
Robust Control: HW 9

Problem 1:

1. Prove that σ = min
x 6=0

‖Ax‖2
‖x‖2

.

2. Prove that σ̄(A−1) = 1
σ(A) .

3. Give an example of a 2 × 2 matrix A(ε) that has stable eigenvalues
that are constant independent of ε but σ̄(A(ε))→∞ with ε→∞.

4. Construct matrices A(ε), B, C, D (Note that B, C and D have

to be constant matrices) such that if G(s) =

[
A(ε) B

C D

]
then

‖G(s)‖H∞ → ∞ with ε → ∞but the poles of G are independent of ε.
Interpret this result.

Problem 2: Consider a spring-mass damper system whose dynamics is
given by

p̈+
c

m
ṗ+

k

m
p =

1
m
u

where u is the control input. Assume that the displacement p is measured.
Suppose that the mass m is within 1% of a nominal value m̄, the stiffness
k is within 1% of a nominal value k̄, and the damping c is within 1% of a
nominal value c̄. Also assume that there is output multiplicative uncertainty
of the form (1 +Wm(s)∆m) where Wm(s) is stable and ∆(s) is stable with
‖∆‖∞ ≤ 1. Noise n effects the measurement p. The reference trajectories to
be tracked is captured by a stable prefilter Wr. The regulated variables are
the error in tracking r − p, the control input u and the position p.

1. Cast the problem into a G−K−∆ framework with the G identified, the
structure of ∆ specified, the exogenous input vector and the regulated
variable identified.

2. State the robust stability problem in terms of structured singular
value.

3. State the robust performance problem in terms of structured singular
value.
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Problem 3: Consider a unity negative feedback system with K(s) = 1
s

and a nominal plant model s+1
s2+0.2s+5

. Construct the smallest destabilizing
∆ ∈ RH∞ in the sense of ‖∆‖∞ for the following cases:

1. P = P + ∆.

2. P = P0(1 +W∆) where W (s) = 0.2(s+10)
s+50 .

3. P = N+∆n
M+∆m

, N = 2(s+1)
(s+2)2

, M = s2+0.2s+5
(s+2)2

and ∆ = [∆n ∆m].

Problem 4: (Unstructured Perturbations)

1. ( Additive Uncertainty) Let Π = {P+W1∆W2 : ∆ is a stable transfer matrix}.
Suppose W1 and W2 are stable transfer matrices. Suppose K stabi-
lizes P in a negative feedback interconnection. Show that the negative
feedback interconnection of K and any plant in Π with ‖∆‖∞ < 1 is
internally stable if and only if

‖W2KSoW1‖∞ ≤ 1

where So := (I + PK)−1.

2. ( Multiplicative Uncertainty) Let Π = {(I+W1∆W2)P : ∆ is a stable transfer matrix}.
Suppose W1 and W2 are stable transfer matrices. Suppose K stabi-
lizes P in a negative feedback interconnection. Show that the negative
feedback interconnection of K and any plant in Π with ‖∆‖∞ < 1 is
internally stable if and only if

‖W2ToW1‖∞ ≤ 1

where To := I − So.

3. Let P = (I + ∆W )P0 where ∆ is stable with ‖∆‖∞ < 1. Also P and
P0 have the same number of unstable poles. Show that K robustly
stabilizes P if and only if K stabilizes P0 and

‖WP0K(I + P0K)−1‖∞ ≤ 1.

Hint: Use the small gain theorem for unstructured uncertainty
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4. Let

P0 =

(
1
s+1

2
s+3

1
s+1

1
s+1

)
.

(a) Suppose P = P0 + ∆ with ∆ stable and ‖∆‖∞ ≤ γ. Determine
the smallest γ for robust stability.

(b) Let ∆ = diag(k1, k2). Determine the stability region.

Problem 5: Consider the feedback system shown in Figure 1 where

Figure 1:

P = P0(1 +W1∆1) +W2∆2, ‖∆i‖∞ < 1, i = 1, 2.

Suppose W1 and W2 are stable and P and P0 have the same number if rhp
poles.

1. Show that the interconnection is robustly stable if and only if K sta-
bilizes P0 and

‖ |W1T |+ |W2KS| ‖∞ ≤ 1

where
S =

1
1 + P0K

and T =
P0K

1 + P0K

2. Show that the feedback system achieves robust performance (that is
‖Tzd‖∞ ≤ 1) if and only if K stabilizes P0 and

‖ |W3S|+ |W1T |+ |W2KS| ‖∞ ≤ 1
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