Robust Control: HW 7 and solutions

Problem 1: Find the poles and zeros of the following transfer matrix

$$\left[\begin{array}{ccc} \frac{s}{s+1} & \frac{1}{(s+1)(s+2)} & \frac{1}{s+3} \\ \frac{-1}{s+1} & \frac{1}{(s+1)(s+2)} & \frac{1}{s} \end{array}\right]$$

Solution: First we will describe how to obtain the Smith-McMillan form easily. Given a proper rational transfer matrix G(s) with the $(ij)^{th}$ element being G_{ij}

1. first write

$$G(s) = \frac{1}{d(s)}P(s)$$

where d(s) be the least common multiple of all the denominators of $G_{ij}(s)$.

For our example the least common multiple of the denominators is

$$d(s) = s(s+1)(s+2)(s+3)$$

and thus P(s) is given by

$$P(s) = \begin{pmatrix} s^2(s+2)(s+3) & s(s+3) & s(s+1)(s+2) \\ -s(s+2)(s+3) & s(s+3) & (s+1)(s+2)(s+3) \end{pmatrix}.$$

2. Determine $\xi_i(s)$ the monic greatest common divisor of all the $i \times i$ minors of P(s). Let $\xi_0(s) = 1$.

Note that for our example the 1×1 minors of P(s) are all the individual elements of P(s) given by $s^2(s+2)(s+3)$, s(s+3), s(s+1)(s+2), -s(s+2)(s+3), s(s+3), s(s+3), (s+1)(s+2)(s+3). Thus

$$\xi_1(s) = gcd\{s^2(s+2)(s+3), s(s+3), s(s+1)(s+2), -s(s+2)(s+3), (s+1)(s+2)(s+3)\}$$

= 1

The 2×2 minors are given by

$$\begin{aligned} \xi_2(s) &= gcd\{s^2(s+3)^2(s+2)(s+1), \ s^2(s+1)(s+2)^2(s+3)(s+4), \ 3s(s+1)(s+2)(s+3) \\ &= s(s+1)(s+2)(s+3) \end{aligned}$$

3. Determine

$$\bar{\epsilon}_i(s) = \frac{\xi_i(s)}{\xi_{i-1}(s)}.$$

For the example

$$\begin{array}{rcl} \xi_1(s) &=& 1\\ \xi_2(s) &=& s(s+1)(s+2)(s+3) \end{array}$$

The Smith form is given by

$$\Sigma = \begin{pmatrix} \frac{\epsilon_1}{\psi_1} & 0 & \dots & 0\\ & \ddots & \vdots & \ddots & \vdots\\ & & \frac{\epsilon_r}{\psi_r} & 0 & \dots & 0\\ 0 & \dots & 0 & 0 & \dots & 0\\ \vdots & \ddots & \vdots & 0 & \dots & 0\\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}.$$

Thus

$$G(s) = U\Sigma V$$

where $\frac{\epsilon_i}{\psi_i}$ is the coprime representation of $\frac{\overline{\epsilon_i}}{\overline{d(s)}}$. For our example

$$\begin{array}{rcl} \frac{\epsilon_1}{\psi_1} & = & \frac{1}{s(s+1)(s+2)(s+3)} \\ \frac{\epsilon_2}{\psi_2} & = & \frac{s(s+1)(s+2)(s+3)}{s(s+1)(s+2)(s+3)} = 1 \end{array}$$

Thus the poles polynomial is given by $\psi_1(s)\psi_2(s) = s(s+1)(s+2)(s+3)$ and thus the poles are at s = 0, -1, -2, -3 and the zeros polynomial is $\epsilon_1(s)\epsilon_2(s) = 1$. Thus there are no zeros.

Problem 2: Prove that Suppose G_1 and G_2 have a state space realizations

Figure 1:

$$\begin{bmatrix} A_1 & B_1 \\ \hline C_1 & D_1 \end{bmatrix} \text{ and } \begin{bmatrix} A_2 & B_2 \\ \hline C_2 & D_2 \end{bmatrix} \text{ respectively. Then}$$
•
$$G_1 G_2 = \begin{bmatrix} A_1 & B_1 C_2 & B_1 D_2 \\ 0 & A_2 & B_2 \\ \hline C_1 & D_1 C_2 & D_1 D_2 \end{bmatrix} = \begin{bmatrix} A_2 & 0 & B_2 \\ B_1 C_2 & A_1 & B_1 D_2 \\ \hline D_1 C_2 & C_1 & D_1 D_2 \end{bmatrix}$$

Solution: Refer to Figure 1. Let $y = G_1G_2u$. Let $G_2u = y_2$ then using the state space representation of G_2 and G_1 we have

$$y_2 = C_2 x_2 + D_2 u$$

$$\dot{x}_1 = A_1 x_1 + B_1 y_2 = A_1 x_1 + B_1 C_2 x_2 + B_1 D_2 u = A_1 x_1 + B_1 C_2 x_2 + B_1 D_2 u$$

$$y = C_1 x_1 + D_1 y_2 = C_1 x_1 + D_1 C_2 x_2 + D_1 D_2 u$$

Thus with $x = [x_1 \ x_2]^T$ we have

 $\dot{x}_2 = A_2 x_2 + B_2 u$

$$\dot{x} = \left(\begin{array}{cc} A_1 & B_1 C_2 \\ 0 & A_2 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) + \left(\begin{array}{c} B_1 D_2 \\ B_2 \end{array}\right) u$$

and

$$y = [C_1 \quad D_1 C_2]x + D_1 D_2 u$$

The other realization is obtained by taking $x = [x_2 \ x_1]^T$.

$$G_1 + G_2 = \begin{bmatrix} A_1 & 0 & B_1 \\ 0 & A_2 & B_2 \\ \hline C_1 & C_2 & D_1 + D_2 \end{bmatrix}$$

Solution: Refer to Figure 1(b). Let $y = G_1G_2u$. Let $G_2u = y_2$, $G_1u = y_1$ and $y = y_1 + y_2$ then using the state space representation of G_2 and G_1 we have

$$\begin{aligned} \dot{x}_2 &= A_2 x_2 + B_2 u \\ y_2 &= C_2 x_2 + D_2 u \\ \dot{x}_1 &= A_1 x_1 + B_1 u \\ y &= y_1 + y_2 = C_1 x_1 + C_2 x_2 + (D_1 + D_2) u. \end{aligned}$$

Thus with $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$ we have

$$\dot{x} = \left(\begin{array}{cc} A_1 & 0\\ 0 & A_2 \end{array}\right) \left(\begin{array}{c} x_1\\ x_2 \end{array}\right) + \left(\begin{array}{c} B_1\\ B_2 \end{array}\right) u$$

and

•

$$y = [C_1 \ C_2]x + (D_1 + D_2)u$$

• Suppose $G(s) = \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$ is square and D is invertible then $G^{-1} = \begin{bmatrix} A - BD^{-1}C & BD^{-1} \\ \hline -D^{-1}C & D^{-1} \end{bmatrix}.$

Solution: Let u be the input to G and y be its output. Then G^{-1} will map y (the input to G^{-1}) to u. G is described by

$$\begin{split} \dot{x} &= Ax + Bu \\ y &= Cx + Du \\ \\ u &= -D^{-1}Cx + D^{-1}y \\ \dot{x} &= Ax + B(D^{-1}y - D^{-1}Cx) = (A - BD^{-1}C)x + BD^{-1}y \end{split}$$

Problem 3: Prove that

$$\begin{pmatrix} I & -K \\ -G_{22} & I \end{pmatrix}^{-1} = \underbrace{\begin{pmatrix} (I - KG_{22})^{-1} & (I - KG_{22})^{-1}K \\ (I - G_{22}K)^{-1}G_{22} & (I - G_{22}K)^{-1} \end{pmatrix}}_{H(G_{22},K)}.$$

Figure 2:

Solution: Note that

$$\begin{pmatrix} I & -K \\ -G_{22} & I \end{pmatrix} \begin{pmatrix} (I - KG_{22})^{-1} & (I - KG_{22})^{-1}K \\ (I - G_{22}K)^{-1}G_{22} & (I - G_{22}K)^{-1} \end{pmatrix}$$

=
$$\begin{pmatrix} (I - KG_{22})^{-1} - K(I - G_{22}K)^{-1}G_{22} & (I - KG_{22})^{-1}K - K(I - G_{22}K)^{-1} \\ -G_{22}(I - KG_{22})^{-1} + (I - G_{22}K)^{-1}G_{22} & -G_{22}(I - KG_{22})^{-1}K + (I - G_{22}K)^{-1} \end{pmatrix}$$

Note that

$$(I - KG_{22})^{-1}K - K(I - G_{22}K)^{-1}$$

= $(I - KG_{22})^{-1}[K(I - G_{22}K) - (I - KG_{22})K](I - G_{22}K)^{-1}$
= $(I - KG_{22})^{-1}[K - KG_{22}K - K + KG_{22}K](I - G_{22}K)^{-1} = 0$

Therefore

$$(I - KG_{22})^{-1}K = K(I - G_{22}K)^{-1}.$$

$$(I - KG_{22})^{-1} - K(I - G_{22}K)^{-1}G_{22} = (I - KG_{22})^{-1} - (I - KG_{22})^{-1}KG_{22}$$

$$= (I - KG_{22})^{-1}(I - KG_{22}) = I$$

Switching the roles of G_{22} and K one can prove that

$$-G_{22}(I - KG_{22})^{-1} + (I - G_{22}K)^{-1}G_{22} = 0, \quad -G_{22}(I - KG_{22})^{-1}K + (I - G_{22}K)^{-1} = I.$$

Problem 4: Consider Figure 2. Suppose G_{22} and K have minimal state space realizations $\begin{bmatrix} A & B_2 \\ \hline C_2 & D_{22} \end{bmatrix}$ and $\begin{bmatrix} A_K & B_K \\ \hline C_K & D_K \end{bmatrix}$. Let $T = \begin{bmatrix} A_1 & B_2 & B_1 \\ \hline A & 0 & B_2 & 0 \\ \hline 0 & A_K & 0 & B_K \\ \hline 0 & -C_K & I & -D_K \\ \hline -C_2 & 0 & D_2 & I \\ \hline D & D \end{bmatrix}$.

Thus

$$T^{-1} = \begin{bmatrix} A_1 + BD^{-1}C & BD^{-1} \\ \hline D^{-1}C & D^{-1} \end{bmatrix} =: \begin{bmatrix} \overline{A} & \overline{B} \\ \hline \overline{C} & \overline{D} \end{bmatrix}$$

where

$$\overline{D} = D^{-1} = \begin{pmatrix} I & -D_K \\ -D_{22} & I \end{pmatrix}^{-1} \\ = \begin{pmatrix} I + (I - D_{22}D_K)^{-1}D_{22} & D_K(I - D_{22}D_K)^{-1} \\ (I - D_{22}D_K)^{-1}D_{22} & (I - D_{22}D_K)^{-1} \end{pmatrix} \\ = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} (I - D_{22}D_K)^{-1}D_{22} & D_K(I - D_{22}D_K)^{-1} \\ (I - D_{22}D_K)^{-1}D_{22} & (I - D_{22}D_K)^{-1} \end{pmatrix} \\ = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} D_K \\ I \end{pmatrix} (I - D_{22}D_K)^{-1} \begin{pmatrix} D_{22} & I \end{pmatrix}$$

Thus

$$\overline{A} = A_1 + BD^{-1}C = \begin{pmatrix} A & B_2C_K \\ 0 & A_K \end{pmatrix} + \begin{pmatrix} B_2D_K \\ B_K \end{pmatrix} (I - D_{22}D_K)^{-1} \begin{pmatrix} C_2 & D_{22}C_K \end{pmatrix}$$

Prove that the following are equivalent

- 1. $(\overline{A}, \overline{B}, \overline{C}, \overline{D})$ is stabilizable and detectable.
- 2. (A, B_2, C_2, D_{22}) and (A_K, B_K, C_K, D_K) are stabilizable and detectable.

Solution: $(1) \Rightarrow (2)$

Suppose $(\overline{A}, \overline{C})$ is not detectable. Then there exists a $x = (x_G \ x_K)^T \neq 0$ partitioned according to the dimensions of A and A_K such that $\overline{A}x =$

 λx with $\overline{C}x = 0$ with λ in rhp. This implies that $(A_1 + BD^{-1}C)x = 0$ and $D^{-1}Cx = 0$. Thus $A_1x = 0$ with Cx = 0. Thus

$$\begin{pmatrix} A & 0 \\ 0 & A_K \end{pmatrix} \begin{pmatrix} x_G \\ x_k \end{pmatrix} = \lambda \begin{pmatrix} x_G \\ x_k \end{pmatrix}, \quad \begin{pmatrix} 0 & -C_K \\ -C_2 & 0 \end{pmatrix} \begin{pmatrix} x_G \\ x_k \end{pmatrix} = 0.$$

Thus

$$Ax_G = \lambda x_G, \quad C_2 x_G = 0, \quad A_K x_K = \lambda x_K, \ C_K x_K = 0.$$

As $x \neq 0$ at least one of the vectors x_G , x_K have to be nonzero. WLOG assume that $x_G \neq 0$. Then it follows that (A, C_2) is not detectable.

Suppose $(\overline{A}, \overline{B})$ is not stabilizable. Then there exists a $x^* = (x_G^* \ x_K^*) \neq 0$ such that $x^*\overline{A} = \lambda x^*$, $x^*\overline{B} = 0$ with λ in rhp. This implies that $x^*(A_1 + BD^{-1}C) = \lambda x^*$ and $x^*BD^{-1} = 0$. Thus $x^*A_1 = 0$ and $x^*B = 0$. Thus

$$\left(\begin{array}{cc} x_G^* & x_K^* \end{array}\right) \left(\begin{array}{cc} A & 0 \\ 0 & A_K \end{array}\right) = \lambda \left(\begin{array}{cc} x_G^* & x_K^* \end{array}\right), \quad \left(\begin{array}{cc} x_G^* & x_K^* \end{array}\right) \left(\begin{array}{cc} B_2 & 0 \\ 0 & B_K \end{array}\right) = 0.$$

Thus

$$x_G^*A = \lambda x_G^*, \ x_G^*B_2 = 0, \ x_K^*A_K = \lambda x_K^*, \ x_K^*B_K = 0.$$

As $x^* \neq 0$ at least one of the pairs $(A, B_2), (A_K, B_K)$ is not stabilizable.

Thus we have shown (1) \Rightarrow (2). (2) \Rightarrow (1) follows by similar line of argument.

Problem 5: Consider Figure 2.

- 1. Show that a realization of $L = G_{22}K$ is given by $\begin{bmatrix} A_L & B_L \\ C_L & D_L \end{bmatrix}$ where $A_L = \begin{pmatrix} A & B_2C_K \\ 0 & A_K \end{pmatrix}, B_L = \begin{pmatrix} B_2D_K \\ B_K \end{pmatrix}, C_L = (C_2 \ D_{22}C_K), D_L = D_{22}D_K.$
- 2. Show that a realization of

$$S = (I - L)^{-1} = \begin{bmatrix} A_S & B_S \\ \hline C_S & D_S \end{bmatrix}$$

where

$$A_{S} = \overline{A} = \begin{pmatrix} A & B_{2}C_{K} \\ 0 & A_{K} \end{pmatrix} + \begin{pmatrix} B_{2}D_{K} \\ B_{K} \end{pmatrix} (I - D_{22}D_{K})^{-1} \begin{pmatrix} C_{2} & D_{22}C_{K} \end{pmatrix}$$
$$B_{S} = \begin{pmatrix} B_{2}D_{K} \\ B_{K} \end{pmatrix} (I - D_{22}D_{K})^{-1}$$
$$C_{S} = (I - D_{22}D_{K})^{-1} \begin{pmatrix} C_{2} & D_{22}C_{K} \end{pmatrix}$$
$$D_{S} = (I - D_{22}D_{K})^{-1}$$

3. Prove that the following are equivalent:

- (a) (A_S, B_S, C_S, D_S) is stabilizable and detectable
- (b) (A_L, B_L, C_L, D_L) is stabilizable and detectable

Solutions: (1) from Problem 2.

(2) Note that $I - L = I - [C_L(sI - A_L)^{-1}B_L + D_L] = -C_L(sI - A_L)^{-1} + (I - D_L)$. Thus a realization of I - L is given by $\begin{bmatrix} A_L & B_L \\ -C_L & I - D_L \end{bmatrix}$. Using Problem (2), a realization of $(I - L)^{-1}$ is given by $\begin{bmatrix} A_L + B_L(I - D_L)^{-1}C_L & B_L(I - D_L)^{-1} \\ (I - D_L)^{-1}C_L & (I - D_L)^{-1} \end{bmatrix}$. Substituting the realizations of L we obtain the result.

(3) Note that $A_S = A_L + B_L (I - D_L)^{-1} C_L$, $B_S = B_L (I - D_L)^{-1}$, $C_S = (I - D_L)^{-1} C_L$ and $D_S = (I - D_L)^{-1}$. Thus it follows that

$$A_S x = 0 \text{ and } C_S x = 0 \quad \Leftrightarrow \quad A_L x = 0 \text{ and } C_L x = 0$$
$$z^* A_S = 0 \text{ and } z^* B_S = 0 \quad \Leftrightarrow \quad z^* A_L = 0 \text{ and } z^* B_L = 0$$

The result follows from the above observation.

Problem 6: Prove that

- 1. If K is stable then the closed loop interconnection is stable if and only if $G_{22}(I KG_{22})^{-1}$ is stable.
- 2. If G_{22} is stable then the closed loop interconnection is stable if and only if $K(I G_{22}K)^{-1}$ is stable.

Solution: Note that the closed loop is internally stable if and only if

$$\begin{pmatrix} (I - KG_{22})^{-1} & (I - KG_{22})^{-1}K \\ (I - G_{22}K)^{-1}G_{22} & (I - G_{22}K)^{-1} \end{pmatrix}$$

is stable

(2) Note that in Problem (3) we have shown that

$$(I - KG_{22})^{-1}K = K(I - G_{22}K)^{-1}.$$

If the interconnection is stable then $(I - KG_{22})^{-1}K$ is stable and therefore $K(I - G_{22}K)^{-1}$ is stable.

If G_{22} is stable and $K(I - G_{22}K)^{-1}$ are stable then $(I - KG_{22})^{-1}K$ is stable. Note that $(I - KG_{22})^{-1} = I + (I - KG_{22})^{-1}KG_{22}$ which is also stable as G_{22} is stable. Note that

$$(I - G_{22}K)^{-1}G_{22} = G_{22}(I - KG_{22})^{-1}.$$

As both G_{22} and $(I - KG_{22})^{-1}$ are both stable $(I - G_{22}K)^{-1}G_{22}$ is stable. Finally $(I - G_{22}K)^{-1} = I + G_{22}(I - KG_{22})^{-1}K$ and therefore stable.

(1) can be proven by switching the roles of K and G_{22} in the proof above.