Robust Control: HW 9

Problem 1:

- 1. Prove that $\underline{\sigma} = \min_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2}$.
- 2. Prove that $\bar{\sigma}(A^{-1}) = \frac{1}{\underline{\sigma}(A)}$.
- 3. Give an example of a 2×2 matrix $A(\epsilon)$ that has stable eigenvalues that are constant independent of ϵ but $\bar{\sigma}(A(\epsilon)) \to \infty$ with $\epsilon \to \infty$.
- 4. Construct matrices $A(\epsilon)$, B, C, D (Note that B, C and D have to be constant matrices) such that if $G(s) = \begin{bmatrix} A(\epsilon) & B \\ \hline C & D \end{bmatrix}$ then $\|G(s)\|_{\mathcal{H}_{\infty}} \to \infty$ with $\epsilon \to \infty$ but the poles of G are independent of ϵ . Interpret this result.

Problem 2: Consider a spring-mass damper system whose dynamics is given by

$$\ddot{p} + \frac{c}{m}\dot{p} + \frac{k}{m}p = \frac{1}{m}u$$

where u is the control input. Assume that the displacement p is measured. Suppose that the mass m is within 1% of a nominal value \bar{m} , the stiffness k is within 1% of a nominal value \bar{k} , and the damping c is within 1% of a nominal value \bar{c} . Also assume that there is output multiplicative uncertainty of the form $(1 + W_m(s)\Delta_m)$ where $W_m(s)$ is stable and $\Delta(s)$ is stable with $\|\Delta\|_{\infty} \leq 1$. Noise n effects the measurement p. The reference trajectories to be tracked is captured by a stable prefilter W_r . The regulated variables are the error in tracking r - p, the control input u and the position p.

- 1. Cast the problem into a $G-K-\Delta$ framework with the G identified, the structure of Δ specified, the exogenous input vector and the regulated variable identified.
- 2. State the robust stability problem in terms of structured singular value.
- 3. State the robust performance problem in terms of structured singular value.

Problem 3: Consider a unity negative feedback system with $K(s) = \frac{1}{s}$ and a nominal plant model $\frac{s+1}{s^2+0.2s+5}$. Construct the smallest destabilizing $\Delta \in \mathcal{RH}_{\infty}$ in the sense of $\|\Delta\|_{\infty}$ for the following cases:

- 1. $P = P + \Delta$.
- 2. $P = P_0(1 + W\Delta)$ where $W(s) = \frac{0.2(s+10)}{s+50}$.
- 3. $P = \frac{N + \Delta_n}{M + \Delta_m}$, $N = \frac{2(s+1)}{(s+2)^2}$, $M = \frac{s^2 + 0.2s + 5}{(s+2)^2}$ and $\Delta = [\Delta_n \ \Delta_m]$.

Problem 4: (Unstructured Perturbations)

1. (Additive Uncertainty) Let $\Pi = \{P+W_1 \Delta W_2 : \Delta \text{ is a stable transfer matrix}\}$. Suppose W_1 and W_2 are stable transfer matrices. Suppose K stabilizes P in a negative feedback interconnection. Show that the negative feedback interconnection of K and any plant in Π with $\|\Delta\|_{\infty} < 1$ is internally stable if and only if

$$||W_2 K S_o W_1||_{\infty} \le 1$$

where $S_o := (I + PK)^{-1}$.

2. (Multiplicative Uncertainty) Let $\Pi = \{(I+W_1\Delta W_2)P : \Delta \text{ is a stable transfer matrix}\}$. Suppose W_1 and W_2 are stable transfer matrices. Suppose K stabilizes P in a negative feedback interconnection. Show that the negative feedback interconnection of K and any plant in Π with $\|\Delta\|_{\infty} < 1$ is internally stable if and only if

$$\|W_2 T_o W_1\|_{\infty} \le 1$$

where $T_o := I - S_o$.

3. Let $P = (I + \Delta W)P_0$ where Δ is stable with $\|\Delta\|_{\infty} < 1$. Also P and P_0 have the same number of unstable poles. Show that K robustly stabilizes P if and only if K stabilizes P_0 and

$$||WP_0K(I+P_0K)^{-1}||_{\infty} \le 1.$$

Hint: Use the small gain theorem for unstructured uncertainty

4. Let

$$P_0 = \left(\begin{array}{cc} \frac{1}{s+1} & \frac{2}{s+3} \\ \frac{1}{s+1} & \frac{1}{s+1} \end{array}\right).$$

- (a) Suppose $P = P_0 + \Delta$ with Δ stable and $\|\Delta\|_{\infty} \leq \gamma$. Determine the smallest γ for robust stability.
- (b) Let $\Delta = diag(k_1, k_2)$. Determine the stability region.

Problem 5: Consider the feedback system shown in Figure 1 where

Figure 1:

$$P = P_0(1 + W_1\Delta_1) + W_2\Delta_2, \ \|\Delta_i\|_{\infty} < 1, \ i = 1, 2.$$

Suppose W_1 and W_2 are stable and P and P_0 have the same number if rhp poles.

1. Show that the interconnection is robustly stable if and only if K stabilizes P_0 and

$$|| |W_1T| + |W_2KS| ||_{\infty} \le 1$$

where

$$S = \frac{1}{1 + P_0 K}$$
 and $T = \frac{P_0 K}{1 + P_0 K}$

2. Show that the feedback system achieves robust performance (that is $||T_{zd}||_{\infty} \leq 1$) if and only if K stabilizes P_0 and

$$|| |W_3S| + |W_1T| + |W_2KS| ||_{\infty} \le 1$$