Lecture 9

\odot Sensitivity S
The specifications on the sensitivity transfer function can be imposed by the condition

$$
\left\|W_{p} S\right\|_{r_{s}} \leq 1 ; \text { where } \begin{aligned}
& W_{p} \text { is the } \\
& \text { performance weight }
\end{aligned}
$$

(1) Complimentary Sensitivity T

The specs on T can be imposed by
$\left\|W_{T} T\right\|_{H_{\infty}} \leqslant 1 ; W_{T}$ is the noise regechon
weight weight
(A) Weight to avoid actuator Saturation: $\left\|W_{u} K S\right\|_{H_{\infty}} \leq 1 ; W_{u}$ is the weight on $K S$.
Stapes.

$$
\frac{1}{w_{p}}=
$$

$\frac{1}{\omega_{\top}}=$
 $\frac{1}{\omega_{n}} \quad$ ミ

Hos problem solves the following problem:

$$
\left.\underbrace{\min _{\text {Stabilizing }}} \|\left|\begin{array}{l}
w_{S} S(K) \\
w_{T} T(K) \\
k_{1} . K C
\end{array}\right|_{K_{-}}=\gamma \quad \right\rvert\, \begin{aligned}
& \|f\|_{H_{0}} \\
& =\sup _{\omega \in R} \sigma(f(\pi w))
\end{aligned}
$$

K is such that problem
the feed back inter connection is

$$
\gamma<1 \Leftrightarrow\left\|W_{S} S\right\|_{H_{\alpha}}<1 ;\left\|W_{T} T\right\|<1
$$

$\|W u k s\|_{n_{\infty}}<1$
Linear fractional Transformations:

and $\left[\begin{array}{l}z \\ v\end{array}\right]=\left[\begin{array}{ll}p_{11} & p_{12} \\ p_{21} & p_{22}\end{array}\right]\left[\begin{array}{l}w \\ u\end{array}\right]-(1)$

$$
\begin{align*}
& u=K v \tag{2}\\
& z=P_{11} w+P_{12} u \\
& v=P_{21} w+P_{22} u \\
& u=K v \\
&=K\left[P_{21} w+P_{22} u\right] \\
&=K P_{21} w+K P_{22} u \\
& \Rightarrow\left(I-K P_{22}\right) u=K P_{21} \omega
\end{align*}
$$

$$
\begin{aligned}
& \quad u=\left(I-k P_{22}\right)^{-1} k P_{21} \omega \\
& z=P_{11} \omega+P_{12}\left(I-k P_{22}\right)^{-1} k P_{21} \omega \\
&=\underbrace{\left[P_{11}+P_{12}\left(I-k P_{22}\right)^{-1} k P_{21}\right]}_{l 1} \omega . \\
& F_{l}\left(P_{1} K\right)
\end{aligned}
$$

lower linear fractional transformation of P and K.

$$
y=d+G u
$$

Example:

Regulated Namable

- Suppose we want to regulate the error

$$
\begin{aligned}
& e=y-r \\
\therefore \quad z & =y-r
\end{aligned}
$$

Exogenous inputs: $\omega=\left[\begin{array}{l}\gamma \\ \hat{n} \\ \hat{d}\end{array}\right]$; all the external inputs to the feedbade intercom -nechon
Determine the generalized Plant, given that

$$
z=y-\gamma ; \text { and } w=\left[\begin{array}{c}
\gamma \\
n \\
d
\end{array}\right] \text { find the }
$$

matrix P such that

$$
\left[\begin{array}{c}
z \\
1 .
\end{array}\right]=\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{1} & p_{20}
\end{array}\right]\left[\begin{array}{l}
1-1 \\
1 .
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
z \\
v
\end{array}\right]=\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right]\left[\begin{array}{l}
w \\
u
\end{array}\right]} \\
& \left.=\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]\left[\begin{array}{l}
r \\
n \\
d \\
u
\end{array}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& V=r-y_{m}=r-(y+n) \\
& =r-y-n=r=G u-d-n
\end{aligned}
$$

$$
\min _{K} S_{\text {Stabilizing }}
$$

$$
\left\|\bar{r}_{l}\left(P, k^{\prime}\right)\right\|_{H_{\infty}}
$$

Closed loop transfer function
from wo z
The generalized plant for the stacked H_{∞} problem:
For the stacked H_{∞} problem the closed-loop maps are $W_{p} s, W_{T} T$ and $W_{u} K S$.
Consider the following closed -loop System

- Let the exogenous input in be γ
. Let the regulated vanable $z=\left[\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right]$
Then the closed. loop map from w to z

$$
\omega \mapsto z=\left[\begin{array}{l}
w_{p} S \\
w_{T} T \\
w_{n} K
\end{array}\right]
$$

Now the generalized plant

$$
\begin{aligned}
& \text { the generalized plant } \\
& r \xrightarrow[\omega]{t} \rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& z_{3}=W_{u} u=\left[\begin{array}{cc}
0 & W_{u}
\end{array}\right]\left[\begin{array}{l}
\omega \\
u
\end{array}\right] \\
& V=\gamma-y=r-G_{u}=[I-G]\left[\begin{array}{l}
\omega \\
u
\end{array}\right] \\
& {\left[\begin{array}{l}
z \\
V
\end{array}\right]=\left[\begin{array}{cc}
\omega_{p}-\omega_{p} G \\
0 & \omega_{T G} \\
0 & W_{u}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
I & G
\end{array}\right]}
\end{aligned}
$$

generalized plant for the stacked H_{∞} forblem P

$$
F_{l}(P, K)=\left[\begin{array}{ll}
W_{P} s \\
W_{T} & T \\
W_{4} & K S
\end{array}\right]
$$

Another intespetatern of the thar norm of an input output System Φ
ϕ is a trunsferfuncter that is stable.

$$
\max _{\omega \neq 0} \frac{\|\phi \omega\|_{2}^{2}}{\|\omega\|_{2}}=\|\phi\|_{H_{\infty}}
$$

(a) Let the impuise response of ϕ be h.
-the output of the bysterm ϕ due to an input wo u is Qu in the laplace domain $(h * \bar{\omega})(t)$ in the time dome

$$
\begin{aligned}
& \phi=-\mathcal{L} \\
& \omega=\mathcal{L} \bar{\omega} \\
& \phi \omega=\mathcal{L} / * \bar{\omega} \\
& \operatorname{miax}_{\| \bar{\omega} H_{2} \neq 0} \frac{\|(h * \bar{\omega})\|_{2}}{\|\bar{\omega}\|_{2}} \nmid(h * \bar{\omega})(H) \\
& \bar{\omega} \longrightarrow
\end{aligned}
$$

\therefore The H_{∞} norm of a System captures The ereargy implication of the system. p " H_{∞} inorm of a System is the induced l_{2} norm".
 P_{22} is the actual plant $-G$.

$$
\begin{aligned}
& \min _{K \text { Stabilizing }}\left\|F_{l}(P, K)\right\| H_{\infty} \\
& \left\langle P_{11}+P_{12}\left(I-K P_{22}\right)^{-1} K P_{2 \sharp}\right]
\end{aligned}
$$

$$
=(P K)
$$

$\underline{\text { mintabilning }} \| P_{11}+P_{12}\left(\underline{\left(I-K P_{22}\right)^{-1}} K P_{21} \|_{H_{0}}\right.$
(a) Suppose $P_{22} \tau-G$ is stable.

SISO, G, and SISO, K

$$
\begin{equation*}
K\left(I-K P_{22}\right)^{-1} \tag{22}
\end{equation*}
$$

Suppose we d eq re $K\left(I-K P_{22}\right)^{-1}=: Q$

- If K is stabilizing controller the Q is stable
(If G is stable) then k is a stabilising controller if and only if $Q=K(I+K G)^{-1}$ is stable.
$G=\frac{n_{u}}{d_{u}} ; \quad k=\frac{n_{k}}{d_{l c}}$ be coprnme

$$
\begin{aligned}
Q= & \frac{n_{k}}{d_{k}} \frac{1}{1+n_{\frac{n}{4}}^{d_{n} d_{k}}}
\end{aligned}=\frac{n_{k} d u d k}{d_{k}\left(d_{n} d_{k}+n_{u n} n_{i c}\right)}
$$

Q is stable and h is stable then interconnection can be unstable only if The unstable root of (dud $\mathrm{H}_{\mathrm{n}} \mathrm{n}_{1}$) is cancelled by the unstable root of n_{k}

$$
\begin{aligned}
\therefore n_{n}\left(s_{0}\right)=0 \Rightarrow & \left(d_{n} d_{1}\right)(80)=0 \\
& \Rightarrow d_{n}(b)=0
\end{aligned}
$$

$$
\begin{array}{ll}
& \Rightarrow n_{k}(s)=d_{-}(s)=0 \Rightarrow \\
\min _{k \text { stabil/s, }} & \left\|P_{11}+P_{12}\left(I-G_{22} \mid c\right)^{-1} R \cdot P_{21}\right\|_{r_{0}} \\
\min _{\text {Qstable }} & \left\|P_{11}+P_{12} Q P_{21}\right\|_{r_{\infty}}
\end{array}
$$

