Robust Control: HW 6

Problem 1: Consider the true plant to be

$$
G_{p}(s)=\frac{3 e^{-0.1 s}}{(2 s+1)(0.1 s+1)^{2}} .
$$

1. Derive the additional uncertainty weight with the nominal weight to be

$$
G(s)=3 /(2 s+1) .
$$

2. Derive the corresponding robust stability condition
3. Apply this test to the controller $K(s)=k / s$ and find the values of k that yield stability. Is this condition tight?
4. Obtain a multiplicative uncertainty weight with the nominal plant as given above.
5. With the multiplicative uncertainty description, first choose a performance objective of tracking with tracking required till a frequency ω_{p} (choose ω_{p} sensibly) with tracking error to be within m_{p} (choose a small m_{p}). Thus form a reasonable weight W_{p}. For the chosen W_{p} and the multiplicative uncertainty weight chosen, design a controller that achieves robust performance

Problem 3:[Designing a controller to satisfy asymptotic properties]

Figure 1: Positive feedback configuration
For the positive feedback configuration shown in Figure 1 suppose $G=$ N / M is a coprime factorization with $K=Y_{1} / X_{1}$ a stabilizing controller with

$$
M X_{1}-N Y_{1}=1
$$

where M, N, X_{1}, Y_{1} are stable proper transfer functions.

1. Is it possible that M and N are such that they have a common zero at ∞ (that is, $\lim _{s \rightarrow \infty} M(s)=\lim _{s \rightarrow \infty} N(s)=0$)
2. Consider the plant $G=\frac{1}{(s-1)(s-2)}$.
(a) State a reason why we cannot choose $M=\frac{(s-1)(s-2)}{(s+1)^{3}}$ and $N=$ $\frac{1}{(s+1)^{3}}$. Note that M and N are proper stable rational transfer functions with $G=N M^{-1}$.
(b) Let $N=\frac{1}{(s+1)^{2}}$ and $M=\frac{(s-1)(s-2)}{(s+1)^{2}}$. Let $X_{1}=\frac{s+6}{s+1}$ and $Y_{1}=$ $-\frac{19 s-11}{s+1}$.
i. Show that $G=N M^{-1}$ and that $M X_{1}-N Y_{1}=1$. Thus all stabilizing controllers K in terms of the Youla parameter Q are given by

$$
\begin{equation*}
K=\frac{Y_{1}-M Q}{X_{1}-N Q} \tag{1}
\end{equation*}
$$

ii. Choose a stable proper Q such that the controller has the all the following properties (1) The steady state step response y is 1 with $d=0$ (that is when r is a unit step y settles to a constant 1.) (2) The final value of y is zero when d is a sinusoid of $10 \mathrm{rad} / \mathrm{s}$ with $r=0$. [Hint: use the final value theorem.]

