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Topology identification and optimal design of noisy consensus networks
Sepideh Hassan-Moghaddam and Mihailo R. Jovanović

Abstract— We study an optimal control problem aimed at
achieving a desired tradeoff between the network coherence and
communication requirements in the distributed controller. Our
objective is to add a certain number of edges to an undirected
network, with a known graph Laplacian, in order to optimally
enhance closed-loop performance. To promote controller sparsity,
we introduce `1-regularization into the optimal H2 formulation
and cast the design problem as a semidefinite program. We derive
a Lagrange dual and exploit structure of the optimality conditions
for undirected networks to develop three customized algorithms
that are well-suited for large problems. These are based on
the infeasible primal-dual interior-point, the proximal gradient,
and the proximal Newton methods. We illustrate that all of our
algorithms significantly outperform the general-purpose solvers
and that the proximal methods can solve the problems with more
than million edges in the controller graph in a few minutes, on a
PC. We also exploit structure of connected resistive networks to
demonstrate how additional edges can be systematically added
in order to minimize the H2 norm of the closed-loop system.

Index Terms— Convex optimization, coordinate descent, effec-
tive resistance, interior-point method, `1-regularization, network
coherence, preconditioned conjugate gradients, proximal gradi-
ent and Newton methods, semidefinite programming, sparsity-
promoting optimal control, stochastically-forced networks.

I. INTRODUCTION

Conventional optimal control of distributed systems relies
on centralized implementation of control policies. In large
networks of dynamical systems, centralized information pro-
cessing imposes a heavy burden on individual nodes and is
often infeasible. This motivates the development of distributed
control strategies that require limited information exchange
between the nodes to reach consensus or guarantee synchro-
nization. Over the last decade, a vast body of literature has
dealt with analysis, fundamental performance limitations, and
design of distributed averaging protocols; e.g., see [1]–[12].

Optimal design of the edge weights for networks with pre-
specified topology has received significant attention. In [2],
the design of the fastest averaging protocol for undirected
networks was cast as a semidefinite program (SDP). Two cus-
tomized algorithms, based on primal barrier interior-point (IP)
and subgradient methods, were developed and the advantages
of optimal weight selection over commonly used heuristics
were demonstrated. Similar SDP characterization, for networks
with state-dependent graph Laplacians, was provided in [3].
The allocation of symmetric edge weights that minimize
the mean-square deviation from average for networks with
additive stochastic disturbances was solved in [5]. A related
problem, aimed at minimizing the total effective resistance
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of resistive networks, was addressed in [7]. In [9], the edge
Laplacian was used to provide graph-theoretic characterization
of the H2 and H∞ symmetric agreement protocols.

Network coherence quantifies the ability of distributed es-
timation and control strategies to guard against exogenous
disturbances [6], [10]. The coherence is determined by the
sum of reciprocals of the non-zero eigenvalues of the graph
Laplacian and its scaling properties cannot be predicted by
algebraic connectivity of the network. In [10], fundamental
performance limitations of spatially-localized consensus pro-
tocols were examined. Since these are dictated by the network
topology rather than by the optimal selection of the edge
weights, design of optimal topology represents an important
challenge in network science. It is precisely this problem that
we address in the paper.

More specifically, we study an optimal control problem
aimed at achieving a desired tradeoff between the network per-
formance and communication requirements in the distributed
controller. Our goal is to add a certain number of edges to
a given undirected network in order to optimally enhance
the closed-loop performance. One of our key contributions
is the formulation of topology design as an optimal control
problem that admits convex characterization and is amenable
to the development of efficient optimization algorithms. In
our formulation, the plant network can contain disconnected
components and optimal topology of the controller network is
an integral part of the design. In general, this problem amounts
to an intractable combinatorial search. Several references have
examined convex relaxations or greedy algorithms to identify
topology that optimizes algebraic connectivity [13], [14] or
coherence [15]–[19] of the network.

We tap on recent developments regarding sparse representa-
tions in conjunction with regularization penalties on the level
of communication in a distributed controller. This allows us
to formulate convex optimization problems that exploit the
underlying structure and are amenable to the development of
efficient optimization algorithms. To avoid combinatorial com-
plexity, we approach optimal topology design using a recently
introduced sparsity-promoting optimal control framework [20],
[21]. Performance is captured by the H2 norm of the closed-
loop network and `1-regularization is introduced to promote
controller sparsity. While this problem is in general noncon-
vex [21], for undirected networks we show that it admits
a convex characterization with a non-differentiable objective
function and a positive definite constraint. This problem can
be transformed into an SDP with linear equality and inequality
constraints. For small size networks, the optimal solution can
be computed using standard IP method solvers [22], [23].

To enable design of large networks, we pay particular atten-
tion to the computational aspects of solving the `1-regularized
H2 problem. We derive a Lagrange dual of the optimal control

ar
X

iv
:1

50
6.

03
43

7v
2 

 [
m

at
h.

O
C

] 
 2

7 
M

ay
 2

01
6



2

problem, provide interpretation of dual variables, and develop
three efficient customized algorithms. Furthermore, building
on preliminary work [24], we specialize our algorithm to the
problem of growing connected resistive networks [7], [13]. In
these, the plant graph is connected and inequality constraints
amount to non-negativity of controller edge weights. This
allows us to simplify optimality conditions and further improve
computational efficiency of our customized algorithms.

Specialized algorithms, based on inexact IP methods, for
`1-regularized least-squares, logistic regression, and sparse
covariance selection problems were developed in [25]–[27].
Our first customized algorithm utilizes the infeasible primal-
dual IP method. We employ an inexact iterative method based
on the preconditioned conjugate gradients (PCG) to find an
approximate search direction and provide a balance between
the rate of convergence and computational efficiency [28].

Proximal gradient algorithms and their accelerated variants
have recently found use in distributed optimization, statistics,
machine learning, image and signal processing. They can be
interpreted as generalization of standard gradient projection to
problems with non-smooth and extended real-value objective
functions [29], [30]. When the proximal operator is easy to
evaluate, these algorithms are simple yet extremely efficient.

For networks that can contain disconnected components and
non-positive edge weights, the proximal gradient algorithm
iteratively updates the controller graph Laplacian via conve-
nient use of the soft-thresholding operator. This extends the
Iterative Shrinkage Thresholding Algorithm (ISTA) [29] to
optimal topology design of undirected networks. In contrast
to the `1-regularized least-squares, however, the step-size has
to be selected to guarantee positivity of the second smallest
eigenvalue of the closed-loop graph Laplacian. We combine
the Barzilai-Borwein (BB) step-size initialization [31] with
backtracking to achieve this goal and enhance the rate of
convergence. The biggest computational challenge comes from
evaluation of the objective function and its gradient. We exploit
problem structure to speed up computations and save memory.
Finally, for the problem of growing connected resistive net-
works, the proximal algorithm simplifies to gradient projection
which additionally improves the computational efficiency.

We also develop a customized algorithm based on the
proximal Newton method [32]. In contrast to the proximal
gradient, this method sequentially employs the second-order
Taylor series approximation of the smooth part of the objective
function. We use cyclic coordinate descent over the set of
active variables to efficiently compute the Newton direction
by consecutive minimization with respect to individual coordi-
nates [33]–[35]. Similar approach has been recently utilized in
a number of applications, including sparse inverse covariance
estimation in graphical models [36].

We illustrate that all of our customized algorithms signif-
icantly outperform the general-purpose solvers. The primal-
dual IP method based on PCG (with a simple diagonal precon-
ditioner) can solve the problems with hundreds of thousands
of edges in the controller graph in several hours, on a PC.
Moreover, the algorithms based on proximal gradient and
Newton methods can solve the problems with millions of edges
in several minutes, on a PC, and are considerably faster than

the greedy algorithm with efficient rank-one updates [19].
Our presentation is organized as follows. In Section II, we

formulate the problem of optimal topology design for undi-
rected networks subject to additive stochastic disturbances.
In Section III, we derive a Lagrange dual of the sparsity-
promoting optimal control problem, provide interpretation of
dual variables, and construct dual feasible variables from the
primal ones. In Section IV, we develop customized algorithms
based on the infeasible primal-dual IP method as well as the
proximal gradient and Newton methods. In Section V, we
achieve additional speedup by specializing our algorithms to
the problem of growing connected resistive networks. In Sec-
tion VI, we use computational experiments to design optimal
topology of a controller graph for benchmark problems. We
also demonstrate efficiency of our algorithms and their advan-
tage over general-purpose solvers. In Section VII, we provide
a brief overview of the paper and highlight future directions.

II. PROBLEM FORMULATION

We consider undirected consensus networks with n nodes

ψ̇ = −Lp ψ + u + d

ζ =

[
Q1/2

0

]
ψ +

[
0

R1/2

]
u

u = −Lx ψ

where d and ζ denote the disturbance input and performance
output, ψ is the state of the network, and u is the control input.
Symmetric n×n matrices Lp and Lx represent Laplacians of
the plant and the controller, while Q = QT � 0 and R =
RT � 0 are the state and control weights in the standard
quadratic performance index. Upon closing the loop we obtain

ψ̇ = − (Lp + Lx)ψ + d

ζ =

[
Q1/2

−R1/2Lx

]
ψ.

(1)

Our objective is to design the optimal topology for Lx and to
choose the corresponding edge weights x in order to achieve
the desired tradeoff between controller sparsity and network
performance. The performance is quantified by the steady-state
variance amplification of the stochastically-forced network
(from the white-in-time input d to the performance output ζ
which penalizes deviation from consensus and control effort).

The interesting features of this problem come from struc-
tural restrictions on the matrices Lp, Lx, and Q. All of them
are symmetric and are restricted to having an eigenvalue at
zero with the corresponding eigenvector of all ones,

Lp 1 = 0, Lx 1 = 0, Q1 = 0. (2)

To guarantee observability of the remaining eigenvalues of
Lp, we consider state weights that are positive definite on the
orthogonal complement of the subspace spanned by the vector
of all ones, Q + (1/n)11T � 0; e.g., Q = I − (1/n)11T

penalizes mean-square deviation from the network average.
In what follows, we express Lx as

Lx :=

m∑
l= 1

xl ξl ξ
T
l = E diag (x)ET (3)
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where E is the incidence matrix of the controller graph Lx,
m is the number of edges in Lx, and diag (x) is a diagonal
matrix containing the vector of the edge weights x ∈ Rm.
Vectors ξl ∈ Rn determine the columns of E and they signify
the connection with weight xl between nodes i and j: the ith
and jth entries of ξl are 1 and −1 and all other entries are equal
to 0. Thus, Lx given by (3) satisfies structural requirements
on the controller graph Laplacian in (2) by construction.

To achieve consensus in the absence of disturbances, the
closed-loop network has to be connected [1]. Equivalently, the
second smallest eigenvalue of the closed-loop graph Laplacian,
L := Lp + Lx, has to be positive, i.e., L has to be positive
definite on 1⊥. This amounts to positive definiteness of the
“strengthened” graph Laplacian of the closed-loop network

G := Lp + Lx + (1/n)11T

= Gp + E diag (x)ET � 0
(4a)

where
Gp := Lp + (1/n)11T . (4b)

Structural restrictions (2) on the Laplacian matrices introduce
an additional constraint on the matrix G,

G1 = 1. (4c)
A. Design of optimal sparse topology

Let d be white stochastic disturbance with zero-mean and
unit variance,

E (d(t)) = 0, E
(
d(t1) dT (t2)

)
= I δ(t1 − t2)

where E is the expectation operator. The H2 norm of the
transfer function from d to ζ,

‖H‖22 = lim
t→∞

E
(
ψT (t) (Q + LxRLx)ψ(t)

)
quantifies the steady-state variance amplification of the closed-
loop system (1). The network average, ψ̄(t) := (1/n)1Tψ(t),
corresponds to the zero eigenvalue of the graph Laplacian and
it is not observable from the performance output in (1). Thus,
the H2 norm is equivalently given by

‖H‖22 = lim
t→∞

E
(
ψ̃T (t) (Q + LxRLx) ψ̃(t)

)
= trace (P (Q + LxRLx)) = 〈P,Q + LxRLx〉

where ψ̃(t) is the vector of deviations of the states of individ-
ual nodes from ψ̄(t),

ψ̃(t) := ψ(t) − 1 ψ̄(t) =
(
I − (1/n)11T

)
ψ(t)

and P is the steady-state covariance matrix of ψ̃,

P := lim
t→∞

E
(
ψ̃(t) ψ̃T (t)

)
.

The above measure of the amplification of stochastic dis-
turbances is determined by ‖H‖22 = (1/2)J(x), where

J(x) :=
〈(
Gp + E diag (x)ET

)−1
, Q+ LxRLx

〉
. (5)

It can be shown that J can be expressed as

J(x) =
〈(
Gp + E diag (x)ET

)−1
, Qp

〉
+

diag
(
ETRE

)T
x − 〈R,Lp〉 − 1

(6)

with
Qp := Q + (1/n)11T + LpRLp.

Note that the last two terms in (6) do not depend on the
optimization variable x and that the term LpRLp in Qp has
an interesting interpretation: it determines a state-weight that
guarantees inverse optimality (in LQR sense) of u = −Lpψ
for a system with no coupling between the nodes, ψ̇ = u+ d.

We formulate the design of a controller graph that provides
an optimal tradeoff between theH2 performance of the closed-
loop network and the controller sparsity as

minimize
x

J(x) + γ ‖x‖1

subject to Gp + E diag (x)ET � 0
(SP)

where J(x) and Gp are given by (6) and (4b), respectively.
The `1 norm of x, ‖x‖1 :=

∑m
l= 1 |xl|, is introduced as a

proxy for promoting sparsity [37]–[40]. In (SP), the vector of
the edge weights x ∈ Rm is optimization variable; the problem
data is given by the positive regularization parameter γ, the
state and control weights Q and R, the plant graph Laplacian
Lp, and the incidence matrix of the controller graph E.

The sparsity-promoting optimal control problem (SP) is
a constrained optimization problem with a convex non-
differentiable objective function [15] and a positive definite
inequality constraint. This implies convexity of (SP). Posi-
tive definiteness of the strengthened graph Laplacian, G =
Gp + E diag(x)ET , guarantees stability of the closed-loop
network (1) on the subspace 1⊥, and thereby consensus in the
absence of disturbances [1].

The consensus can be achieved even if some edge weights
are negative [2], [5]. By expressing x as a difference between
two non-negative vectors, x = x+ − x−, (SP) can be written
as

minimize
x+, x−

〈(
Gp + E diag (x+ − x−)ET

)−1
, Qp

〉
+

(γ 1 + c)Tx+ + (γ 1 − c)Tx−

subject to Gp + E diag (x+ − x−)ET � 0

x+ ≥ 0, x− ≥ 0
(7)

where c := diag
(
ETRE

)
. By utilizing the Schur comple-

ment, (7) can be cast as an SDP, and solved via standard IP
method algorithms for small size networks.

Reweighted `1 norm: An alternative proxy for promoting
sparsity is given by the weighted `1 norm [41],

‖w ◦ x‖1 :=

m∑
l= 1

wl |xl|

where ◦ denotes elementwise (Hadamard) product. The vector
of non-negative weights w ∈ Rm can be selected to provide
better approximation of non-convex cardinality function than
the `1 norm. An effective heuristic for weight selection is given
by the iterative reweighted algorithm [41], with wl inversely
proportional to the magnitude of xl in the previous iteration,

w+
l = 1/(|xl| + ε). (8)

This puts larger emphasis on smaller optimization variables,
where a small positive parameter ε ensures that w+

l is well-
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defined. If the weighted `1 norm is used in (SP), the vector
of all ones 1 should be replaced by the vector w in (7).

B. Structured optimal control problem: debiasing step

After the structure of the controller graph Laplacian Lx has
been designed, we eliminate the columns from the incidence
matrix E that correspond to zero elements in the vector of the
optimal edge weights x?. This yields a new incidence matrix
Ê and leads to the optimization problem

minimize
x

〈(
Gp + Ê diag (x) ÊT

)−1

, Qp

〉
+

diag
(
ÊTR Ê

)T
x

subject to Gp + Ê diag (x) ÊT � 0

whose solution provides the optimal controller graph Lapla-
cian with the desired structure. This optimization problem
is obtained by setting γ = 0 in (SP) and by replacing the
incidence matrix E with Ê. This “polishing” or “debiasing”
step is used to improve the performance relative to the solution
of the sparsity-promoting optimal control problem (SP).

C. Gradient and Hessian of J(x)

We next summarize the first- and second-order derivatives
of the objective function J , given by (6), with respect to the
vector of the edge weights x. The second-order Taylor series
approximation of J(x) around x̄ ∈ Rm is given by

J(x̄+ x̃) ≈ J(x̄) + ∇J(x̄)T x̃ +
1

2
x̃T ∇2J(x̄) x̃.

For related developments we refer the reader to [7].
Proposition 1: The gradient and the Hessian of J at x̄ ∈

Rm are determined by

∇J(x̄) = − diag
(
ET (Y (x̄) − R)E

)
∇2J(x̄) = H1(x̄) ◦ H2(x̄)

where

Y (x̄) :=
(
Gp + EDx̄E

T
)−1

Qp
(
Gp + EDx̄E

T
)−1

H1(x̄) := ET Y (x̄)E

H2(x̄) := ET
(
Gp + EDx̄E

T
)−1

E

Dx̄ := diag (x̄) .

III. DUAL PROBLEM

Herein, we study the Lagrange dual of the sparsity-
promoting optimal control problem (7), provide interpreta-
tion of dual variables, and construct dual feasible variables
from primal feasible variables. Since minimization of the
Lagrangian associated with (7) does not lead to an explicit
expression for the dual function, we introduce an auxiliary
variable G and find the dual of

minimize
G, x±

〈
G−1, Qp

〉
+ (γ 1 + c)Tx+ + (γ 1 − c)Tx−

subject to G − Gp − E diag (x+ − x−)ET = 0

G � 0, x+ ≥ 0, x− ≥ 0.
(P)

In (P), G represents the “strengthened” graph Laplacian of
the closed-loop network and the equality constraint comes

from (4a). As we show next, the Lagrange dual of the primal
optimization problem (P) admits an explicit characterization.

Proposition 2: The Lagrange dual of the primal optimiza-
tion problem (P) is given by

maximize
Y

2 trace
(

(Q
1/2
p Y Q

1/2
p )1/2

)
− 〈Y,Gp〉

subject to ‖diag
(
ET (Y − R)E

)
‖∞ ≤ γ

Y � 0, Y 1 = 1

(D)

where Y = Y T ∈ Rn×n is the dual variable associated with
the equality constraint in (P).

Proof: The Lagrangian of (P) is given by

L =
〈
G−1, Qp

〉
+ 〈Y,G〉 − 〈Y,Gp〉 +(

γ 1 − diag
(
ET (Y −R)E

)
− y+

)T
x+ +(

γ 1 + diag
(
ET (Y −R)E

)
− y−

)T
x−

(9)

where Y and y± ≥ 0 are Lagrange multipliers (i.e., dual
variables) associated with equality and elementwise inequality
constraints in (P). Note that no Lagrange multiplier is assigned
to the positive definite constraint on G in L. Instead, we
determine conditions on Y and y± that guarantee G � 0.

Minimizing L with respect to G yields

G−1QpG
−1 = Y (10a)

or, equivalently,

G = Q1/2
p

(
Q1/2
p Y Q1/2

p

)−1/2

Q1/2
p . (10b)

Positive definiteness of G and Qp implies Y � 0. Furthermore,
since Qp1 = 1, from (4c) and (10a) we have

Y 1 = 1.

Similarly, minimization with respect to x+ and x− leads to

y+ = γ 1 − diag
(
ET (Y −R)E

)
≥ 0 (11a)

y− = γ 1 + diag
(
ET (Y −R)E

)
≥ 0. (11b)

Thus, non-negativity of y+ and y− amounts to

−γ 1 ≤ diag
(
ET (Y −R)E

)
≤ γ 1

or, equivalently,

‖ diag
(
ET (Y −R)E

)
‖∞ ≤ γ.

Substitution of (10) and (11) into (9) eliminates y+ and
y− from the dual problem. We can thus represent the dual
function, infG, x± L(G, x±;Y, y±), as

2 trace
(

(Q1/2
p Y Q1/2

p )1/2
)
− 〈Y,Gp〉

which allows us to bring the dual of (P) to (D).
Any dual feasible Y can be used to obtain a lower bound on

the optimal value of the primal problem (P). Furthermore, the
difference between the objective functions of the primal (eval-
uated at the primal feasible (G, x±)) and the dual (evaluated
at the dual feasible Y ) problems yields the duality gap,

η = yT+ x+ + yT− x− = 1T (y+ ◦ x+ + y− ◦ x−)
(12)
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where y+ and y− are given by (11a) and (11b). This positive
quantity can be used to estimate distance to optimality.

Strong duality follows from convexity of the primal prob-
lem (P) and strict feasibility of the constraints in (P). This
implies that at optimality, the duality gap η for the primal
problem (P) and the dual problem (D) is zero. Furthermore,
if (G?, x?±) are optimal points of the primal problem (P), then
Y ? = (G?)−1Qp (G?)−1 is the optimal point of the dual
problem (D). Similarly, if Y ? is the optimal point of (D),

G? = Q1/2
p

(
Q1/2
p Y ?Q1/2

p

)−1/2

Q1/2
p

is the optimal point of (P). The optimal vector of the edge
weights x? is determined by the non-zero off-diagonal ele-
ments of the controller graph Laplacian, L?x = G? −Gp.

Interpretation of dual variables: For electrical networks, the
dual variables have appealing interpretations. Let ι ∈ Rn be a
random current injected into the resistor network satisfying

1T ι = 0, E (ι) = 0, E
(
ιιT
)

= Q + LpRLp.

The vector of voltages ϑ ∈ Rm across the edges of the network
is then given by ϑ = ETG−1ι. Furthermore, since

E
(
ϑϑT

)
= ET G−1 E

(
ιιT
)
G−1E = ET Y E,

the dual variable Y is related to the covariance matrix of
voltages across the edges. Moreover, (11) implies that y+ and
y− quantify the deviations between variances of edge voltages
from their respective upper and lower bounds.

Remark 1: For a primal feasible x, Y resulting from (10a)
with G given by (4a) may not be dual feasible. Let

Ŷ := β Y +
1 − β

n
11T (13a)

and let the control weight be R = r I with r > 0. If

β ≤ γ + 2 r

‖ diag (ET (Y − R)E) ‖∞ + 2 r
(13b)

then Ŷ satisfies the inequality constraint in (D) and it is thus
dual feasible.

IV. CUSTOMIZED ALGORITHMS

We next exploit the structure of the sparsity-promoting opti-
mal control problem (SP) and develop customized algorithms
based on the primal-dual interior-point, the proximal gradient,
and the proximal Newton methods. The proximal gradient
algorithm is a first-order method that uses a simple quadratic
approximation of J in (SP). This yields an explicit update
of the vector of the edge weights via application of the soft-
thresholding operator. The Newton direction in the IP method
is obtained using an inexact iterative PCG-based procedure.
This avoids storage of the Hessian and leads to a significant
speedup relative to standard IP method solvers. Finally, in the
proximal Newton method a sequential quadratic approximation
of the smooth part of the objective function in (SP) is used
and the search direction is efficiently computed via cyclic
coordinate descent over the set of active variables.

A. Primal-dual interior-point method

Although the problem is SDP representable, we do not
use standard SDP characterization in our algorithmic develop-
ments. In fact, we treat our problem as a convex program and
provide implementation that is based on a modification of a
primal-dual IP algorithm for linear programming to our setup.
While the major algorithmic component, namely infeasible
primal-dual interior-point method, is well-known, our use of
this standard method is novel and it exploits specific structure
of the optimality conditions for undirected networks.

1) Central path equations and search direction: To develop
a customized algorithm, we introduce Dx := diag (x) and
combine (10a) and (4a) to express Y in terms of x,

Y (x) =
(
Gp + EDxE

T
)−1

Qp
(
Gp + EDxE

T
)−1

. (14)

This facilitates the use of an infeasible primal-dual interior-
point method to solve the central path equations

γ 1 − diag
(
ET (Y (x)−R)E

)
− y+ = 0 (15a)

γ 1 + diag
(
ET (Y (x)−R)E

)
− y− = 0 (15b)

x − x+ + x− = 0 (15c)

y+ ◦ x+ = σ µ1 (15d)

y− ◦ x− = σ µ1 (15e)

for x, x±, and y±. Equations (15d) and (15e) are obtained by
relaxing complementary slackness conditions y± ◦ x± = 0.
Here, µ and σ are positive parameters that provide continuous
deformation of the optimality conditions; µ quantifies the cur-
rent duality gap and the centering parameter σ ≤ 1 determines
the desired duality gap reduction in the current iteration [42],
[43]. Finally, we enforce the inequality constraints

Gp + E diag (x)ET � 0, x± ≥ 0, y± ≥ 0 (16)

via an appropriate step-size selection.

We assume that equations (15a), (15b), and (15c) can be
violated. For (x̄, x̄±, ȳ±) that satisfy (16) but are infeasible
(i.e., do not satisfy (15a), (15b), and (15c) with Ȳ := Y (x̄)
given by (14)), the primal and dual residuals are

rp(x̄, x̄±) := x̄ − x̄+ + x̄−

r+
d (x̄, ȳ+) := γ 1 − diag

(
ET (Ȳ −R)E

)
− ȳ+

r−d (x̄, ȳ−) := γ 1 + diag
(
ET (Ȳ −R)E

)
− ȳ−.

(17)

By linearizing (15) around (x̄, x̄±, ȳ±) and eliminating x̃
from the resulting equations, we obtain the search direction
(x̃±, ỹ±) as the solution to

A

[
x̃+

x̃−

]
= b

ỹ± = σ µD−1
x̄± 1 − D± x̃± − ȳ±.

(18)
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Here,

A =

[
H + D+ −H
−H H + D−

]
, D± = D−1

x̄± Dȳ±

b =

[
σ µD−1

x̄+
1 + H rp − r+

d − ȳ+

σ µD−1
x̄− 1 − H rp − r−d − ȳ−

]
H(x̄) = 2 (H1(x̄) ◦H2(x̄))

and the matrices H1(x̄) and H2(x̄) are given in Proposition 1.
We note that the matrix A in (18) is positive definite.

Clearly, we can write A as A = A1 +A2 with

A1 =

[
D+ 0
0 D−

]
, A2 =

[
H −H
−H H

]
.

The matrix A1 is block-diagonal with D± � 0 and thus
positive definite. Since H is an elementwise product of two
positive definite matrices H1 and H2, it is positive definite.
The Schur complement lemma implies positive-semi definite-
ness of A2 and, thus, positive definiteness of A.

2) Algorithm: As typically done in IP methods, our cus-
tomized algorithm is enhanced via Mehrotra’s predictor-
corrector step [44]. The predictor step yields affine scaling
direction (x̃a, x̃a±, ỹ

a
±), and the corrector step is used to obtain

the search direction (x̃, x̃±, ỹ±) [42, Section 14.2].
The challenging aspect of the primal-dual IP algorithm is

the computation of the search directions (x̃a, x̃a±, ỹ
a
±) and

(x̃, x̃±, ỹ±). These are obtained by solving linear systems of
equations for (x̃a+, x̃

a
−) and (x̃+, x̃−). Vectors ỹa±, ỹ±, and x̃

are then computed using (18). The use of Mehrotra’s predictor-
corrector step implies that the same matrix A appears in the
equations for (x̃a+, x̃

a
−) and (x̃+, x̃−). Thus, for moderately

sized problems, Cholesky factorization of A followed by back
solve operations can be used to to determine the search direc-
tions. These respectively take O(m3) and O(m2) operations.

3) Search direction via the PCG method: Since Cholesky
factorization is not well-suited for large problems, we next
provide an efficient inexact method for computing the search
directions (x̃a, x̃a±, ỹ

a
±) and (x̃, x̃±, ỹ±). Our approach utilizes

the PCG algorithm, which is an indirect iterative method for
solving a linear system of equations with a positive definite
matrix A [42], [45].

In exact arithmetics, conjugate gradients algorithm con-
verges in m iterations. Each iteration requires a few inner prod-
ucts and one matrix-vector multiplication [42, Algorithm 5.3].
If the matrix A is dense, matrix-vector multiplication costs
O(m2). Thus, the total cost is O(m3) which is of the same
order as the direct method based on Cholesky factorization.

A computational advantage can be gained if matrix-vector
multiplication is cheaper than O(m2); e.g., if the matrix A
is sparse [45]. Moreover, an acceptable solution can often be
reached in less than m iterations. On the other hand, conjugate
gradients method can perform poorly for ill-conditioned matrix
A and in the presence of round-off errors. In many problems,
introduction of suitably selected preconditioners is essential to
ensure fast convergence or even convergence.

In our implementation, we use the following preconditioner

Π :=

[
diag (H) + D+ −diag (H)
−diag (H) diag (H) + D−

]
.

Similar preconditioner was used to solve `1-regularized least-
squares problem via inexact IP method [25]. The action of
Π−1 on the vector p :=

[
pT1 pT2

]T
is given by

Π−1 p =

[
D3 p1 + D3D2 p2

D3D2 p1 + (D1 + D2D3D2) p2

]
(19a)

where

D1 := (diag (H) + D−)−1

D2 := diag (H)D1

D3 := (diag (H) (I − D2) + D+)−1.

(19b)

Since all matrices in (19) are diagonal, no matrix inversion is
required to compute Π−1p, and the result can be obtained via
elementwise vector multiplication.

Another desirable feature of the PCG method is that we do
not need to store the matrix A; computation of only matrix-
vector products is required. This offers significant memory
saving in large-scale problems. The action of the matrix H ,
which is determined by the Hadamard product of H1 and H2,
on the vector pi is determined by

(H1 ◦H2) pi = diag (H1 diag (pi)H2).

From the definitions of the matrices H1 and H2 (see Propo-
sition 1), it follows that

(H1 ◦H2) pi = diag (ETM E)

where we cache the n× n matrix M ,

M := Y E diag (pi)E
T
(
Gp + E diag (x̄)ET

)−1
.

Efficiency of iterative algorithms can be further improved
with a better choice of preconditioner. It is an open issue how
to systematically obtain these. We note that the performance of
a preconditioner based on incomplete Cholesky factorization
was inferior compared to the preconditioner that we used.

In our implementation, the initial values of both the affine
scaling direction (x̃a+, x̃

a
−) and the search direction (x̃+, x̃−)

are set to zero. The PCG algorithm is terminated if either the
number of PCG iterations exceeds the desired value Npcg or
if the following stopping criterion is satisfied

‖A
[
x̃+

x̃−

]
− b‖2 ≤ εpcg

Here, εpcg = min {0.1, δ η/‖b‖2}, η is the current value of
the duality gap, and δ is an algorithm parameter. In early
iterations, the Newton system is solved with low accuracy that
does not deteriorate beyond 10%. The dependence of εpcg on
the duality gap η implies that, as η decreases, the accuracy
improves [42]. Our computational experiments indicate that
the constant δ = 0.3 in the expression for εpcg appears to work
well for a broad range of problems. Similar stopping criteria
were used in inexact IP method solvers for `1-regularized
least-squares and logistic regression problems [25], [26].

B. Proximal gradient method

We next use the proximal gradient method to solve (SP).
A simple quadratic approximation of J(x) around the current



7

iterate xk,

J(x) ≈ J(xk) + ∇J(xk)T (x − xk) +
1

2αk
‖x − xk‖22

is substituted to (SP) to obtain

xk+1 = argmin
x

g(x) +
1

2αk
‖x − (xk − αk∇J(xk))‖22.

Here, αk is the step-size and the update is determined by the
proximal operator of the function αk g [30],

xk+1 = proxαkg

(
xk − αk∇J(xk)

)
.

In particular, for g(x) = γ ‖x‖1, we have

xk+1 = Sγαk

(
xk − αk∇J(xk)

)
where Sκ(y) = sign (y) max (|y| − κ, 0) is the soft-
thresholding function.

The proximal gradient algorithm converges with rate
O(1/k) if αk < 1/L, where L is the Lipschitz constant of
∇J [29], [30]. It can be shown that∇J is Lipschitz continuous
but, since it is challenging to explicitly determine L, we adjust
αk via backtracking. To provide a better estimate of L, we
initialize αk using the Barzilai-Borwein (BB) method [31]
which provides an effective heuristic for approximating the
Hessian of the function J via the scaled version of the identity,
(1/αk)I . At the kth iteration, the initial BB step-size αk,0,

αk,0 :=
‖xk − xk−1‖22

(xk−1 − xk)T (∇J(xk−1) − ∇J(xk))
(20)

is adjusted via backtracking until the inequality constraint
in (SP) is satisfied and

J(xk+1) ≤ J(xk)+∇J(xk)T (xk+1−xk)+
1

2αk
‖xk+1−xk‖22.

Since J is continuously differentiable with Lipschitz continu-
ous gradient, this inequality holds for any αk < 1/L and the
algorithm converges sub-linearly [29]. This condition guaran-
tees that objective function decreases at every iteration. Our
numerical experiments in Section VI suggest that BB step-size
initialization significantly enhances the rate of convergence.

Remark 2: The biggest computational challenge comes
from evaluation of the objective function and its gradient.
Since the inverse of the strengthened graph Laplacian G has to
be computed, with direct computations these evaluations take
O(n3) and O(nm2) flops, respectively. However, by exploiting
the problem structure, ∇J can be computed more efficiently.
The main cost arises in the computation of diag (ETY E).
We instead compute it using sum (ET ◦ (Y E)) which takes
O(n2m) operations. Here, sum (A) is a vector which contains
summation of each row of the matrix A in its entries. For
networks with m � n this leads to significant speed up.
Moreover, in contrast to direct computation, we do not need
to store the m × m matrix ETY E. Only formation of the
columns is required which offers memory saving.

C. Proximal Newton method

In contrast to the proximal gradient algorithm, the proximal
Newton method benefits from second-order Taylor series ex-
pansion of the smooth part of the objective function in (SP).

Herein, we employ cyclic coordinate descent over the set of
active variables to efficiently compute the Newton direction.

By approximating the smooth part of the objective function
J in (SP) with the second-order Taylor series expansion around
the current iterate x̄,

J(x̄+ x̃) ≈ J(x̄) + ∇J(x̄)T x̃ +
1

2
x̃T ∇2J(x̄) x̃

the problem (SP) becomes

minimize
x̃

∇J(x̄)T x̃ +
1

2
x̃T ∇2J(x̄) x̃ + γ ‖x̄ + x̃‖1

subject to Gp + E diag (x̄ + x̃)ET � 0.
(21)

Let x̃ denote the current iterate approximating the Newton
direction. By perturbing x̃ in the direction of the ith standard
basis vector ei in Rm, the objective function in (21) becomes

∇J(x̄)T (x̃ + δi ei) +
1

2
(x̃ + δi ei)

T ∇2J(x̄) (x̃ + δi ei)

+ γ |x̄i + x̃i + δi|.

Elimination of constant terms allows us to bring (21) into

minimize
δi

1

2
ai δ

2
i + bi δi + γ |ci + δi| (22)

where the optimization variable is the scalar δi and (ai, bi, ci,
x̄i, x̃i) are the problem data with

ai := eTi ∇2J(x̄) ei

bi :=
(
∇2J(x̄) ei

)T
x̃ + eTi ∇J(x̄)

ci := x̄i + x̃i.

The explicit solution to (22) is given by

δi = − ci + Sγ/ai(ci − bi/ai) .

After the Newton direction x̃ has been computed, we deter-
mine the step-size α via backtracking. This guarantees positive
definiteness of the strengthened graph Laplacian and sufficient
decrease of the objective function. We use generalization of
Armijo rule [46], [47] to find an appropriate step-size α such
that Gp + E diag(x̄+ αx̃)ET is positive definite matrix and

J(x̄+ αx̃) + γ ‖x̄+ αx̃‖1 ≤ J(x̄) + γ ‖x̄‖1 +

ασ
(
∇J(x̄)T x̃ + γ ‖x̄+ x̃‖1 − γ ‖x̄‖1

)
.

Remark 3: The parameter ai in (22) is determined by the
ith diagonal element of the Hessian ∇2J(x̄). On the other
hand, the ith column of ∇2J(x̄) and the ith element of
the gradient vector ∇J(x̄) enter into the expression for bi.
All of these can be obtained directly from ∇2J(x̄) and
∇J(x̄) and forming them does not require any multiplication.
Computation of a single vector inner product between the ith
column of the Hessian and x̃ is required in bi, which typically
takes O(m) operations. To avoid direct multiplication, in each
iteration after finding δi, we update the vector ∇2J(x̄)T x̃
using the correction term δi(E

TY Ei) ◦ ((G−1Ei)
TE)T and

take its ith element to form bi. Here, Ei is the ith column of
the incidence matrix of the controller graph. This also avoids
the need to store the Hessian of J , which is an m×m matrix,
thereby leading to a significant memory saving.
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Remark 4: Active set strategy is an effective means for
determining the directions that do not need to be updated in the
coordinate descent algorithm. At each outer iteration, we clas-
sify the variable as either active or inactive based on the values
of x̄i and the ith component of the gradient vector ∇J(x̄). For
g(x) = γ ‖x‖1, the ith search direction is inactive if

x̄i = 0 and | eTi ∇J(x̄) | < γ − ε

and it is active otherwise. Here, ε > 0 is a small number
(e.g., ε = 0.0001γ). The Newton direction is then obtained
by solving the optimization problem over the set of active
variables. This significantly improves algorithmic efficiency
for large values of the regularization parameter γ.

Convergence analysis: In (SP), J(x) is smooth for Gp +
E diag(x)ET � 0 and the non-smooth part is given by the `1
norm of x. The objective function of the form J(x)+g(x) was
studied in [36], where J is smooth over the positive definite
cone and g is a separable non-differentiable function. Theo-
rems 1 and 2 from [36] thus imply super-linear convergence
of the quadratic approximation method for (SP).

Stopping criteria: In all three algorithms, the norms of the
primal and dual residuals rp and r±d as well as the duality gap η
are used as stopping criteria. In contrast to the stopping criteria
available in the literature, this choice enables fair comparison
of the algorithms. In our proximal algorithms, we use (13) to
construct a dual feasible Ŷ and obtain y+ and y− from (11). In
each iteration, η, rp, and r±d are evaluated using (12) and (17).

V. GROWING CONNECTED RESISTIVE NETWORKS

The problem of topology identification and optimal de-
sign of stochastically-forced networks has many interesting
variations. An important class is given by resistive networks
in which all edge weights are non-negative, x ≥ 0 [7].
Here, we study the problem of growing connected resistive
networks [13], [14]. In this, the plant graph is connected
and there are no joint edges between the plant and the
controller graphs. Our objective is to enhance the closed-
loop performance by adding a small number of edges. As
we show below, inequality constraints in this case amount
to non-negativity of controller edge weights. This simplifies
optimality conditions and enables further improvement of the
computational efficiency of our customized algorithms.

The restriction on connected plant graphs implies positive
definiteness of the strengthened graph Laplacian of the plant,
Gp = Lp + (1/n)11T � 0. Thus, Gp + E diag (x)ET

is always positive definite for connected resistive networks
and (SP) simplifies to

minimize
x

f(x) + g(x) (23)

where
f(x) := J(x) + γ 1Tx

and g(x) is the indicator function for the non-negative orthant,

g(x) := I+(x) =

{
0, x ≥ 0

+∞, otherwise.

As in Section III, in order to determine the Lagrange dual
of the optimization problem (23), we introduce an additional

optimization variable G and rewrite (23) as

minimize
G, x

〈
G−1, Qp

〉
+ (γ 1 + diag

(
ETRE

)
)Tx

subject to G − Gp − E diag (x)ET = 0

x ≥ 0.
(P1)

Proposition 3: The Lagrange dual of the primal optimiza-
tion problem (P1) is given by

maximize
Y

2 trace
(

(Q
1/2
p Y Q

1/2
p )1/2

)
− 〈Y,Gp〉

subject to diag
(
ET (Y − R)E

)
≤ γ 1

Y � 0, Y 1 = 1

(D1)

where Y is the dual variable associated with the equality
constraint in (P1). The duality gap is

η = yTx = 1T (y ◦ x) (24)

where

y := γ 1 − diag
(
ET (Y −R)E

)
≥ 0 (25)

represents the dual variable associated with the non-negativity
constraint on the vector of the edge weights x.

Remark 5: For connected resistive networks with the con-
trol weight R = r I , Ŷ given by (13a) is dual feasible if

β ≤ γ + 2 r

max (diag (ET (Y − R)E)) + 2 r
. (26)

A. Primal-dual interior-point method

In this case, the central path equations are given by

γ 1 − diag
(
ET (Y (x) − R)E

)
− y = 0 (27a)

y ◦ x = σ µ1 (27b)

with x ≥ 0 and y ≥ 0. Equation (27b) is obtained by relaxing
the complementary slackness condition and Y (x) is given
by (14). For x̄ > 0 and ȳ > 0 that are infeasible (i.e., do
not satisfy (27a)), the dual residual is determined by

rd(x̄, ȳ) := γ 1 − diag
(
ET (Y (x̄) − R)E

)
− ȳ. (28)

The search direction is obtained by expressing ỹ in terms of x̃,

ỹ = −D−1
x̄ Dȳ x̃ − ȳ (29a)

and solving the linearized system of central path equations,

A x̃ = b (29b)

with A := H +D−1
x̄ Dȳ, b := − (ȳ + rd(x̄, ȳ)) , and H(x̄) :=

2 (H1(x̄) ◦H2(x̄)), where the matrices H1 and H2 are given
in Proposition 1. Positive definiteness of D−1

x̄ Dȳ and H (ele-
mentwise product of two positive definite matrices is positive
definite) implies positive definiteness of A. Thus, Cholesky
factorization of A followed by back solve operations can be
used to to determine (x̃a, ỹa) and (x̃, ỹ). For large problems,
the search direction is obtained via an inexact method based on
the PCG algorithm with diagonal preconditioner, Π := I ◦A.
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B. Proximal gradient method

Using a simple quadratic approximation of the smooth part
of the objective function f around the current iterate xk

f(x) ≈ f(xk) + ∇f(xk)T (x − xk) +
1

2αk
‖x − xk‖22

the optimal solution of optimization problem (23) is deter-
mined by the proximal operator of the function g(x) = I+(x),

xk+1 =
(
xk − αk∇f(xk)

)
+

where (·)+ is the projection on the non-negative orthant. Thus,
the action of the proximal operator is given by the projected
gradient.

As in Section IV-B, we initialize αk using the BB heuristics
but we skip the backtracking step here and employ a non-
monotone BB scheme [48], [49]. The effectiveness of this
strategy has been established on quadratic problems [31],
[48], [50], but its convergence in general is hard to prove.
In Section VI, we demonstrate efficiency of this approach.

C. Proximal Newton method

We next adjust the customized algorithm based on proximal
Newton method for growing connected resistive networks. We
approximate the smooth part of the objective function f in (23)
using the second-order Taylor series expansion around the
current iterate x̄,

f(x̄+ x̃) ≈ f(x̄) + ∇f(x̄)T x̃ +
1

2
x̃T ∇2f(x̄) x̃

and rewrite (23) as

minimize
x̃

∇f(x̄)T x̃ +
1

2
x̃T ∇2f(x̄) x̃

subject to x̄ + x̃ ≥ 0.
(30)

By perturbing x̃ in the direction of the ith standard basis vector
ei in Rm, x̃+ δi ei, the objective function in (30) becomes

∇f(x̄)T (x̃ + δi ei) +
1

2
(x̃ + δi ei)

T ∇2f(x̄) (x̃ + δi ei) .

Elimination of constant terms allows us to bring (30) into

minimize
δi

1

2
ai δ

2
i + bi δi

subject to x̄i + x̃i + δi ≥ 0.
(31)

The optimization variable is the scalar δi and ai, bi, x̄i, and
x̃i are the problem data with

ai := eTi ∇2f(x̄) ei

bi :=
(
∇2f(x̄) ei

)T
x̃ + eTi ∇f(x̄)

The explicit solution to (31) is given by

δi =

{
−bi/ai, x̄i + x̃i − bi/ai ≥ 0

− (x̄i + x̃i) , otherwise .

After the Newton direction x̃ has been computed, we
determine the step-size α via backtracking. This guarantees
positivity of the updated vector of the edge weights, x̄+ αx̃,
and sufficient decrease of the objective function, f(x̄+αx̃) ≤
f(x̄) + ασ∇f(x̄)T x̃.

Remark 6: As in Section IV-C, we use an active set strategy
to identify the directions that do not need to be updated in the
coordinate descent algorithm. For g(x) = I+(x), the ith search
direction is inactive if

x̄i = 0 and eTi ∇f(x̄) ≥ 0

and it is active otherwise.
Stopping criteria: The norm of the dual residual, rd, and

the duality gap, η, are used as stopping criteria. For proximal
algorithms, the dual variable y is obtained from (25) where Ŷ
is given by (13a) and β satisfies (26). At each iteration, η and
rd are evaluated using (24) and (28).

VI. COMPUTATIONAL EXPERIMENTS

Herein, we provide examples and compare performance
of our customized algorithms. The direct primal-dual IP al-
gorithm uses Cholesky factorization to compute the search
direction, and the indirect algorithm uses PCG that does not
store the matrix A. Algorithm proxBB represents proximal
gradient method with BB step-size initialization and proxN
identifies proximal Newton method in which the search direc-
tion is found via coordinate descent. We have implemented all
algorithms in MATLAB. All tests were executed on a 3.4 GHz
Core(TM) i7-3770 Intel(R) machine with 16GB RAM.

In all examples, we set R = I and choose the state weight
that penalizes the mean-square deviation from the network
average, Q = I − (1/n)11T . The absolute value of the
dual residual, rd, and the duality gap, η, are used as stopping
criteria. We set the tolerances for rd and η to 10−3 and 10−4,
respectively. Finally, for connected plant networks

γmax := ‖ diag (ET G−1
p QG−1

p E) ‖∞

identifies the value of the regularization parameter γ for which
all edge weights in the controller graph are equal to zero.

Additional information about our computational experi-
ments, along with MATLAB source codes, can be found at:

www.ece.umn.edu/∼mihailo/software/graphsp/

A. Performance comparison

We first solve the problem (P1) for growing connected
resistive Erdös-Rényi networks with different number of nodes
(n = 5 to n = 100). The generator of the plant dynamics is
given by an undirected unweighted graph with the edge prob-
ability 1.05 log(n)/n. The incidence matrix of the controller
graph is selected to satisfy the following requirements: (i) in
the absence of the sparsity-promoting term, the closed-loop
network is given by a complete graph; and (ii) there are no
joint edges between the plant and the controller graphs. As
the size of the network increases, the implementation of the
IP method based on PCG is significantly more efficient than
the implementation based on Cholesky factorization. These
algorithms are, on average, about 206 and 41 times faster than
CVX (for sizes that can be handled by CVX), respectively.

Table I compares our customized algorithms in terms of
speed and the number of iterations. For n = 300, the direct IP
method runs out of memory and the indirect method computes
the optimal solution in about 16 seconds (these results are

http://www.ece.umn.edu/~mihailo/software/graphsp/index.html


10

TABLE I: Comparison of our algorithms (solve times in seconds/number of iterations) for the problem of growing connected
resistive Erdös-Rényi networks with different number of nodes n, edge probability 1.05 log(n)/n, and γ = 0.8 γmax.

number of nodes n = 300 n = 700 n = 1000 n = 1300 n = 1500
number of edges m = 43986 m = 242249 m = 495879 m = 839487 m = 1118541

IP (PCG) 16.499/8 394.256/13 1014.282/13 15948.164/13 179352.208/14
proxBB 1.279/11 15.353/11 55.944/13 157.305/16 239.567/16
proxN 1.078/4 11.992/4 34.759/4 82.488/4 124.307/4

so
lv

e
tim

e

(a)
(J

−
J
c
)/
J
c

(b)

n n

Fig. 1: (a) Solve times (in seconds); and (b) performance
degradation of proximal gradient and greedy algorithms

relative to the optimal centralized controller.

not shown in Table I). Even for small networks, proximal
methods are significantly faster than the IP method and proxN
takes smaller number of iterations and converges quicker than
proxBB. For a larger network (with 1500 nodes and 1118541
edges in the controller graph), it takes about 50 hours for the
PCG-based IP method to solve the problem. In contrast, proxN
and proxBB converge in about 2 and 4 minutes, respectively.

Figure 1 compares our proximal gradient algorithm with
the fast greedy algorithm of [19]. We solve problem (P1)
for Erdös-Rényi networks with different number of nodes
(n = 5 to 500) and γ = 0.4 γmax. After proxBB identifies
the edges in the controller graph, we use the greedy method
to select the same number of edges. Finally, we polish the
identified edge weights for both methods. Figure 1a shows the
solve times (in seconds) versus the number of nodes. As the
number of nodes increases the proximal algorithm significantly
outperforms the fast greedy method. Relative to the optimal
centralized controller, both methods yield similar performance
degradation of the closed-loop network; see Fig. 1b.

B. Large-scale Facebook network

To evaluate effectiveness of our algorithms on large net-
works, we solve the problem of growing a network of friend-
ships. In such social networks, nodes denote people and edges
denote friendships. There is an edge between two nodes if
the two people are friends [51]. The ego-Facebook network
is undirected and unweighted with 4039 nodes and 88234
edges; the data is available at http://snap.stanford.edu/data/.
Our objective is to improve performance by adding a small
number of extra edges. We assume that people can only form
friendships with friends of their friends. This restricts the
number of potential edges in the controller graph to 1358067.

To avoid memory issues, we have implemented our algo-
rithms in C++. For γ = c γmax with c = {0.1, 0.2, 0.5, 0.8}

c
a
r
d
(x

)

(a)

(J
−
J
c
)/
J
c

(b)

γ card(x)

Fig. 2: (a) Sparsity level; and (b) optimal tradeoff curves
resulting from the application of proximal gradient algorithm

and a heuristic strategy for the Facebook network.

and γmax = 19.525, the proximal gradient algorithm computes
the solution in about 10, 2.6, 0.87, and 0.43 hours, respec-
tively. After identifying the topology of the controller graph,
we compute the optimal edge weights via polishing.

Figure 2a shows that the number of nonzero elements in the
vector x decreases as γ increases. Moreover, Fig. 2b illustrates
that the H2 performance deteriorates as the number of nonzero
elements in x decreases. In particular, for γ = 0.8 γmax,
the identified sparse controller has only 3 nonzero elements
(it uses only 0.0002% of the potential edges). Relative to
the optimal centralized controller, this controller degrades
performance by 16.842%, (J − Jc)/Jc = 16.842%.

The Facebook network consists of 10 ego nodes,
{1, 108, 349, 415, 687, 699, 1685, 1913, 3438, 3981}. All other
nodes are friends to at least one of these ego nodes [51]. In
all of our experiments, the added links with the largest edge
weights connect either the ego nodes to each other or three
non-ego nodes, {429, 564, 568}, to the ego nodes. Thus, our
method identifies non-ego nodes that play an important role
in improving the network performance.

We compare performance of the identified controller to
a heuristic strategy that is described next. Controller graph
contains 16 potential edges between ego nodes. If the number
of edges identified by our method is smaller than 16, we ran-
domly select the desired number of edges between ego nodes.
Otherwise, we connect all ego nodes and select the remaining
edges in the controller graph randomly. We then use polishing
to find the optimal edge weights. The performance of resulting
random controller graphs are averaged over 10 trials and the
performance loss relative to the optimal centralized controller
is displayed in Fig. 2b. We see that our algorithm always
performs better than the heuristic strategy. On the other hand,
the heuristic strategy outperforms the strategy that adds edges

http://snap.stanford.edu/data/
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(a) γ = 0.02 (b) γ = 0.09

(c) γ = 0.63 (d) γ = 2.5

Fig. 3: Topologies of the plant (blue lines) and controller
graphs (red lines) for an unweighted random network with

three disconnected subgraphs.

randomly (without paying attention to ego nodes). Unlike our
method, the heuristic strategy does not necessarily improve
the performance by increasing the number of added edges. In
fact, the performance deteriorates as the number of edges in
the controller graph increases from 4 to 27; see Fig. 2b.

C. Random disconnected network

The plant graph (blue lines) in Fig. 3 contains 50 randomly
distributed nodes in a region of 10× 10 units. Two nodes are
neighbors if their Euclidean distance is not greater than 2 units.
We examine the problem of adding edges to a plant graph
which is not connected and solve the sparsity-promoting opti-
mal control problem (SP) for controller graph with m = 1094
potential edges. This is done for 200 logarithmically-spaced
values of γ ∈ [10−3, 2.5] using the path-following iterative
reweighted algorithm as a proxy for inducing sparsity [41].
As indicated by (8), we set the weights to be inversely
proportional to the magnitude of the solution x to (SP) at
the previous value of γ. We choose ε = 10−3 in (8) and
initialize weights for γ = 10−3 using the solution to (SP)
with γ = 0 (i.e., the optimal centralized vector of the edge
weights). Topology identification is followed by the polishing
step that computes the optimal edge weights; see Section II-B.

As illustrated in Fig. 3, larger values of γ yield sparser
controller graphs (red lines). In contrast to all other examples,
the plant graph is not connected and the optimal solution is
obtained using the algorithms of Section IV. Note that greedy
method [19] cannot be used here. Since the plant graph has
three disconnected subgraphs, at least two edges in the con-
troller are needed to make the closed-loop network connected.

Figure 4 shows that the number of nonzero elements in the
vector of the edge weights x decreases and that the closed-
loop performance deteriorates as γ increases. In particular,
Fig. 4c illustrates the optimal tradeoff curve between the H2

performance loss (relative to the optimal centralized controller)
and the sparsity of the vector x. For γ = 2.5, only four edges
are added. Relative to the optimal centralized vector of the
controller edge weights xc, the identified sparse controller
in this case uses only 0.37% of the edges, and achieves a
performance loss of 82.13%, i.e.,

card(x)/card(xc) = 0.37%, (J − Jc)/Jc = 82.13%.

(a) γ = 0 (b) γ = 0.09 γmax

(c) γ = 0.24 γmax (d) γ = 0.96 γmax

Fig. 5: The problem of growing unweighted path network.
Blue lines identify edges in the plant graph, and red lines

identify edges in the controller graph.

(a) γ = 0 (b) γ = 0.11 γmax

(c) γ = 0.24 γmax (d) γ = 0.94 γmax

Fig. 6: The problem of growing unweighted ring network.
Blue lines identify edges in the plant graph, and red lines

identify edges in the controller graph.

Here, xc is the solution to (SP) with γ = 0 and the pattern
of non-zero elements of x is obtained by solving (SP) with
γ = 2.5 via the path-following iterative reweighted algorithm.

D. Path and ring networks

For path networks, our computational experiments show that
for a large enough value of the sparsity-promoting parameter
γ a single edge, which generates the longest cycle, is added;
see Fig. 5. This is in agreement with [16] where it was
proved that the longest cycle is most beneficial for improving
the H2 performance of tree networks. Similar observations
can be made for the spatially-invariant ring network with
nearest neighbor interactions. For large values of γ, each node
establishes a link to the node that is farthest away in the
network; see Fig. 6. It is worth noting that this is in agreement
with recent theoretical developments [11] where perturbation
analysis was used to identify optimal week links in edge-
transitive consensus networks. Thus, for these regular networks
and large enough values of the regularization parameter, our
approach indeed provides the globally optimal solution to the
original non-convex cardinality minimization problem.



12

c
a
r
d
(x

)/
c
a
r
d
(x

c
)

(a)

(J
−
J
c
)/
J
c

(b)

(J
−
J
c
)/
J
c

(c)

γ γ card(x)/card(xc)

Fig. 4: (a) Sparsity level; (b) performance degradation; and (c) the optimal tradeoff curve between the performance
degradation and the sparsity level of optimal sparse x compared to the optimal centralized vector of the edge weights xc.

The results are obtained for unweighted random disconnected plant network with topology shown in Fig. 3.

VII. CONCLUDING REMARKS

We have examined the problem of optimal topology iden-
tification and design of the corresponding edge weights for
undirected consensus networks. Our approach uses convex op-
timization to balance performance of stochastically-forced net-
works with the number of edges in the distributed controller.
For `1-regularized minimum variance optimal control problem,
we have derived a Lagrange dual and exploited structure of the
optimality conditions for undirected networks to develop three
customized algorithms that are well-suited for large problems.
These are based on the infeasible primal-dual interior-point,
the proximal gradient, and the proximal Newton methods.
The proximal gradient algorithm is a first-order method that
updates the controller graph Laplacian via the use of the soft-
thresholding operator. In the IP method, the Newton direction
is obtained using an inexact iterative procedure based on
the preconditioned conjugate gradients and, in the sequential
quadratic approximation method, it is computed using cyclic
coordinate descent over the set of active variables. Examples
are provided to demonstrate utility of our algorithms. We have
shown that proximal algorithms can solve the problems with
millions of edges in the controller graph in several minutes, on
a PC. Furthermore, we have specialized our algorithm to the
problem of growing connected resistive networks. In this, the
plant graph is connected and there are no joint edges between
the plant and the controller graphs. We have exploited structure
of such networks and demonstrated how additional edges can
be systematically added in a computationally efficient manner.
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