Lecture 9 Thursday, February 17, 2011 8:10 AM Thursday, February 17, 2011 Thursday, February 17, 2011 Thursday, February 17, 2011 Thursday, February 17, 2011

 Sensitivity S The Specifications on the Sensitivity transfer function can be imposed by the condition ||Wp S|| ves ≤ 1 ; where Wp is the performance weight
 Complimentary Sensitivity T The Specs on T can be imposed by ||WT T || Hos ≤ 1 ; Wr is the noice rejection weight
 Meight to avoid actuator Saturation : ||Wu KS ||Hos ≤ 1 ; Wu is the weight on KS.

lecture9 Page 1

$$=) \qquad u = (I - KB_2)^{-1} KP_2 w_{-}$$

$$= P_{11} w + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{11} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{12} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{12} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{12} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{12} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{12} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{12} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{12} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{12} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{12} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{12} + P_{12} (I - KP_2)^{-1} KP_2 w_{-}$$

$$= IP_{12} + P_{12} (I - KP_2)^{-1} KP$$

Example:

lecture9 Page 3

The generalized flant for the stacked Hos problem:
The generalized flant for the stacked Hos problem:
For the stacked Hos problem the cluded-loop
rmps are HPS, MT T and MUKS.
Consider the following claud-loop lipton

$$Z_{1}$$
 $1^{Z_{3}}$ $1^{Z_{2}}$
 $T + 0 + K + 0$ G $+ 0$ by $T = 0$
 \cdot Let the exogenous input is be r
 \cdot Let the regulated variable $Z = \begin{bmatrix} Z_{1} \\ Z_{2} \\ Z_{3} \end{bmatrix}$
Then the closed-loop map from ω to Z
 $\omega + 0 \ge 1$ $\omega + 0$
 $W = T = \begin{bmatrix} Wp S \\ WT T \\ Wu KS \end{bmatrix}$
Now the generalized plant
 $T = \omega_{p}(T - Gu)$
 $= w_{pT} - w_{pLu} = \begin{bmatrix} Wp - WpS \\ W \\ Z_{2} \end{bmatrix}$
 $Z_{2} = W_{1} = W_{1} G = \begin{bmatrix} 0 \\ W_{1} \end{bmatrix} \begin{bmatrix} T \\ U \\ U \\ Z_{2} \end{bmatrix}$

-

$$2s = W_{u} u = [O \quad W_{u}] \begin{bmatrix} w \\ u \end{bmatrix}$$

$$V = T \cdot y = T - Gu = [I - G_{1}] \begin{bmatrix} w \\ u \end{bmatrix}$$

$$\begin{bmatrix} z \\ v \end{bmatrix} = \begin{bmatrix} w p - w p G \\ 0 & w T G \\ 0 & w T G \end{bmatrix}$$

$$\begin{bmatrix} w \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} z \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} w \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} w \\ 2 \end{bmatrix}$$

min

$$K_{S}$$
 M_{1} M_{1} M_{1} M_{1} M_{12} M