

Definition: (Integral) A function f that is continuous on a domain S the integral along a rechfiable curve LCS is defined as

$$
\int_{\Gamma} f(s) d s=\int_{a}^{b} f(r(x)) \frac{d r}{d x} d x
$$

when $r:[a, b) \rightarrow \pm$ defies the rechfable curve $[$.
Intuition is define $s=\gamma$

$$
d s=\frac{d r}{d x} d x
$$

as 8 varies from the stat point of I to the end point of 1 x vanes from a to b.

$$
\int_{T} f(s) d s=\sum_{j=1}^{n} \int_{a_{j}}^{b_{T}} f\left(r_{T}(x)\right) \frac{d r_{T}}{d x}(x) d x
$$

Theorem: Maximum Modulus Principle:
If f is andghe in a domain Ω; and f is not a constant then $|F|$ does not attain its maximum value at ass interior point of Ω.
maximum value at an interior point of Ω.

A Simple croollary of this result is that F is analytic inside the Rte

$$
\begin{aligned}
\|F\|_{H_{\infty}}: & =\operatorname{Sup}_{\operatorname{Res} \geqslant 10}|F(s)| \\
& =\operatorname{Sup}_{\omega \in R}|F(\tau \omega)|
\end{aligned}
$$

Theorem: [Cauchy Theorem]:
Suppose f is analytic in a domain S that contains a closed contour I that is positively onented

$$
\int_{T} f(s) d s=0
$$

Further mane if $b_{0} \in S$

$$
\frac{1}{2 \pi J} \int_{T} \frac{f(s)}{\left(s-s_{0}\right)} d s=f(80)
$$

Weighted Cauchys Theorem:
Let F be analytic and of bounded magnitude on $\{s \in C \mid \operatorname{Re}(s) \geqslant 0\}$. Let $80=x+\pi y$ br $x, y \in R$ be fuck that $x>0$. Then

$$
F\left(s_{0}\right)=\frac{1}{\pi} \int_{-\infty}^{\infty} F(\pi) \frac{x}{x^{2}+(\omega-y)^{2}} d \omega .
$$

Proof: Lets consider the Nyquist Contour $D(r)$ with radius r that encloses bo.

$$
F\left(s_{0}\right)=\frac{1}{\alpha \pi J} \int_{D(r)} \frac{F(s)}{s-s_{0}} d s
$$

$-\overline{8}_{0}=-(x-s y)=-x+J y \in \operatorname{Lhp}$ and this point is not inside the Nygunst Contour

$$
\frac{1}{2} \pi T \quad \int_{D(r)} \frac{F(s)}{8+30} d s=0
$$

Lets consider, $1 . \ldots \ldots 1$ n

$$
\begin{aligned}
F\left(s_{0}\right)-0 & =\frac{1}{\alpha \pi T} \int_{D(r)}\left[\frac{F(s)}{\left(s-s_{0}\right)}-\frac{F(s)}{s+J_{0}}\right] d s \\
& =-\frac{1}{2 \pi} \int_{-\gamma}^{r} F(\delta \omega)\left[\frac{1}{J \omega-s_{0}}-\frac{1}{J \omega+\delta_{0}}\right] J d \omega .
\end{aligned}
$$

$I_{(}(\gamma)$

$$
0+\frac{1}{2 \pi r} \int_{-\pi / 2}^{\pi / 2} F\left(r e^{J \theta}\right)\left[\frac{1}{r e^{J \theta}-s_{0}}-\frac{1}{r e^{J \partial}}+\bar{\beta}_{0} j r J e^{J \theta} d \theta\right.
$$

$I_{2}(t)$

$$
\left.\left|I_{2}(r)\right|=\left|\frac{1}{\alpha} \pi \quad \int_{\substack{\pi / 2 \\ \pi / 2}}^{\pi / 2} F\left(r e^{J \theta}\right) \frac{1}{\gamma} \frac{2 x e^{J \theta}}{\left(e^{\pi / \theta}-r^{-1}(0)\right)} d \theta\right|\left(e^{T \theta}+r^{-1} \frac{1}{80}\right) \right\rvert\,
$$

$$
\left.\left.\therefore \quad \leq \frac{1}{2} \pi r \int_{-\pi / 2}^{\pi / 2}\left|F\left(r e^{J \theta}\right)\right| \right\rvert\, \frac{2 x}{e^{\pi \theta}-r^{-1}(0)}\right)\left(e^{J \theta}+r^{r} \delta_{0}\right.
$$

$$
\left.\lim _{r \rightarrow \infty} \mid I_{2}(r)\right) \rightarrow 0 \quad \underbrace{\frac{1}{2} T \in}_{-\pi / 2}\|F\| k_{\infty} \frac{|2 x|}{\mid\left(e^{\pi \theta}-r^{-1}(0)| | e^{\pi \theta}+r^{-1} \delta_{0} \mid\right.} d \theta \text { as focal } r \geqslant M
$$

$$
I_{1}(\gamma)=-\frac{1}{2 \pi J} \int_{-\gamma}^{r} F(J \omega)\left(\frac{1}{J \omega-s_{0}}-\frac{1}{J \omega+50}\right) j d \nu
$$

$$
=-\frac{1}{2 \pi} \int_{-r}^{r} F(\pi \omega)\left[\frac{\pi \varphi+\pi}{(\pi 0-80)(\pi \omega+\sqrt{0})}\right] d \omega
$$

$$
=-\frac{1}{2} \pi \int_{-1}^{2} F(\pi \omega)\left[\frac{2 x}{(J \omega-x-\pi y)(\pi \omega+x-\pi y)}\right] d \omega
$$

$$
=-\frac{1}{\pi} \int_{-\gamma}^{2} F(\Omega) \frac{x}{(J(\omega-y))^{2}-x^{2}} d \omega
$$

$$
=\frac{1}{\pi} \int_{-1}^{2} F(s \omega) \frac{x}{x^{2}+(\omega y)^{2}} d \omega
$$

$$
\begin{aligned}
& I_{2}() \\
& I_{2}(r)=\frac{1}{\alpha \pi \tau} \int_{-\pi / 2}^{\pi / 2} F\left(r e^{j \theta}\right)\left[\frac{r e^{J^{\theta}}+\overline{\delta_{0}}-r e^{-\theta}+\delta_{0}}{\left(r e^{J \theta}-s_{0}\right)\left(r e^{\sigma \theta}+\bar{\delta}_{0}\right)}\right] r J \cdot e^{\bar{\theta}} d \theta \\
& =\frac{1}{2} \pi T \int_{-\pi / 2}^{\pi / 2} F\left(r e^{J \theta}\right)\left[\frac{2 x}{\left(r e^{J \theta}-s_{0}\right)\left(r e^{J \theta}+\delta_{0}\right)} J^{J \gamma} e^{j \theta} d \theta\right. \\
& =\frac{1}{\alpha} \pi \int_{-\pi / 2}^{\pi / 2} F\left(r e^{J \theta}\right) \frac{2 x}{\left(e^{J \theta}-r^{-1} s_{0}\right)\left(e^{J \theta}+\gamma^{-1} \delta_{0}\right)} \frac{\gamma e^{j \theta}}{r^{x}} d \theta
\end{aligned}
$$

$$
\begin{array}{lll}
r \rightarrow \infty \\
r \rightarrow\left(s_{0}\right) & & \frac{1}{\pi} \int_{-\infty}^{\infty} F(\gamma \omega) \frac{x}{x^{2}+(\omega-y)^{2}}
\end{array}
$$

QED
All-pass/Minimum Phase Factorization:
Every stable proper ratiance transfer function G admits a factorization of the form

$$
G=G_{z p} G_{m p}
$$

where Gap and limp are all pas and minimum phase transfer function.
[$\operatorname{Cap}_{\mathrm{ap}}(s)$ is Said to be all pass if $\left|C_{a p}(\Omega \omega)\right|=1$
Cemp(s) is fid to minimum phase if it has
no the 3 enos).
Prof: $G(s)=\frac{K\left(s-z_{1}\right)\left(s-z_{2}\right)\left(s-z_{3}\right) \cdots\left(s-z_{n}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{k}\right)}$

$$
\begin{aligned}
& \text { floc let } z_{1}, 3_{2} \ldots z_{m} \in \text { Rep }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{lup}=\prod_{i}^{m} \frac{s-z_{i}}{s+\overline{3_{l}}} ; \quad\left|\frac{j \omega-(\alpha+J \beta)}{J \omega+(\alpha-J \beta)}\right|=1 \\
& \therefore|\operatorname{liop}(\pi)|=1
\end{aligned}
$$

Lemma: Let $G(s)$ be a stable proper transfer function with a all-parn, minimum phase factorization

$$
C=\operatorname{Gap}^{G \text { Gimp . Let }} \delta_{0}=x+\pi y \text { with }
$$

$$
\left.\log \left|G_{m p}\left(8_{0}\right)\right|=\frac{1}{\pi} \int_{-\infty}^{\infty} \lg \right\rvert\, G_{(\Omega)} \frac{x}{x^{2}+(\omega-y)^{2}} d \omega
$$

Prof: $\quad F(s):=\log G_{m p}(s) ;$ This is an andlytie function in the RHPP

$$
\begin{aligned}
F(80) & =\frac{1}{\pi} \int_{-\infty}^{\infty} F(\omega) \frac{x}{x^{2}+(\omega-y)^{2}} d \omega . \\
\operatorname{Re} F((0)) & =\frac{1}{\pi} \int \operatorname{Re}(F(\omega)) \frac{x}{\left.x^{2}+\omega-4\right)^{2}} d \omega
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Re} F\left(\delta_{0}\right)=\frac{1}{\pi} \int_{-\infty}^{\infty} \operatorname{Re}(F(x)) \frac{x}{x^{2}+(w-y)^{2}} d \omega \\
& F=\lg G_{m p} \Rightarrow e^{F}=G_{m p} \\
& \Rightarrow \quad G_{m p}=e^{R_{c}(F)} e^{J I_{n g} F} \\
& \Delta \Rightarrow\left|G_{\text {mp }}\right|=e^{R_{e}(F)} \\
& \Rightarrow \lg |\operatorname{Gmp}|=\operatorname{Re}(F) \text {. } \\
& \left.|g| \operatorname{Gmp}_{\operatorname{mp}}\left(s_{0}\right)\left|=\frac{1}{\pi} \int_{-\infty}^{\infty} \lg \right| G_{\text {mp }}(5 \omega) \right\rvert\, \frac{x}{\left(x^{2}+(v-y)^{2}\right)} d \omega \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty} \lg [|\operatorname{Cimp}(\rho)| \backslash \operatorname{Cap}(\rho \omega) \mid]_{x^{2}+(\omega-)^{2}} \frac{x}{d} d v \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty} \lg |G(\infty)| \frac{x}{x^{2}+(\omega-y)^{2}} d \omega .
\end{aligned}
$$

Thesem:

$$
\begin{aligned}
& \underline{\int_{0:}^{\infty} \ln \mid S((i v) \mid d u}=\prod_{i=1}^{N p} \operatorname{Re}\left(P_{i}\right) \\
& \text { RHP poles of } \\
& L .
\end{aligned}
$$

