Robust Control: HW 7 and solutions

Problem 1: Find the poles and zeros of the following transfer matrix

$$
\left[\begin{array}{lll}
\frac{s}{s+1} & \frac{1}{(s+1)(s+2)} & \frac{1}{s+3} \\
\frac{-1}{s+1} & \frac{1}{(s+1)(s+2)} & \frac{1}{s}
\end{array}\right]
$$

Solution: First we will describe how to obtain the Smith-McMillan form easily. Given a proper rational transfer matrix $G(s)$ with the $(i j)^{t h}$ element being $G_{i j}$

1. first write

$$
G(s)=\frac{1}{d(s)} P(s)
$$

where $d(s)$ be the least common multiple of all the denominators of $G_{i j}(s)$.

For our example the least common multiple of the denominators is

$$
d(s)=s(s+1)(s+2)(s+3)
$$

and thus $P(s)$ is given by

$$
P(s)=\left(\begin{array}{lll}
s^{2}(s+2)(s+3) & s(s+3) & s(s+1)(s+2) \\
-s(s+2)(s+3) & s(s+3) & (s+1)(s+2)(s+3)
\end{array}\right)
$$

2. Determine $\xi_{i}(s)$ the monic greatest common divisor of all the $i \times i$ minors of $P(s)$. Let $\xi_{0}(s)=1$.
Note that for our example the 1×1 minors of $P(s)$ are all the individual elements of $P(s)$ given by $s^{2}(s+2)(s+3), s(s+3), s(s+1)(s+2),-s(s+$ $2)(s+3), s(s+3),(s+1)(s+2)(s+3)$. Thus

$$
\begin{aligned}
\xi_{1}(s) & =g c d\left\{s^{2}(s+2)(s+3), s(s+3), s(s+1)(s+2),-s(s+2)(s+3),(s+1)(s+2)(s+3)\right\} \\
& =1
\end{aligned}
$$

The 2×2 minors are given by

$$
\begin{aligned}
\xi_{2}(s) & =g c d\left\{s^{2}(s+3)^{2}(s+2)(s+1), s^{2}(s+1)(s+2)^{2}(s+3)(s+4), 3 s(s+1)(s+2)(s+3)\right. \\
& =s(s+1)(s+2)(s+3)
\end{aligned}
$$

3. Determine

$$
\bar{\epsilon}_{i}(s)=\frac{\xi_{i}(s)}{\xi_{i-1}(s)}
$$

For the example

$$
\begin{aligned}
& \xi_{1}(s)=1 \\
& \xi_{2}(s)=s(s+1)(s+2)(s+3)
\end{aligned}
$$

The Smith form is given by

$$
\Sigma=\left(\begin{array}{cccccc}
\frac{\epsilon_{1}}{\psi_{1}} & & & 0 & \ldots & 0 \\
& \ddots & & \vdots & \ddots & \vdots \\
& & \frac{\epsilon_{r}}{\psi_{r}} & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & \ldots & 0
\end{array}\right)
$$

Thus

$$
G(s)=U \Sigma V
$$

where $\frac{\epsilon_{i}}{\psi_{i}}$ is the coprime representation of $\frac{\bar{\epsilon}_{i}}{d(s)}$.
For our example

$$
\begin{aligned}
& \frac{\epsilon_{1}}{\psi_{1}}=\frac{1}{s(s+1)(s+2)(s+3)} \\
& \frac{\epsilon_{2}}{\psi_{2}}=\frac{s(s+1)(s+2)(s+3)}{s(s+1)(s+2)(s+3)}=1
\end{aligned}
$$

Thus the poles polynomial is given by $\psi_{1}(s) \psi_{2}(s)=s(s+1)(s+2)(s+3)$ and thus the poles are at $s=0,-1,-2,-3$ and the zeros polynomial is $\epsilon_{1}(s) \epsilon_{2}(s)=1$. Thus there are no zeros.

Problem 2: Prove that Suppose G_{1} and G_{2} have a state space realizations

Figure 1:
$\left[\begin{array}{c|c}A_{1} & B_{1} \\ \hline C_{1} & D_{1}\end{array}\right]$ and $\left[\begin{array}{c|c}A_{2} & B_{2} \\ \hline C_{2} & D_{2}\end{array}\right]$ respectively. Then

$$
G_{1} G_{2}=\left[\begin{array}{ll|l}
A_{1} & B_{1} C_{2} & B_{1} D_{2} \\
0 & A_{2} & B_{2} \\
\hline C_{1} & D_{1} C_{2} & D_{1} D_{2}
\end{array}\right]=\left[\begin{array}{ll|l}
A_{2} & 0 & B_{2} \\
B_{1} C_{2} & A_{1} & B_{1} D_{2} \\
\hline D_{1} C_{2} & C_{1} & D_{1} D_{2}
\end{array}\right] .
$$

Solution: Refer to Figure 1. Let $y=G_{1} G_{2} u$. Let $G_{2} u=y_{2}$ then using the state space representation of G_{2} and G_{1} we have

$$
\begin{aligned}
\dot{x}_{2} & =A_{2} x_{2}+B_{2} u \\
y_{2} & =C_{2} x_{2}+D_{2} u \\
\dot{x}_{1} & =A_{1} x_{1}+B_{1} y_{2}=A_{1} x_{1}+B_{1} C_{2} x_{2}+B_{1} D_{2} u=A_{1} x_{1}+B_{1} C_{2} x_{2}+B_{1} D_{2} u \\
y & =C_{1} x_{1}+D_{1} y_{2}=C_{1} x_{1}+D_{1} C_{2} x_{2}+D_{1} D_{2} u
\end{aligned}
$$

Thus with $x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$ we have

$$
\dot{x}=\left(\begin{array}{ll}
A_{1} & B_{1} C_{2} \\
0 & A_{2}
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{B_{1} D_{2}}{B_{2}} u
$$

and

$$
y=\left[\begin{array}{ll}
C_{1} & D_{1} C_{2}
\end{array}\right] x+D_{1} D_{2} u
$$

The other realization is obtained by taking $x=\left[\begin{array}{ll}x_{2} & x_{1}\end{array}\right]^{T}$.

$$
G_{1}+G_{2}=\left[\begin{array}{cc|c}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
\hline C_{1} & C_{2} & D_{1}+D_{2}
\end{array}\right]
$$

Solution: Refer to Figure 1(b). Let $y=G_{1} G_{2} u$. Let $G_{2} u=y_{2}, G_{1} u=$ y_{1} and $y=y_{1}+y_{2}$ then using the state space representation of G_{2} and G_{1} we have

$$
\begin{aligned}
\dot{x}_{2} & =A_{2} x_{2}+B_{2} u \\
y_{2} & =C_{2} x_{2}+D_{2} u \\
\dot{x}_{1} & =A_{1} x_{1}+B_{1} u \\
y & =y_{1}+y_{2}=C_{1} x_{1}+C_{2} x_{2}+\left(D_{1}+D_{2}\right) u .
\end{aligned}
$$

Thus with $x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$ we have

$$
\dot{x}=\left(\begin{array}{ll}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{B_{1}}{B_{2}} u
$$

and

$$
y=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right] x+\left(D_{1}+D_{2}\right) u
$$

- Suppose $G(s)=\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$ is square and D is invertible then

$$
G^{-1}=\left[\begin{array}{c|c}
A-B D^{-1} C & B D^{-1} \\
\hline-D^{-1} C & D^{-1}
\end{array}\right] .
$$

Solution: Let u be the input to G and y be its output. Then G^{-1} will map y (the input to G^{-1}) to u. G is described by

$$
\begin{array}{ll}
\dot{x} & =A x+B u \\
y= & =C x+D u \\
u & =-D^{-1} C x+D^{-1} y \\
\dot{x} & =A x+B\left(D^{-1} y-D^{-1} C x\right)=\left(A-B D^{-1} C\right) x+B D^{-1} y
\end{array}
$$

Problem 3: Prove that

$$
\left(\begin{array}{ll}
I & -K \\
-G_{22} & I
\end{array}\right)^{-1}=\underbrace{\left(\begin{array}{ll}
\left(I-K G_{22}\right)^{-1} & \left(I-K G_{22}\right)^{-1} K \\
\left(I-G_{22} K\right)^{-1} G_{22} & \left(I-G_{22} K\right)^{-1}
\end{array}\right)}_{H\left(G_{22}, K\right)} .
$$

Figure 2:
Solution: Note that

$$
\begin{aligned}
& \left(\begin{array}{ll}
I & -K \\
-G_{22} & I
\end{array}\right)\left(\begin{array}{ll}
\left(I-K G_{22}\right)^{-1} & \left(I-K G_{22}\right)^{-1} K \\
\left(I-G_{22} K\right)^{-1} G_{22} & \left(I-G_{22} K\right)^{-1}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\left(I-K G_{22}\right)^{-1}-K\left(I-G_{22} K\right)^{-1} G_{22} & \left(I-K G_{22}\right)^{-1} K-K\left(I-G_{22} K\right)^{-1} \\
-G_{22}\left(I-K G_{22}\right)^{-1}+\left(I-G_{22} K\right)^{-1} G_{22} & -G_{22}\left(I-K G_{22}\right)^{-1} K+\left(I-G_{22} K\right)^{-1}
\end{array}\right)
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \left(I-K G_{22}\right)^{-1} K-K\left(I-G_{22} K\right)^{-1} \\
& =\left(I-K G_{22}\right)^{-1}\left[K\left(I-G_{22} K\right)-\left(I-K G_{22}\right) K\right]\left(I-G_{22} K\right)^{-1} \\
& =\left(I-K G_{22}\right)^{-1}\left[K-K G_{22} K-K+K G_{22} K\right]\left(I-G_{22} K\right)^{-1}=0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left(I-K G_{22}\right)^{-1} K= & K\left(I-G_{22} K\right)^{-1} \\
\left(I-K G_{22}\right)^{-1}-K\left(I-G_{22} K\right)^{-1} G_{22} & =\left(I-K G_{22}\right)^{-1}-\left(I-K G_{22}\right)^{-1} K G_{22} \\
& =\left(I-K G_{22}\right)^{-1}\left(I-K G_{22}\right)=I
\end{aligned}
$$

Switching the roles of G_{22} and K one can prove that

$$
-G_{22}\left(I-K G_{22}\right)^{-1}+\left(I-G_{22} K\right)^{-1} G_{22}=0, \quad-G_{22}\left(I-K G_{22}\right)^{-1} K+\left(I-G_{22} K\right)^{-1}=I
$$

Problem 4: Consider Figure 2. Suppose G_{22} and K have minimal state space realizations $\left[\begin{array}{c|c}A & B_{2} \\ \hline C_{2} & D_{22}\end{array}\right]$ and $\left[\begin{array}{c|c}A_{K} & B_{K} \\ \hline C_{K} & D_{K}\end{array}\right]$. Let

Thus

$$
T^{-1}=\left[\begin{array}{c|c}
A_{1}+B D^{-1} C & B D^{-1} \\
\hline D^{-1} C & D^{-1}
\end{array}\right]=:\left[\begin{array}{c|c}
\bar{A} & \bar{B} \\
\hline \bar{C} & \bar{D}
\end{array}\right]
$$

where

$$
\begin{aligned}
\bar{D}=D^{-1} & =\left(\begin{array}{ll}
I & -D_{K} \\
-D_{22} & I
\end{array}\right)^{-1} \\
& =\left(\begin{array}{ll}
I+\left(I-D_{22} D_{K}\right)^{-1} D_{22} & D_{K}\left(I-D_{22} D_{K}\right)^{-1} \\
\left(I-D_{22} D_{K}\right)^{-1} D_{22} & \left(I-D_{22} D_{K}\right)^{-1}
\end{array}\right) \\
& =\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
\left(I-D_{22} D_{K}\right)^{-1} D_{22} & D_{K}\left(I-D_{22} D_{K}\right)^{-1} \\
\left(I-D_{22} D_{K}\right)^{-1} D_{22} & \left(I-D_{22} D_{K}\right)^{-1}
\end{array}\right) \\
& =\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)+\binom{D_{K}}{I}\left(I-D_{22} D_{K}\right)^{-1}\left(\begin{array}{ll}
D_{22} & I
\end{array}\right)
\end{aligned}
$$

Thus

$$
\bar{A}=A_{1}+B D^{-1} C=\left(\begin{array}{ll}
A & B_{2} C_{K} \\
0 & A_{K}
\end{array}\right)+\binom{B_{2} D_{K}}{B_{K}}\left(I-D_{22} D_{K}\right)^{-1}\left(\begin{array}{ll}
C_{2} & D_{22} C_{K}
\end{array}\right)
$$

Prove that the following are equivalent

1. $(\bar{A}, \bar{B}, \bar{C}, \bar{D})$ is stabilizable and detectable.
2. $\left(A, B_{2}, C_{2}, D_{22}\right)$ and $\left(A_{K}, B_{K}, C_{K}, D_{K}\right)$ are stabilizable and detectable.

Solution: $(1) \Rightarrow(2)$
Suppose (\bar{A}, \bar{C}) is not detectable. Then there exists a $x=\left(x_{G} x_{K}\right)^{T} \neq$ 0 partitioned according to the dimensions of A and A_{K} such that $\bar{A} x=$
λx with $\bar{C} x=0$ with λ in rhp. This implies that $\left(A_{1}+B D^{-1} C\right) x=$ 0 and $D^{-1} C x=0$. Thus $A_{1} x=0$ with $C x=0$. Thus

$$
\left(\begin{array}{ll}
A & 0 \\
0 & A_{K}
\end{array}\right)\binom{x_{G}}{x_{k}}=\lambda\binom{x_{G}}{x_{k}}, \quad\left(\begin{array}{ll}
0 & -C_{K} \\
-C_{2} & 0
\end{array}\right)\binom{x_{G}}{x_{k}}=0 .
$$

Thus

$$
A x_{G}=\lambda x_{G}, \quad C_{2} x_{G}=0, \quad A_{K} x_{K}=\lambda x_{K}, C_{K} x_{K}=0
$$

As $x \neq 0$ atleast one of the vectors x_{G}, x_{K} have to be nonzero. WLOG assume that $x_{G} \neq 0$. Then it follows that $\left(A, C_{2}\right)$ is not detectable.

Suppose (\bar{A}, \bar{B}) is not stabilizable. Then there exists a $x^{*}=\left(x_{G}^{*} x_{K}^{*}\right) \neq 0$ such that $x^{*} \bar{A}=\lambda x^{*}, \quad x^{*} \bar{B}=0$ with λ in rhp. This implies that $x^{*}\left(A_{1}+\right.$ $\left.B D^{-1} C\right)=\lambda x^{*}$ and $x^{*} B D^{-1}=0$. Thus $x^{*} A_{1}=0$ and $x^{*} B=0$. Thus $\left(\begin{array}{ll}x_{G}^{*} & x_{K}^{*}\end{array}\right)\left(\begin{array}{ll}A & 0 \\ 0 & A_{K}\end{array}\right)=\lambda\left(\begin{array}{ll}x_{G}^{*} & x_{K}^{*}\end{array}\right),\left(\begin{array}{ll}x_{G}^{*} & x_{K}^{*}\end{array}\right)\left(\begin{array}{ll}B_{2} & 0 \\ 0 & B_{K}\end{array}\right)=0$.

Thus

$$
x_{G}^{*} A=\lambda x_{G}^{*}, x_{G}^{*} B_{2}=0, x_{K}^{*} A_{K}=\lambda x_{K}^{*}, \quad x_{K}^{*} B_{K}=0 .
$$

As $x^{*} \neq 0$ at least one of the pairs $\left(A, B_{2}\right),\left(A_{K}, B_{K}\right)$ is not stabilizable.
Thus we have shown (1) \Rightarrow (2). (2) \Rightarrow (1) follows by similar line of argument.

Problem 5: Consider Figure 2.

1. Show that a realization of $L=G_{22} K$ is given by $\left[\begin{array}{l|l}A_{L} & B_{L} \\ \hline C_{L} & D_{L}\end{array}\right]$ where

$$
A_{L}=\left(\begin{array}{ll}
A & B_{2} C_{K} \\
0 & A_{K}
\end{array}\right), B_{L}=\binom{B_{2} D_{K}}{B_{K}}, C_{L}=\left(\begin{array}{ll}
C_{2} & D_{22} C_{K}
\end{array}\right), D_{L}=D_{22} D_{K}
$$

2. Show that a realization of

$$
S=(I-L)^{-1}=\left[\begin{array}{c|c}
A_{S} & B_{S} \\
\hline C_{S} & D_{S}
\end{array}\right]
$$

where

$$
\begin{aligned}
A_{S} & =\bar{A}=\left(\begin{array}{ll}
A & B_{2} C_{K} \\
0 & A_{K}
\end{array}\right)+\binom{B_{2} D_{K}}{B_{K}}\left(I-D_{22} D_{K}\right)^{-1}\left(\begin{array}{ll}
C_{2} & D_{22} C_{K}
\end{array}\right) \\
B_{S} & =\binom{B_{2} D_{K}}{B_{K}}\left(I-D_{22} D_{K}\right)^{-1} \\
C_{S} & =\left(I-D_{22} D_{K}\right)^{-1}\left(\begin{array}{ll}
C_{2} & D_{22} C_{K}
\end{array}\right) \\
D_{S} & =\left(I-D_{22} D_{K}\right)^{-1}
\end{aligned}
$$

3. Prove that the following are equivalent:
(a) $\left(A_{S}, B_{S}, C_{S}, D_{S}\right)$ is stabilizable and detectable
(b) $\left(A_{L}, B_{L}, C_{L}, D_{L}\right)$ is stabilizable and detectable

Solutions: (1) from Problem 2.
(2) Note that $I-L=I-\left[C_{L}\left(s I-A_{L}\right)^{-1} B_{L}+D_{L}\right]=-C_{L}\left(s I-A_{L}\right)^{-1}+(I-$ $\left.D_{L}\right)$. Thus a realization of $I-L$ is given by $\left[\begin{array}{c|c}A_{L} & B_{L} \\ \hline-C_{L} & I-D_{L}\end{array}\right]$. Using Problem (2), a realization of $(I-L)^{-1}$ is given by $\left[\begin{array}{c|c}A_{L}+B_{L}\left(I-D_{L}\right)^{-1} C_{L} & B_{L}\left(I-D_{L}\right)^{-1} \\ \hline\left(I-D_{L}\right)^{-1} C_{L} & \left(I-D_{L}\right)^{-1}\end{array}\right]$. Substituting the realizations of L we obtain the result.
(3) Note that $A_{S}=A_{L}+B_{L}\left(I-D_{L}\right)^{-1} C_{L}, B_{S}=B_{L}\left(I-D_{L}\right)^{-1}, C_{S}=$ $\left(I-D_{L}\right)^{-1} C_{L}$ and $D_{S}=\left(I-D_{L}\right)^{-1}$. Thus it follows that

$$
\begin{array}{lll}
A_{S} x=0 \text { and } C_{S} x=0 & \Leftrightarrow & A_{L} x=0 \text { and } C_{L} x=0 \\
z^{*} A_{S}=0 \text { and } z^{*} B_{S}=0 & \Leftrightarrow & z^{*} A_{L}=0 \text { and } z^{*} B_{L}=0
\end{array}
$$

The result follows from the above observation.

Problem 6: Prove that

1. If K is stable then the closed loop interconnection is stable if and only if $G_{22}\left(I-K G_{22}\right)^{-1}$ is stable.
2. If G_{22} is stable then the closed loop interconnection is stable if and only if $K\left(I-G_{22} K\right)^{-1}$ is stable.

Solution: Note that the closed loop is internally stable if and only if

$$
\left(\begin{array}{ll}
\left(I-K G_{22}\right)^{-1} & \left(I-K G_{22}\right)^{-1} K \\
\left(I-G_{22} K\right)^{-1} G_{22} & \left(I-G_{22} K\right)^{-1}
\end{array}\right)
$$

is stable
(2) Note that in Problem (3) we have shown that

$$
\left(I-K G_{22}\right)^{-1} K=K\left(I-G_{22} K\right)^{-1}
$$

If the interconnection is stable then $\left(I-K G_{22}\right)^{-1} K$ is stable and therefore $K\left(I-G_{22} K\right)^{-1}$ is stable.

If G_{22} is stable and $K\left(I-G_{22} K\right)^{-1}$ are stable then $\left(I-K G_{22}\right)^{-1} K$ is stable. Note that $\left(I-K G_{22}\right)^{-1}=I+\left(I-K G_{22}\right)^{-1} K G_{22}$ which is also stable as G_{22} is stable. Note that

$$
\left(I-G_{22} K\right)^{-1} G_{22}=G_{22}\left(I-K G_{22}\right)^{-1}
$$

As both G_{22} and $\left(I-K G_{22}\right)^{-1}$ are both stable $\left(I-G_{22} K\right)^{-1} G_{22}$ is stable. Finally $\left(I-G_{22} K\right)^{-1}=I+G_{22}\left(I-K G_{22}\right)^{-1} K$ and therefore stable.
(1) can be proven by switching the roles of K and G_{22} in the proof above.

