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Controlling the onset of turbulence
by streamwise travelling waves.
Part 1. Receptivity analysis
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We examine the efficacy of streamwise travelling waves generated by a zero-net-
mass-flux surface blowing and suction for controlling the onset of turbulence in a
channel flow. For small-amplitude actuation, we utilize a weakly nonlinear analysis
to determine base-flow modifications and assess the resulting net power balance.
Receptivity analysis of the velocity fluctuations around this base flow is then employed
to design the travelling waves. Our simulation-free approach reveals that, relative to
the flow with no control, the downstream travelling waves with properly designed
speed and frequency can significantly reduce receptivity, which makes them well
suited for controlling the onset of turbulence. In contrast, the velocity fluctuations
around the upstream travelling waves exhibit larger receptivity to disturbances. Our
theoretical predictions, obtained by perturbation analysis (in the wave amplitude)
of the linearized Navier–Stokes equations with spatially periodic coefficients, are
verified using full-scale simulations of the nonlinear flow dynamics in the companion
paper (Lieu et al., J. Fluid Mech., 2010, doi:10.1017/S002211201000340X).
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1. Introduction
The problem of turbulence suppression in a channel flow using feedback control

with wall-mounted arrays of sensors and actuators has recently received significant
attention. This problem is viewed as a benchmark for turbulence suppression in
a variety of geometries, including boundary layers. Also, there has been mounting
evidence that the linearized Navier–Stokes (N–S) equations represent a good
control-oriented model for the dynamics of transition. Recent research suggests that,
in wall-bounded shear flows, one must account for modelling imperfections in the
linearized N–S equations since they are exceedingly sensitive to external excitations
and unmodelled dynamics (see, for example, Farrell & Ioannou 1993, Trefethen
et al. 1993, Jovanović & Bamieh 2005 and Schmid 2007). This has motivated several
research groups to use the linearized N–S equations for model-based design of
estimators and controllers in a channel flow (Bewley & Liu 1998; Lee et al. 2001;
Kim 2003; Högberg, Bewley & Henningson 2003a ,b; Hœpffner et al. 2005; Chevalier
et al. 2006; Kim & Bewley 2007; Vazquez & Krstic 2007a ,b; Cochran & Krstic 2009).
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These results suggest that the proper turbulence-suppression design paradigm is that
of disturbance attenuation or robust stabilization rather than modal stabilization.

An alternative approach to feedback flow control relies on the understanding
of the basic flow physics and the open-loop implementation of controls (i.e.
without measurement of the relevant flow quantities and disturbances). Examples
of sensorless strategies include wall-geometry deformation such as riblets, transverse
wall oscillations and control of conductive fluids using the Lorentz force. Although
several numerical and experimental studies show that properly designed sensorless
strategies may yield significant drag reduction, an obstacle to fully utilizing these
physics-based approaches is the absence of a theoretical framework for their design
and optimization.

An enormous potential of sensorless strategies was exemplified by Min et al.
(2006), where direct numerical simulation (DNS) was used to show that a surface
blowing and suction in the form of an upstream travelling wave (UTW) results in a
sustained sub-laminar drag in a fully developed turbulent channel flow. The underlying
mechanism for obtaining drag smaller than in a laminar flow is the generation of
the wall-region Reynolds shear stresses of the opposite signs compared to what is
expected based on the mean shear. By assuming that a wall actuation influences
only the velocity fluctuations, Min et al. (2006) determined an explicit solution to the
two-dimensional N–S equations linearized around a parabolic profile; they further
used an expression for skin-friction drag in fully developed channel flows (Fukagata,
Iwamoto & Kasagi 2002; Bewley & Aamo 2004), and showed that the drag is increased
with the downstream travelling waves (DTWs) and decreased with the UTWs.

A comparison of laminar and turbulent channel flows with and without control was
presented by Marusic, Joseph & Mahesh (2007), who derived a criterion for achieving
a sub-laminar drag. This study considered effectiveness of streamwise travelling waves
at high Reynolds numbers and discussed why such controls can achieve a sub-laminar
drag. Another recent study (Hœpffner & Fukagata 2009) emphasized that the UTWs
introduce a larger flux compared to the uncontrolled flow, which motivated the authors
to characterize the observed mechanism as a pumping rather than as a drag reduction.
It was shown that, even with no driving pressure gradient, blowing and suction
along the walls induces pumping action in a direction opposite to that of the wave
propagation. By considering flows in the absence of velocity fluctuations, Hœpffner &
Fukagata (2009) showed that it costs more to drive a fixed flux with the wall
transpiration type of actuation than with the standard pressure gradient type of
actuation. A fundamental limitation on the balance of power in a channel flow
was recently examined by Bewley (2009); this study showed that any transpiration-
based control strategy that results in a sub-laminar drag necessarily has negative
net efficiency compared to the laminar flow with no control. Furthermore, Fukagata,
Sugiyama & Kasagi (2009) showed that a lower bound on the net driving power in
a duct flow with arbitrary constant streamline curvature is determined by the power
required to drive the Stokes flow. It was thus concluded that the flow has to be
relaminarized in order to be driven with the smallest net power. However, since the
difference between the turbulent and laminar drag coefficients grows quadratically
with the Reynolds number, Marusic et al. (2007) argued that relaminarization may
not be possible in strongly inertial flows. An alternative approach is to design a
controller that reduces skin-friction drag in turbulent flows; provided that the control
power is less than the saved power, a positive net efficiency can still be achieved.

In this paper, we show that a positive net efficiency can be achieved in a channel
flow subject to streamwise travelling waves if the controlled flow stays laminar while
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the uncontrolled flow becomes turbulent. Starting from this observation, we develop
a framework for design of the travelling waves that are capable of (i) improving
dynamical properties of the flow and (ii) achieving positive net efficiency. We quantify
receptivity of the N–S equations linearized around UTWs and DTWs to stochastic
disturbances by computing the ensemble average energy density of the statistical
steady state. Motivated by our desire to have low cost of control, we confine our
study to small-amplitude blowing and suction along the walls. This also facilitates
derivation of an explicit formula for energy amplification (in flows with control)
using perturbation-analysis techniques. Our simulation-free design reveals that the
UTWs are poor candidates for preventing transition; conversely, we demonstrate
that properly designed DTWs are capable of substantially reducing receptivity of
three-dimensional fluctuations (including streamwise streaks and Tollmien–Schlichting
(T–S) waves). This indicates that the DTWs can be used as an effective means for
controlling the onset of turbulence. Moreover, we show the existence of DTWs that
result in a positive net efficiency compared to the uncontrolled flow that becomes
turbulent. Our theoretical predictions are verified in Part 2 of this paper (Lieu,
Moarref & Jovanović 2010) using DNS of the N–S equations. Thus, our study (i)
demonstrates that the theory developed for the linearized equations with uncertainty
has considerable ability to capture full-scale phenomena and (ii) exhibits the predictive
power of the proposed perturbation-analysis-based method for designing travelling
waves.

This paper represents an outgrowth of the study performed during the 2006
Center for Turbulence Research Summer Program (Jovanović, Moarref & You
2006). While Jovanović et al. (2006) focused only on receptivity of UTWs with large
wavelength, our current study does a comprehensive analysis of the influence of both
UTWs and DTWs on the fluctuations’ kinetic energy and the overall efficiency. We
also note that linear stability and transient growth of travelling waves were recently
examined by Lee, Min & Kim (2008). For selected values of parameters, it was shown
that the UTWs destabilize the laminar flow for control amplitudes as small as 1.5 %
of the centreline velocity; on the other hand, the DTWs with phase speeds larger than
the centreline velocity remain stable even for large wave amplitudes. Moreover, the
UTWs (DTWs) exhibit larger (smaller) transient growth relative to the uncontrolled
flow. Our study confirms all of these observations; it also extends them at several
different levels. First, we pay close attention to a net efficiency by computing the
net power gained (positive efficiency) or lost (negative efficiency) in the presence of
wall actuation. Second, we conduct a much more detailed study of the influence of
travelling waves on velocity fluctuations; this is done by a thorough analysis of the
influence of the wave speed, frequency and amplitude on receptivity of full three-
dimensional fluctuations. Third, we confirm all of our theoretical predictions in Part 2
of this study, and highlight remaining research challenges.

Our presentation is organized as follows: in § 2, we formulate the governing
equations in the presence of travelling-wave wall actuation. The influence of control
on the nominal bulk flux and the nominal net efficiency is also discussed in this
section. A frequency representation of the N–S equations linearized around base
velocity induced by travelling waves is presented in § 3. We further discuss a notion
of the ensemble average energy density of the statistical steady state and describe
an efficient method for determining this quantity in flows subject to small-amplitude
travelling waves. In § 4, we employ perturbation analysis to derive an explicit formula
for energy amplification. This formula is used to identify the values of wave frequency
and speed that reduce receptivity of the linearized N–S equations; we show that
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Figure 1. A pressure-driven channel flow with blowing and suction along the walls.

the essential trends are captured by perturbation analysis up to second order in
travelling-wave amplitude. We also discuss the influence of amplitude on energy of
velocity fluctuations and reveal physical mechanisms for energy amplification. A brief
summary of the main results along with an overview of remaining research challenges
is provided in § 5.

2. Steady-state analysis
2.1. Governing equations

Consider a channel flow governed by the non-dimensional incompressible N–S
equations,

ut̄ = − (u · ∇)u − ∇Ptot + (1/Rc)�u + F, 0 = ∇ · u, (2.1)

with the Reynolds number defined in terms of the centreline velocity of the parabolic
laminar profile Uc and channel half-height δ, Rc = Uc δ/ν. The kinematic viscosity is
denoted by ν, the velocity vector is given by u, Ptot is the pressure, F is the body
force, ∇ is the gradient and � = ∇ · ∇ is the Laplacian. The spatial coordinates and
time are represented by (x̄, ȳ, z̄) and t̄ , respectively.

In addition to a constant pressure gradient, Px̄ , the flow is exposed to a zero-net-
mass-flux surface blowing and suction in the form of a streamwise travelling wave
(see figure 1 for illustration). In the absence of the nominal body force, F̄ ≡ 0, base
velocity ub = (U, V, W ) represents the steady-state solution to (2.1) subject to

V (ȳ = ±1) = ∓2α cos(ωx(x̄ − c t̄)), F̄ ≡ 0,

U (±1) = Vȳ(±1) = W (±1) = 0, Px̄ = −2/Rc,

}
(2.2)

where ωx , c and α, respectively, identify frequency, speed and amplitude of the
travelling wave. Positive values of c define a DTW, whereas negative values of c

define a UTW. The time dependence in V (±1) can be eliminated by the Galilean
transformation (x = x̄ − ct̄, y = ȳ, z = z̄, t = t̄). This change of coordinates does
not influence the spatial differential operators, but it transforms the time derivative
to ∂t̄ = ∂t − c ∂x, which adds an additional convective term to the N–S equations:

ut = cux − (u · ∇)u − ∇Ptot + (1/Rc)�u + F, 0 = ∇ · u. (2.3)

In new coordinates, i.e. in the frame of reference that travels with the
wave, the wall actuation (see (2.2)) induces a two-dimensional base velocity,
ub = (U (x, y), V (x, y), 0), which represents the steady-state solution to (2.3). Note
that the spatially periodic wall actuation, V (y = ±1) = ∓2α cos(ωxx), induces a base
velocity which is periodic in x.
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The equations describing the dynamics (up to first order) of velocity fluctuations
v = (u, v, w) around the base velocity, ub, are obtained by decomposing each field
in (2.3) into the sum of base and fluctuating parts, i.e. {u = ub + v, Ptot =P + p,
F = 0 + d}, and by neglecting the quadratic term in v:

vt = cvx − (ub · ∇)v − (v · ∇)ub − ∇p + (1/Rc)�v + d, 0 = ∇ · v. (2.4)

Note that the boundary conditions (2.2) are satisfied by base velocity and, thus,
velocity fluctuations acquire homogeneous Dirichlet boundary conditions.

2.2. Base flow

Let us first consider a surface blowing and suction of a small amplitude α. In this
case, a weakly nonlinear analysis can be employed to solve (2.3) subject to (2.2)
and determine the corrections to the base parabolic profile; a similar approach was
previously used by Jovanović et al. (2006) and Hœpffner & Fukagata (2009). Up to
second order in control amplitude α, U (x, y) and V (x, y) can be represented as

U (x, y) = U0(y) + α U1(x, y) + α2 U2(x, y) + O(α3),

V (x, y) = α V1(x, y) + α2 V2(x, y) + O(α3),

}
(2.5)

where U0(y) = 1 − y2 denotes the base velocity in a Poiseuille flow and (see
Appendix A):

U1(x, y) = U1,−1(y) e−iωxx + U1,1(y) eiωxx,

V1(x, y) = V1,−1(y) e−iωxx + V1,1(y) eiωxx,

U2(x, y) = U2,0(y) + U2,−2(y) e−2iωxx + U2,2(y) e2iωxx,

V2(x, y) = V2,−2(y) e−2iωxx + V2,2(y) e2iωxx.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.6)

Hœpffner & Fukagata (2009) recently showed that, in the absence of a driving
pressure gradient, the travelling waves induce nominal bulk flux (i.e. pumping) in
the direction opposite to the direction in which the wave travels. While the first
order of correction to the base velocity is purely oscillatory, the quadratic interactions
in the N–S equations introduce mean flow correction U2,0(y) at the level of α2.

The nominal bulk flux is determined by UB = (1/2) ∫ 1
−1 U (y) dy, where the overline

denotes averaging over horizontal directions. In the presence of a pressure gradient,
the nominal flux in flow with no control is UB,0 = (1/2) ∫ 1

−1 U0(y) dy = 2/3, and the

second-order correction (in α) to UB is given by UB,2 = (1/2) ∫ 1
−1 U2,0(y) dy. Figure 2

shows UB,2 as a function of wave frequency, ωx , and wave speed, c, in a Poiseuille flow
with Rc = 2000. Except for a narrow region in the vicinity of c = 0, the upstream and
downstream waves, respectively, increase and reduce the nominal flux. Furthermore,
for a given wave speed c, the magnitude of the induced flux increases as the wave
frequency is decreased.

Figure 3 is obtained by finding the steady-state solution of (2.3) subject to (2.2)
using Newton’s method. Originally, we used base flow resulting from the weakly
nonlinear analysis to initialize Newton iterations; robustness of our computations is
confirmed using initialization with many different incompressible base-flow conditions.
The nominal flux and its associated nominal drag coefficient for a UTW with c = −2
and ωx = 0.5, and a DTW with c = 5 and ωx = 2 are shown in this figure. The flux
and drag coefficient of both laminar and turbulent flows with no control are also given
for comparison. The nominal skin-friction drag coefficient is defined as (McComb
1991)

Cf = 2 τw/U 2
B = −2Px/U

2
B, (2.7)
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Figure 2. Second-order correction to the nominal flux, UB,2(c, ωx), for (a) upstream waves
and (b) downstream waves in a Poiseuille flow with Rc = 2000. Note: the level sets are obtained
using a sign-preserving logarithmic scale, e.g. 5 and −3 should be interpreted as UB,2 = 105

and UB,2 = −103, respectively.
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Figure 3. (a) The nominal flux, UB (α), and (b) the nominal skin-friction drag coefficient,
Cf (α), for a pair of UTWs and a pair of DTWs in a Poiseuille flow with Rc = 2000. The
results are obtained by solving (2.3) subject to (2.2), in the steady state, using Newton’s method;
UB and Cf of the uncontrolled laminar and turbulent flows are also shown for comparison.

where τw is the non-dimensional average wall-shear stress. For the fixed pressure
gradient, Px = −2/Rc, the nominal skin-friction drag coefficient is inversely
proportional to square of the nominal flux and, in an uncontrolled laminar flow
with Rc = 2000, we have Cf = 4.5 × 10−3. The UTWs produce larger nominal flux
(and, consequently, smaller nominal drag coefficient) compared to both laminar and
turbulent uncontrolled flows. On the other hand, the DTWs yield smaller nominal
flux (and, consequently, larger nominal drag coefficient) compared to an uncontrolled
laminar flow. However, in situations where flow with no control becomes turbulent,
the DTWs with amplitudes smaller than a certain threshold value may have a lower
nominal drag coefficient than the uncontrolled turbulent flow, e.g. for a DTW with
c = 5 and ωx = 2, this threshold value is given by α = 0.16 (cf. figure 3b).
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2.3. Nominal net efficiency

For the fixed pressure gradient, the difference between the flux of the controlled and
the uncontrolled flows results in production of a driving power (per unit horizontal
area of the channel)

Πprod = −2Px(UB,c − UB,u), (2.8)

where UB,c and UB,u are the nominal flux of the controlled and uncontrolled flows,
respectively. On the other hand, the required control power exerted at the walls (per
unit horizontal area of the channel) is given by (Currie 2003)

Πreq = V P |y=−1 − V P |y=1. (2.9)

The control net efficiency is determined by the difference of the produced and required
powers (Quadrio & Ricco 2004)

Πnet = Πprod − Πreq , (2.10)

where Πnet signifies the net power gained (positive Πnet ) or lost (negative Πnet ), in the
presence of wall actuation.

For small control amplitudes, the power produced can be represented as

Πprod = Πprod,0 + α2 Πprod,2 + O(α4), (2.11)

where

Πprod,0 = −2Px(UB,0 − UB,u), Πprod,2 = −2Px UB,2. (2.12)

The nominal required control power can be determined from (2.9) by evaluating the
horizontal average of the product between base pressure, P , and base wall-normal
velocity, V , at the walls. Since, at the walls, the non-zero component of V contains
only the first harmonic in x (cf. (2.6)), we need to determine the first harmonic (in x)
of P to compute Πreq . Base pressure can be obtained by solving the two-dimensional
Poisson equation,

Pxx + Pyy = −(Ux Ux + 2Vx Uy + Vy Vy), (2.13)

where P satisfies the following Neumann boundary conditions:

Py |
y=±1 = ((Vxx + Vyy)/Rc + c Vx)|y=±1. (2.14)

These are determined by evaluating the y-momentum equation at the walls. For small
values of α, a weakly nonlinear analysis, in conjunction with the expressions for U

and V given in § 2.2, can be employed to solve (2.13) for base pressure,

P (x, y) = α P1(x, y) + O(α2),

P1(x, y) = P1,−1(y) e−iωxx + P1,1(y) eiωxx,

}
(2.15)

where P1,−1 and P1,1 are determined from

P ′′
1,±1(y) − ω2

x P1,±1(y) = ∓2 i ωxV1,±1(y) U ′
0(y),

P ′
1,−1(±1) = (V ′′

1,−1(±1) − ω2
x V1,−1(±1))/Rc + c i ωxV1,−1(±1),

P ′
1,1(±1) = (V ′′

1,1(±1) − ω2
x V1,1(±1))/Rc − c i ωxV1,1(±1).

⎫⎪⎬
⎪⎭ (2.16)

Here, the prime denotes the partial derivative with respect to y, and the required
power can be represented as

Πreq = α2 Πreq,2 + O(α4),

Πreq,2 = (P1,−1V1,1 + P1,1V1,−1)|y=−1 − (P1,−1V1,1 + P1,1V1,−1)|y=1.

}
(2.17)
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Figure 4. Second-order correction to the nominal net efficiency, π2(c, ωx), for (a) upstream
waves and (b) downstream waves in a Poiseuille flow with Rc = 2000. Note: the level sets are
obtained using a sign-preserving logarithmic scale, e.g. −4 should be interpreted as π2 = −104.

Since the second-order correction to the nominal produced power, Πprod,2, is directly
proportional to UB,2, Πprod,2 is positive for UTWs and negative for DTWs. It turns
out that smaller choices of ωx result in larger produced (for UTWs) or lost (for
DTWs) power. One of the main points of this paper, however, is to show that it may
be misleading to rely on the power produced as the only criterion for selection of
control parameters; in what follows, we demonstrate that the required control power
as well as the dynamics of velocity fluctuations need to be taken into account when
designing the travelling waves.

2.4. Nominal efficiency of laminar controlled flows

We next examine the nominal efficiency of laminar controlled flows. Since we are
interested in expressing the nominal efficiency relative to the power required to
drive flow with no control, we provide comparison with both laminar and turbulent
uncontrolled flows. The net efficiency in fraction of the power required to drive the
uncontrolled laminar flow is determined by

%Πnet = Πnet/Π0 = −α2|π2(Rc; c, ωx)| + O(α4), (2.18)

where Π0 = −2Px UB,0 and π2 = (Πprod,2−Πreq,2)/Π0. It can be shown that the second-
order correction to %Πnet , π2, is negative for all choices of c and ωx (see figure 4). This
is because the power required for maintaining the travelling wave grows more rapidly
than the power produced as α is increased. In addition, figure 4 shows that |π2| is
minimized for small wave speeds and for ωx ∈ (1, 4). Formula (2.18) demonstrates that
the control net efficiency is negative whenever the uncontrolled flow stays laminar (cf.
figure 5a). This is a special case of more general results by Bewley (2009) and Fukagata
et al. (2009), which have established that any transpiration-based control strategy
necessarily has negative net efficiency compared to the laminar uncontrolled flow.

On the other hand, the net efficiency of the laminar controlled flow in the fraction
of the power required to drive the uncontrolled turbulent flow is determined by

%Πnet =
Πnet

Πturb

=
UB,0

UB,turb

⎛
⎜⎜⎝1 − UB,turb

UB,0︸ ︷︷ ︸
>0

− α2|π2(Rc, c, ωx)|

⎞
⎟⎟⎠+ O(α4), (2.19)
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at Rc = 2000. The results are obtained by assuming that the uncontrolled flow (a) remains
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where Πturb = −2Px UB,turb . Since the bulk flux of the uncontrolled turbulent flow is
smaller than that of the uncontrolled laminar flow (i.e. UB,turb < UB,0), it is possible
to obtain a positive net efficiency for sufficiently small values of α. Note that
formula (2.19) is derived under the assumption that the controlled flow stays laminar
while the uncontrolled flow becomes turbulent. Clearly, this formula represents an
idealization since it assumes that a laminar flow can be maintained by both UTWs
and DTWs even with infinitesimal control amplitudes. It also indicates that increasing
the control amplitude always decreases the nominal net efficiency. In a nutshell, the
control amplitude needs to be large enough to maintain a laminar flow but increasing
the control amplitude beyond certain value brings the efficiency down and eventually
leads to negative efficiency. If the efficiency is negative, maintaining a laminar flow
does not lead to any net benefit in the presence of control. This is further illustrated in
figure 5(b), where Newton’s method is used to show that a positive net efficiency can
be achieved for control amplitudes smaller than a certain threshold value (e.g. α < 0.05
for the DTW with c =5 and ωx =2). In addition, the net efficiency monotonically
decreases as α is increased, as predicted by the weakly nonlinear analysis up to second
order in α (cf. (2.19)).

An estimate for the maximum value of α for which a positive net efficiency is
attainable can be obtained by solving the following equation (obtained using a
weakly nonlinear analysis):

(1 − UB,turb/UB,0) − α2
max |π2(Rc, c, ωx)| = 0. (2.20)

Figure 6 shows αmax as a function of ωx for different values of c. The dotted curves
denote the approximation for αmax obtained using (2.20). The values of αmax (solid
curves) obtained using Newton’s method are also shown for comparison; we see
that the predictions based on the second-order correction capture the essential trends
and provide good estimates for αmax (especially for large wave speeds and for wave
frequencies between 0.1 and 10). Figures 5 and 6 are obtained by assuming that the
flow with control stays laminar while the flow with no control becomes turbulent.
Whether or not the travelling waves can control the onset of turbulence depends on
the velocity fluctuations; addressing this question requires analysis of the dynamics,
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which is a topic of §§ 3 and 4, where we examine receptivity of velocity fluctuations
around UTWs and DTWs to stochastic disturbances.

3. Dynamics of fluctuations around travelling waves
3.1. Evolution model with forcing

A standard conversion of (2.4) to the wall-normal velocity (v)/vorticity (η) formulation
removes the pressure from the equations and yields the following evolution model
with forcing:

E ψ t (x, y, z, t) = F ψ(x, y, z, t) + G d(x, y, z, t),

v(x, y, z, t) = C ψ(x, y, z, t).

}
(3.1)

This model is driven by the body force fluctuation vector d = (d1, d2, d3), which can
account for flow disturbances. We refer the reader to a recent review article (Schmid
2007) and a monograph (Schmid & Henningson 2001) for a comprehensive discussion
explaining why it is relevant to study the influence of these excitations on velocity
fluctuations. The internal state of (3.1) is determined by ψ = (v, η), with Cauchy
(both Dirichlet and Neumann) boundary conditions on v and Dirichlet boundary
conditions on η. All operators in (3.1) are matrices of differential operators in three
coordinate directions: x, y and z. Operator C in (3.1) captures a kinematic relation
between ψ and v, operator G describes how forcing enters into the evolution model,
whereas operators E and F determine internal properties of the linearized N–S
equations (e.g. modal stability). While operators E, G and C do not depend on base
velocity, operator F is base-velocity-dependent and, hence, it determines changes in
the dynamics owing to changes in ub (see Appendix B). Moreover, for a base velocity
of § 2.2, F inherits spatial periodicity in x from ub and it can be represented as

F = F0 +

∞∑
l=1

αl

l∑
r

2
= −l

eirωxxFl,r , (3.2)
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n ∈ Z

kz ∈ R

(θn, kz)

θ
θ ∈ [0, ωx)

kz

Figure 7. A Bloch wave d(x, y, z, t) defined in (3.4) is obtained by the superposition of
weighted Fourier exponentials with frequencies (θn, kz) |n ∈ �, with weights determined by

d̄n(y, kz, t).

where F0 and Fl,r are spatially invariant operators in the streamwise and spanwise

directions and
∑l

r
2
= −l

signifies that r takes the values {−l, −l + 2, . . . , l − 2, l}. This

expansion isolates spatially invariant and spatially periodic parts of the operator F ,
which is well suited for representation of (3.1) in the frequency domain.

3.2. Frequency representation of the linearized model

Owing to the structure of the linearized N–S equations, the differential operators E, G
and C are invariant with respect to translations in horizontal directions. On the other
hand, operator F is invariant in z and periodic in x. Thus, the Fourier transform in
z can be applied to algebraize the spanwise differential operators. In other words,
the normal modes in z are the spanwise waves, eikzz, where kz denotes the spanwise
wavenumber. On the other hand, the appropriate normal modes in x are given by
the so-called Bloch waves (Odeh & Keller 1964; Bensoussan, Lions & Papanicolaou
1978), which are determined by a product of eiθx and the 2π/ωx periodic function in
x, with θ ∈ [0, ωx). Based on the above, each signal in (3.1) (for example, d) can be
expressed as

d(x, y, z, t) = eikzzeiθx d̄(x, y, kz, t)

d̄(x, y, kz, t) = d̄(x + 2π/ωx, y, kz, t)

}
kz ∈ �, θ ∈ [0, ωx), (3.3)

where only real parts are to be used for representation of physical quantities.
Expressing d̄(x, y, kz, t) in Fourier series yields (see figure 7 for an illustration)

d(x, y, z, t) =

∞∑
n=−∞

d̄n(y, kz, t) ei(θnx+kzz),
θn = θ + nωx,

kz ∈ �, θ ∈ [0, ωx),
(3.4)

where {d̄n(y, kz, t)}n ∈ � are the coefficients in the Fourier series expansions of
d̄(x, y, kz, t).
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The frequency representation of the linearized N–S equations is obtained by
substituting (3.4) into (3.1):

∂tψ θ (y, kz, t) = Aθ (kz) ψ θ (y, kz, t) + Bθ (kz) dθ (y, kz, t),

vθ (y, kz, t) = Cθ (kz) ψ θ (y, kz, t).

}
(3.5)

This representation is parametrized by kz and θ , and ψ θ (y, kz, t) denotes a bi-infinite
column vector, ψ θ (y, kz, t) = col{ψ(θn, y, kz, t)}n ∈ �. The same definition applies to
dθ (y, kz, t) and vθ (y, kz, t). On the other hand, for each kz and θ , Aθ (kz), Bθ (kz) and
Cθ (kz) are bi-infinite matrices whose elements are one-dimensional integro-differential
operators in y. The structure of these operators depends on frequency representation
of E, F , G and C in (3.1). In short, Bθ (kz) and Cθ (kz) are block-diagonal operators
and

Aθ = A0θ +

∞∑
l=1

αl Alθ , (3.6)

where A0θ and Alθ are structured operators (see Appendix B for more details). The
particular structure of A0θ and Alθ is exploited in perturbation analysis of the energy
amplification for small control amplitudes α in § 3.4.

3.3. Energy density of the linearized model

Frequency representation (3.5) contains a large amount of information about
linearized dynamics. For example, it can be used to assess stability properties of the
base flow. However, since the early stages of transition in wall-bounded shear flows are
not appropriately described by the stability properties of the linearized equations (see,
for example, Schmid & Henningson 2001 and Schmid 2007), we perform receptivity
analysis of stochastically forced model (3.5) to assess the effectiveness of the proposed
control strategy. Namely, we set the initial conditions in (3.5) to zero and study
the responses of the linearized dynamics to uncertain body forces. When the body
forces are absent, the response of stable flows decays asymptotically to zero. However,
in the presence of stochastic body forces, the linearized N–S equations are capable
of maintaining high levels of the steady-state variance (Farrell & Ioannou 1993;
Bamieh & Dahleh 2001; Jovanović & Bamieh 2005). Our analysis quantifies the
effect of imposed streamwise travelling waves on the asymptotic levels of variance
and describes how receptivity changes in the presence of control. We note that there
are substantial differences between the problem considered here and in Jovanović &
Bamieh (2005); these differences arise from lack of homogeneity in the streamwise
direction which introduces significant computational challenges, which we discus
below. Furthermore, even though our study is similar in spirit to Jovanović (2008),
the current study considers the dynamics of fluctuations around a spatially periodic
base velocity, whereas Jovanović (2008) considered dynamics of fluctuations around
a time-periodic base velocity. A theoretical framework for quantifying receptivity in
these two conceptually different cases was developed by Fardad, Jovanović & Bamieh
(2008) and Jovanović & Fardad (2008), respectively.

Let us assume that a stable system (3.5) is subject to a zero-mean white stochastic
process (in y and t), dθ (y, kz, t). Then, for each kz and θ , the ensemble average energy
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density of the statistical steady-state is determined by

Ē(θ, kz) = lim
t → ∞

〈vθ ( · , kz, t), vθ ( · , kz, t)〉

= trace
(

lim
t → ∞

E {vθ ( · , kz, t) ⊗ vθ ( · , kz, t)}
)
, (3.7)

where 〈 · , · 〉 denotes the L2[−1, 1] inner product and averaging in time, i.e.

〈vθ , vθ〉 = E
{∫ 1

−1

v∗
θ (y, kz, t) vθ (y, kz, t) dy

}
,

E {v( · , t)} = lim
T → ∞

1

T

∫ T

0

v( · , t + τ ) dτ ,

⎫⎪⎪⎬
⎪⎪⎭ (3.8)

and vθ ⊗vθ is the tensor product of vθ with itself. We note that Ē(θ, kz) determines the
asymptotic level of energy (i.e. variance) maintained by a stochastic forcing in (3.5).
Typically, this quantity is computed by running DNS of the N–S equations until
the statistical steady state is reached. However, for the linearized system (3.5), the
energy density Ē(θ, kz) can be determined using the solution to the following operator
Lyapunov equation (Fardad et al. 2008):

Aθ (kz)Xθ (kz) + Xθ (kz)A∗
θ (kz) = − Bθ (kz)B∗

θ (kz), (3.9)

as

Ē(θ, kz) = trace(Xθ (kz) C∗
θ (kz) Cθ (kz)). (3.10)

Here, Xθ (kz) denotes the autocorrelation operator of ψ θ , that is,

Xθ (kz) = lim
t → ∞

E{ψ θ ( · , kz, t) ⊗ ψ θ ( · , kz, t)} . (3.11)

Since C∗
θ (kz) Cθ (kz) is an identity operator, we have

Ē(θ, kz) = trace(Xθ (kz)) =

∞∑
n=−∞

trace(Xd(θn, kz)), (3.12)

where Xd(θn, kz) denotes the elements on the main diagonal of operator Xθ . We
note that Ē also has an interesting deterministic interpretation; namely, if vθ ( · , kz, t)
denotes the impulse response of (3.5), then

Ē(θ, kz) =

∫ ∞

0

trace(vθ ( · , kz, t) ⊗ vθ ( · , kz, t)) dt. (3.13)

Thus, the same quantity can be used to assess receptivity of the linearized N–S
equations to exogenous disturbances of either stochastic or deterministic origin.

3.4. Perturbation analysis of energy density

Solving (3.9) is computationally expensive; a discretization of the operators (in y) and
truncation of the bi-infinite matrices convert (3.9) into a large-scale matrix Lyapunov
equation. Our computations suggest that in order to obtain convergence of

Ē(θ, kz) ≈
N∑

n=−N

trace(Xd(θn, kz)), (3.14)

a choice of N between ten (for ωx ∼ O(1)) and a few thousands (for ωx ∼ O(0.01)) is
required. Since we aim to conduct a detailed study of the influence of streamwise
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travelling waves on dynamics of velocity fluctuations, determining the energy density
for a broad range of travelling-wave parameters, kz and θ , still poses significant
computational challenges.

Instead, we employ an efficient perturbation-analysis-based approach introduced
by Fardad & Bamieh (2008) for solving (3.9). For our problem, this approach turns
out to be at least 20 times faster than the truncation approach. This method is well
suited for systems with small-amplitude spatially periodic terms and it converts (3.9)
into a set of conveniently coupled system of operator-valued Lyapunov and Sylvester
equations. A finite-dimensional approximation of these equations yields a set of
algebraic matrix equations whose order is determined by the product between the
number of fields in the evolution model (here two, the wall-normal velocity and
vorticity) and the size of discretization in y. While consideration of small wave
amplitudes simplifies analysis by providing an explicit expression for energy density,
it is also motivated by our earlier observation that large values of α introduce a high
cost of control, which is not desirable from a physical point of view.

It can be shown (see Appendix C for details) that the energy density of system (3.1)
can be represented as

Ē(θ, kz; Rc, α, c, ωx) = Ē0(θ, kz; Rc, ωx) +

∞∑
l=1

α2lĒ2l(θ, kz; Rc, c, ωx), 0 < α � 1.

(3.15)

Thus, only terms with even powers in α contribute to Ē, which, in a controlled
flow, depends on six parameters. Since our objective is to identify trends in energy
density, we confine our attention to a perturbation analysis up to second order in
α. We briefly comment on the influence of higher-order corrections in § 4.3, where
it is shown that the essential trends are correctly predicted by the second order of
correction.

4. Energy amplification in a Poiseuille flow with Rc = 2000

In this section, we study energy amplification of stochastically forced linearized
N–S equations in a Poiseuille flow controlled with streamwise travelling waves.
Equation (3.15) reveals the dependence of the energy density on travelling-wave
amplitude α, for 0 <α � 1. However, since the operators in (3.5) depend on the
spatial wavenumbers (θ and kz), Rc, ωx and c, the energy density is also a function
of these parameters. Finding the optimal triple (α, c, ωx) that maximally reduces the
energy of the velocity fluctuations is outside the scope of the current study; instead,
we identify the values of c and ωx that are capable of reducing receptivity in the
presence of small-amplitude streamwise travelling waves. Since we are interested in
energy amplification of the transitional Poiseuille flow, we choose Rc = 2000 in all of
our subsequent computations. This value is selected because it is between the critical
Reynolds number at which linear instability takes place, Rc = 5772, and the value at
which transition is observed in experiments and DNS, Rc ≈ 1000. The same Reynolds
number was used by Min et al. (2006) in their DNS study.

4.1. Energy density of flow with no control

We briefly comment on the energy density in an uncontrolled Poiseuille flow with
Rc = 2000; for an in-depth treatment, see Jovanović & Bamieh (2005). The appropriate
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Figure 8. Energy density Ẽ0(kx, kz) of the uncontrolled Poiseuille flow with Rc = 2000. The
plot is given in the log–log–log scale.

normal modes in the uncontrolled flow are purely harmonic streamwise and spanwise
waves, eikxx eikzz, where kx denotes the streamwise wavenumber. Figure 8 illustrates the
energy density of the uncontrolled flow as a function of kx and kz, which we denote
by Ẽ0(kx, kz). The streamwise constant fluctuations with O(1) spanwise wavenumbers
carry most energy in flow with no control. Namely, the largest value of Ẽ0(kx, kz)
occurs at (kx = 0, kz ≈ 1.78), which means that the most amplified flow structures
(the streamwise streaks) are infinitely elongated in the streamwise direction and
have the spanwise length scale of approximately 3.5δ, where δ is the channel half-
height. We note that these input–output resonances do not correspond to the least
stable modes of the linearized N–S equations. Rather, they arise because of the
coupling from the wall-normal velocity v to the wall-normal vorticity η. Physically,
this coupling is a product of the vortex tilting (lift-up) mechanism (Landahl 1975);
the base shear is tilted in the wall-normal direction by the spanwise changes in v,
which lead to a non-modal amplification of η. This mechanism does not take place
either when the base shear is zero (i.e. U ′ = 0) or when there are no spanwise
variations in v (i.e. kz = 0). On the other hand, the least stable modes (T–S waves)
of an uncontrolled flow create a local peak in Ẽ0(kx, kz) around (kz = 0, kx ≈ 1.2),
with a magnitude significantly lower compared to the magnitude achieved by the
streamwise constant-flow structures. Finally, we note that the uncontrolled energy
density Ē0(θ, kz; ωx), as in (3.15), can be obtained from Ẽ0(kx, kz) using the following
expression:

Ē0(θ, kz; ωx) =

∞∑
n=−∞

Ẽ0(θn, kz) =

∞∑
n=−∞

Ẽ0(θ + nωx, kz). (4.1)

In other words, for fixed ωx and θ , Ē0(θ, kz; ωx) represents the energy density of
velocity fluctuations that are composed of all wavenumbers, kx = {θ + nωx}n ∈ �. In
comparison, Ẽ0(kx, kz) is the energy density of velocity fluctuations composed of a
single wavenumber kx (see figure 9 for an illustration).
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Figure 9. For fixed ωx and θ , Ē0(θ, kz; ωx) represents the energy density of fluctuations
composed of all wavenumbers, θn = {θ + nωx}n ∈ �; Ē0(θ, kz; ωx) =

∑∞
n=−∞Ẽ0(θ + nωx, kz).

4.2. Energy amplification of flow with control

We next consider energy amplification of velocity fluctuations in a Poiseuille flow
with Rc =2000 in the presence of both UTWs and DTWs. As shown in § 3.4, for
small-amplitude blowing and suction along the walls, the perturbation analysis yields
an explicit formula for energy amplification (cf. (3.15)),

Ē(θ, kz; α, c, ωx)

Ē0(θ, kz; ωx)
= 1 + α2 g2(θ, kz; c, ωx) + O(α4), 0 < α � 1. (4.2)

Thus, for small wave amplitudes, the influence of control can be assessed by evaluating
the function g2 = Ē2/Ē0, which quantifies energy amplification up to second order
in α. Sign of g2 determines whether the energy density is increased or decreased
in the presence of control; positive (negative) values of g2 identify wave speeds
and frequencies that increase (decrease) receptivity. Since the function g2 is sign-
indefinite with vastly different magnitudes, it is advantageous to visualize g2 using a
sign-preserving logarithmic scale:

ĝ2 = sign(g2) log10(1 + |g2|). (4.3)

For example, ĝ2 = 5 or ĝ2 = −3, respectively, signify Ē2 = 105Ē0 or Ē2 = −103Ē0.
Since ĝ2(θ, kz; c, ωx) depends on four parameters, for visualization purposes, we
confine our attention to cross-sections of ĝ2 by fixing two of the four parameters. We
first study energy amplification of the modes with kz = 1.78 and kz = 0 as a function
of c and ωx; these spanwise wavenumbers are selected in order to capture the influence
of control on streamwise streaks and T–S waves, respectively. Since, in an uncontrolled
flow, streamwise streaks (respectively, T–S waves) occur at kx = 0 (respectively, kx =
1.2), fluctuations with θ = 0 (respectively, θ(ωx) = 1.2 − ωx�1.2/ωx�) are considered;
these values of θ are chosen to make sure that streamwise streaks (respectively, T–S
waves) represent modes of the controlled flow as well. (Here, �a� denotes the largest
integer not greater than a.) We then analyse the energy amplification of disturbances



86 R. Moarref and M. R. Jovanović

101(a) (b)

(d)(c)

100

10–1

10–2

10–3

101

100

10–1

10–2

10–3

101

100

10–1

10–2

10–3

10–2 100

c = 2, 5, 10

c = –10, –5, –2

102 104

10–2 100 102 104

–100

0.1 1 10 100

–10

c

c

Downstream Downstream 

Upstream Upstream 

–1 –0.1

–2

0

2

4

6

–4

–2

0

2

4

6

ωx

ωx

101

100

10–1

10–2

10–3

Figure 10. (a) and (c) Second-order correction to the energy amplification, ĝ2(c, ωx), of the
modes with (θ, kz) = (0, 1.78), in the presence of (a) UTWs and (c) DTWs in a Poiseuille
flow with Rc = 2000. (b) and (d ) Second-order correction to the nominal required power,
Πreq,2(ωx; c), for (b) UTWs and (d ) DTWs. The dot and the square, respectively, denote
(c = −2, ωx = 0.5) (as selected in Min et al. 2006) and (c = 5, ωx = 2). Note: the plots on the
left are obtained using a sign-preserving logarithmic scale, e.g. ĝ2 = 5 and ĝ2 = −3 should be
interpreted as Ē2 = 105Ē0 and Ē2 = −103Ē0, respectively.

with different values of θ and kz for a fixed set of control parameters c and ωx . Our
analysis illustrates the ability of properly designed travelling waves to weaken the
intensity of both the most energetic and least stable modes of the uncontrolled flow.
The DNS calculations of Part 2 show that this can be done with positive net efficiency.

Since most amplification in a flow with no control occurs for fluctuations with
(kx = 0, kz = 1.78), it is relevant to first study the influence of controls on these most
energetic modes. In a flow with control, the streamwise-constant flow structures are
embedded in the fundamental mode, i.e. fluctuations with θ = 0 (cf. § 3.2). As the plots
of ĝ2(c, ωx) in figures 10(a) and 10(c) reveal, the values of c and ωx determine whether
these structures are amplified or attenuated by the travelling waves. Up to second
order in α, the control parameters associated with the dark regions in these two
figures reduce the energy amplification of the uncontrolled flow. As is evident from
figure 10(a), only a narrow range of UTWs with ωx � 0.1 is capable of reducing the
energy amplification. However, since the power required for maintaining the nominal
flow for such low-frequency controls is prohibitively large (cf. figure 10b), the choice
of UTWs for transition control is not favourable from the efficiency point of view.
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Figure 11. Second-order correction to the energy amplification, ĝ2(θ, kz), for travelling waves
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ωx = 2) in a Poiseuille flow with Rc = 2000.

(Receptivity reduction by these UTWs is further discussed in § 4.3.) On the other
hand, a large range of DTW parameters with c � 1 and ωx � 0.1 is capable of making
the controlled flow less sensitive to stochastic excitations (cf. figure 10c). Moreover,
figure 10(d ) shows that the ωx � 0.1 region contains the smallest power required
for sustaining the DTWs. These two features identify properly designed DTWs as
suitable candidates for controlling the onset of turbulence with positive net efficiency
(as confirmed by DNS in Part 2).

It is noteworthy that travelling waves with parameters considered in Min et al.
(2006) (i.e. ωx = {0.5, 1, 1.5, 2} and −4 <c < 0) increase amplification of the most
energetic modes of the uncontrolled flow (cf. figure 10a). This is in agreement with
a recent study of Lee et al. (2008), where a transient growth larger than that of the
laminar uncontrolled flow was observed for UTWs with c = {−1, −2} and ωx = 1.5.
Furthermore, it is shown in Part 2 that such UTWs promote turbulence even for
initial conditions for which the uncontrolled flow stays laminar.

The above analysis illustrates the ability of the DTWs to weaken the intensity
of the most energetic modes of the uncontrolled flow; this is achieved by reducing
receptivity to stochastic disturbances. However, an important aspect in the evaluation
of any control strategy is to consider the influence of controls on all of the system’s
modes. In view of this, we next discuss how control affects the full three-dimensional
fluctuations. Since for a given ωx , the energy amplification is symmetric around
θ = ωx/2, it suffices to consider only the modes with θ ∈ [0, ωx/2]. Figure 11 shows
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ĝ2(θ, kz) for a UTW with (c = −2, ωx = 0.5), and three DTWs with (c = 3, ωx = 1.5),
(c = 5, ωx = 0.5) and (c = 5, ωx = 2). As is evident from figure 10, the selected UTW
increases amplification of the fundamental mode with kz = 1.78; on the other hand, all
three DTWs reduce energy amplification of modes with (θ = 0, kz = 1.78). Figure 11
further reveals that the largest change in amplification for all of these travelling
waves takes place at (θ = 0, kz ≈ 1.78), which is precisely where the uncontrolled flow
contains most energy. This observation suggests the presence of resonant interactions
between the travelling waves and the most energetic modes of the uncontrolled flow.
Additionally, as can be seen from figures 11(a) and 11(d ), the energy of modes with
kz ≈ 0 is reduced by a UTW with (c = −2, ωx = 0.5) and a DTW with (c = 5,
ωx = 2) for all θ . On the other hand, figure 11(b) shows that a DTW with (c = 3,
ωx = 1.5) increases amplification of fluctuations with (0.1 � θ � 0.4, kz ≈ 0); similarly,
receptivity of fluctuations with (0.05 � θ � 0.45, kz ≈ 0) is increased by a DTW with
(c = 2, ωx = 0.5) (cf. figure 11c). Thus, from the four considered cases, only a DTW
with (c = 5, ωx = 0.5) can be used to inhibit intensity of full three-dimensional
velocity fluctuations (i.e. for all values of θ and kz).

While the fundamental mode is most influential in determining the effect of control
on the energy amplification, figures 11(b) and 11(c) indicate that the modes with
θ �= 0 and large spanwise wavelengths (i.e. kz ≈ 0) can be significantly amplified by
the travelling waves. We thus take a closer look at how control affects the spanwise
constant fluctuations. The T–S waves are characterized by (kx = 1.2, kz = 0) and, for
a given ωx , they are embedded in the modes of the controlled flow for fluctuations
with θ(ωx) = 1.2−ωx�1.2/ωx�. Figure 12 shows the second-order correction, ĝ2(c, ωx),
to the energy amplification of the modes with kz = 0 subject to both UTWs and
DTWs. Note that figure 12 correctly captures the increased intensity of the T–S
waves by DTWs with (c = 3, ωx = 1.5) and (c = 5, ωx = 0.5), as already observed
in figures 11(b) and 11(c). We also see that the travelling waves considered in Min
et al. (2006) reduce the energy of the T–S waves. (We recall that these promote
amplification of the streamwise streaks; cf. figures 10a and 12a.) On the other hand,
the DTW with c = 5 and ωx = 2 decreases energy amplification of both streamwise
streaks and T–S waves (cf. figures 10c and 12b). The values of c and ωx capable of
reducing the energy amplification (up to second order in α) of both the most energetic
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Figure 13. The dark regions identify values of wave speed and frequency that, up to second
order in α, suppress the energy amplification of both the most energetic and least stable modes
in a Poiseuille flow with Rc = 2000 subject to (a) UTWs and (b) DTWs.

and least stable modes of the uncontrolled flow are marked by the dark region in
figure 13.

4.3. Effect of control amplitude on energy amplification

We next discuss the influence of control amplitude on the energy amplification.
We show that perturbation analysis (up to second order in α) correctly predicts
the essential trends. This is done by comparing perturbation analysis results with
computations obtained using large-scale truncation of the operators in the Lyapunov
equation (3.9).

The limit of the perturbation series (3.15) can be obtained by applying the Shanks
transformation (Shanks 1955; Van Dyke 1964) on the perturbation-analysis-based
correction coefficients in (3.15). This transformation represents an effective means for
providing convergence (respectively, faster convergence) to a divergent (respectively,
slowly convergent) series (Sidi 2003). It turns out that the Shanks transformation
significantly increases the maximum value of α for which series (3.15) converges.
Figure 14 shows the energy density of the fundamental mode, as a function of kz, in
the uncontrolled Poiseuille flow with Rc = 2000 and a flow subject to a DTW with
(c = 5, ωx = 2, α = 0.025). The controlled flow results are obtained using truncation
of series (3.15) up to second order in α, and the Shanks transformation up to fourth
order in α. Note that even though the second-order correction overestimates the
amount of receptivity reduction, it correctly captures the essential trends.

Figure 15 compares the energy density of the fundamental mode in an uncontrolled
Poiseuille flow with Rc = 2000, and in the controlled flows subject to (a) a UTW
with c = −2 and ωx = 0.5, and (b) a DTW with c = 5 and ωx = 2. The controlled
flow results are obtained using the Shanks transformation up to fourth order in α,
and they closely match the large-scale truncation results (hollow circles). Figure 15(b)
shows that the properly designed DTWs with amplitudes equal to 5, 10 and 20 % of
the base centreline velocity reduce the largest energy density of the uncontrolled flow
by approximately 28, 60 and 80 %, respectively. It is noteworthy that a substantial
reduction is obtained at the expense of a relatively small increase (compared to the
laminar flow) in the nominal drag coefficient, which approximately increases by 1,
4 and 13 %. Further increase in the amplitude of a DTW with c = 5 and ωx = 2
results in even larger receptivity reduction. Part 2 demonstrates that this approach
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Figure 14. Energy density, Ē(kz), of the fundamental mode θ = 0 in a Poiseuille flow with
Rc = 2000 and (c = 5, ωx = 2, α = 0.025). The controlled flow results are obtained using
perturbation analysis up to second order in α and the Shanks transformation up to fourth
order in α.

10–1 100

kz

101 102 10–1 100

kz

101 102

4

3

2

1

0

14

12

10

8

4

2

6

0

(× 105) (× 105)Upstream Downstream 

α = 0 α = 0
α = 0.025
α = 0.050
α = 0.100
α = 0.100

α = 0.010
α = 0.014
α = 0.016
α = 0.016

(b)(a)

Figure 15. Energy density, Ē(kz), of the fundamental mode θ = 0 in a Poiseuille flow with
Rc = 2000 subject to (a) a UTW with c = −2 and ωx = 0.5, and (b) a DTW with c = 5
and ωx = 2. The Shanks transformation up to fourth order in α is used in computations. The
truncation results (hollow circles) are obtained for (a) α = 0.016 and (b) α = 0.1.

can be successfully used for controlling the onset of turbulence in flows subject to
large initial disturbances. However, the power required for maintaining a laminar
flow under these conditions is prohibitively large, which limits the advantage of using
DTWs for transition control from the efficiency point of view.

In contrast to DTWs, figure 15(a) demonstrates that the UTW with c = −2 and
ωx = 0.5 increases receptivity. We note that all of these trends are correctly captured
by the second-order correction (in α) to the energy amplification and that our results
agree with the transient growth study of Lee et al. (2008). Furthermore, large energy
amplification of the UTWs may be thought of as a precursor to flow instability;
namely, it turns out that the UTWs destabilize the flow for α > 0.03, which is a
smaller value compared to the amplitudes chosen in Min et al. (2006) (α = 0.05 and
α = 0.125, respectively).
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Figure 16. Energy density, Ē(kz), of the fundamental mode θ = 0 in a Poiseuille flow with
Rc = 2000 subject to a UTW with c = −5 and ωx = 0.03. The Shanks transformation up to
fourth order in α is used in computations.

As described in § 4.2, figure 10(a) suggests that the UTWs with ωx � 0.1 can
reduce the intensity of the most energetic modes of the uncontrolled flow. Here, we
demonstrate that such UTWs lead to a very modest receptivity reduction. Figure 16
illustrates that a UTW with (c =−5, ωx = 0.03, α =0.025) reduces energy amplification
by about 8 %. On the other hand, modal stability analysis can be used to show that
amplitudes as small as α ≈ 0.03 make the flow linearly unstable. Therefore, relative
to flow with no control, the UTWs at best exhibit similar receptivity to disturbances.

For the control amplitudes shown in figures 15 and 16, we have verified the stability
of fluctuations around base velocities in both UTWs and DTWs by computing the
eigenvalues of the large-scale truncation of operator Aθ (kz) in (3.5). Compared to
solving the truncated version of the Lyapunov equation (3.9), perturbation analysis
in conjunction with the Shanks transformation provides much more efficient way for
determining energy amplification. For example, while it takes four days on a PC to
obtain the truncated results (hollow circles) in figure 15(b), the Shanks approximation
is computed in 4 h on the same PC. Moreover, once the correction coefficients in (3.15)
have been determined, the energy amplification for a reasonably wide range of control
amplitudes can be obtained at no further cost.

4.4. Energy-amplification mechanisms

The energy of velocity fluctuations around a given base flow can also be obtained from
the Reynolds–Orr equation (Schmid & Henningson 2001). This equation can be used
to elucidate the energy-amplification mechanisms and facilitate better understanding
of the influence of UTWs and DTWs on transitional channel flows. In this section,
we consider the Reynolds–Orr equation for the fundamental modes (i.e. modes with
θ = 0; cf. (3.4)). Our results reveal that, relative to the uncontrolled flow, the DTWs
reduce the production of kinetic energy, thereby enabling the smaller receptivity
to disturbances. As opposed to the DTWs, the UTWs increase the production of
kinetic energy. For the streamwise-periodicbase flow, ub = (U (x, y), V (x, y), 0), the
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Figure 17. Contribution of production and dissipation terms to the energy density of the
θ = 0 mode in a Poiseuille flow with Rc = 2000 subject to (a)–(c) a DTW with (c = 5,
ωx = 2), and (d )–(f ) a UTW with (c = −2, ωx = 0.5). (a, d ) an uncontrolled flow; (b, e)
second-order corrections; and (c, f ) controlled flows. In (c, f ), the controlled flow results are
obtained using approximation up to second order in α, and the uncontrolled flow results are
shown for comparison.

time evolution of the kinetic energy of the fundamental modes, Ē(θ = 0, kz; t) =
〈vθ ( · , kz, t), vθ ( · , kz, t)〉 |θ=0, is governed by

1

2

dĒ

dt
= −〈uθ , Uyvθ〉 − 〈vθ , Vyvθ〉 − 〈uθ , Uxuθ〉 − 〈vθ , Vxuθ〉

+ (1/Rc)(〈vθ , Dxxvθ〉 + 〈vθ , ∂yyvθ〉 − k2
z 〈vθ , vθ〉) + 〈vθ , dθ〉, θ = 0, (4.4)

where, for example, vθ = col{v(nωx, y, kz, t)}n ∈ � for the fundamental modes. In (4.4),
Dxx is a diagonal operator with {(−nωx)

2I}n ∈ � on its main diagonal, I is the identity
operator, 〈·, ·〉 denotes the L2[−1, 1] inner product and averaging in time (cf. (3.8)),
and Uy , Vy , Ux and Vx are block-Toeplitz operators whose rth sub-diagonals are
determined by the rth harmonic in the Fourier series representation of Uy(x, y),
Vy(x, y), Ux(x, y) and Vx(x, y) (see Appendix B for details). The first four terms on
the right-hand side of (4.4) denote the work of Reynolds stresses on the base shear
and they contribute to production of the kinetic energy. The next group of terms
represents viscous dissipation and the last term accounts for the direct work of the
forcing on the velocity fluctuations. It can be shown that the direct work of d on
v is balanced by a fixed portion of the viscous dissipation, and that the difference
between the production terms and the remaining dissipation terms determines the
energy density (cf. figure 17).
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In the steady-state limit, (4.4) can be used to obtain the following expression for
the energy density of the fundamental mode, Ē(0, kz) = limt → ∞Ē(0, kz; t):

Ē(0, kz) = Ēp(0, kz) +Ēd(0, kz). (4.5)

Here, Ēp(0, kz) denotes the contribution of production terms to the energy density
and Ēd(0, kz) represents the joint contribution of viscous dissipation and the work of
disturbances

Ēp(0, kz) = −
(
Rc/k2

z

)
(〈uθ , Uyvθ〉 + 〈vθ , Vyvθ〉 + 〈uθ , Uxuθ〉 + 〈vθ , Vxuθ〉),

Ēd(0, kz) =
(
1/k2

z

)
(〈vθ , Dxxvθ〉 + 〈vθ , ∂yyvθ〉) +

(
Rc/k2

z

)
〈vθ , dθ〉, θ = 0.

}
(4.6)

In flows subject to small-amplitude travelling waves, a perturbation analysis can be
employed to study the effect of each term on the right-hand side of (4.6) on the energy
density

Ē(0, kz) = Ē0(0, kz) + α2Ē2(0, kz) + O(α4),

Ē0(0, kz) = Ē0,p(0, kz) +Ē0,d(0, kz),

Ē2(0, kz) = Ē2,p(0, kz) +Ē2,d(0, kz),

⎫⎪⎬
⎪⎭ (4.7)

where all the above terms can be readily determined from the solution to the Lyapunov
equation (3.9).

Figure 17 illustrates Ēp(0, kz) and Ēd(0, kz) in the uncontrolled flow and in flows
subject to a DTW with (c = 5, ωx = 2) and a UTW with (c = −2, ωx = 0.5). As
expected, in the uncontrolled flow, the joint contribution of dissipation and forcing is
negative while the contribution of production is positive (see figures 17a and 17d ). The
energy density (solid curve) is determined by the sum of Ē0,p and Ē0,d , and it peaks at
kz ≈ 1.78. The second-order corrections (in α) to Ēp and Ēd are shown in figures 17(b)
(for the DTW) and 17(e) (for the UTW). In flows subject to a DTW, the correction
to Ēp is negative while the correction to Ēd is positive. Furthermore, the effect of Ē2,p

dominates that of Ē2,d , which implies that the DTW reduces the energy density of
the uncontrolled flow. (The solid curve in figure 17b shows that a DTW introduces a
negative correction toĒ0.) On the other hand, flows subject to a UTW exhibit opposite
trends; the correction to Ēp is positive, the correction to Ēd is negative, and since Ē2,p

has the dominant effect, the UTW increases the energy density of the uncontrolled
flow. (The solid curve in figure 17e shows that a UTW introduces a positive correction
to Ē0.) In figures 17(c) and 17(f ), perturbation analysis up to second order in α is
used to show Ēp and Ēd (solid curves) for a DTW with α = 0.025 and for a UTW
with α = 0.015. Relative to the uncontrolled flow (symbols), the DTW decreases both
production and dissipation terms. On the contrary, the UTW increases both of these
terms. For both UTWs and DTWs, production dominates dissipation and determines
whether the energy is increased or decreased. In addition, our computations show that
〈uθ , Uyvθ〉 is orders of magnitude larger than the other production terms. Moreover,
〈u, ∂yyu〉 completely dominates other dissipation terms. Therefore, the work of the
Reynolds stress uv against the base shear Uy is responsible for almost all of the energy
production and the maximum viscous dissipation is associated with the wall-normal
diffusion of the streamwise velocity fluctuation. These results are confirmed by DNS
of the N–S equations in Part 2.

5. Concluding remarks
This paper disentangles three distinct effects of blowing and suction along the walls

on pumping action, required control power and kinetic energy reduction. We have
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shown that analysis of dynamics is paramount to designing the streamwise travelling
waves. If velocity fluctuations are well-behaved, then the pumping action and required
control power can be ascertained from the steady-state analysis. The proposed method
uses receptivity analysis of the linearized N–S equations to study the fluctuations’
energy in transitional channel flows. Motivated by our observation that a positive
net efficiency can be achieved by preventing transition, we develop a framework for
design of travelling waves that reduce receptivity to three-dimensional body force
fluctuations. DNS of the N–S equations, conducted in Part 2 of this study (Lieu
et al. 2010), verify that the travelling waves identified here are indeed an effective
means for controlling the onset of turbulence. This demonstrates the predictive power
of model-based approach to sensorless flow control; our simulation-free approach
captures the essential trends in a computationally efficient manner and avoids the
need for DNS and experiments in the early design stages.

Our perturbation analysis has revealed that properly designed DTWs can
significantly reduce energy amplification of three-dimensional fluctuations, including
the streamwise streaks and the T–S waves, which makes them well suited for
preventing transition. The DNS calculations of Part 2 confirm that the transient
response of fluctuations’ kinetic energy can be maintained at low levels using the
values of wave frequency and speed that reduce receptivity of the linearized N–S
equations. This facilitates the maintenance of a laminar flow; positive net efficiency
can be achieved if the wave amplitude necessary for controlling the onset of turbulence
is not prohibitively large (Lieu et al. 2010). On the other hand, we show that the UTWs
are poor candidates for preventing transition, for, at best, they exhibit receptivity to
background disturbances similar to that of the uncontrolled flow. In particular, the
UTWs considered by Min et al. (2006) largely amplify the most energetic modes of
the uncontrolled flow, thereby promoting turbulence even when the uncontrolled flow
stays laminar (Lieu et al. 2010).

In spite of promoting turbulence, the UTWs may offer a viable strategy for reducing
skin-friction drag in fully developed turbulent flows. The DNS of Min et al. (2006)
and Lieu et al. (2010) suggest that the UTWs alter the dynamics of velocity fluctuations
favourably in the turbulent regime, e.g. by reducing the skin-friction drag coefficient
compared to the uncontrolled flow. However, since the UTWs induce a turbulent flow
that departs from the base flow obtained in the absence of velocity fluctuations, the
model used in this study cannot be employed to explain utility of UTWs. This would
require development of control-oriented models that contain the essential physics
of turbulent flows and, at the same time, are convenient for control design. For
example, turbulent viscosity models have been successfully used to determine the
turbulent mean velocity (Reynolds & Tiederman 1967; Reynolds & Hussain 1972)
and to identify the dominant turbulent flow structures (Del Alamo & Jimenez 2006;
Cossu, Pujals & Depardon 2009; Pujals et al. 2009). Motivated by these successes, we
intend to explore the development of new control-oriented models that are capable
of capturing the essential features of turbulent flow dynamics.

The contribution of this paper goes beyond the problem of designing transpiration-
induced streamwise travelling waves. The techniques presented here may also find use
in designing periodic geometries and waveforms for maintaining the laminar flow or
skin-friction drag reduction. Our study (i) suggests that strategies capable of reducing
high flow sensitivity represent a viable approach to controlling the onset of turbulence
and (ii) offers a computationally attractive (and simulation-free) method to determine
the energy amplification of the linearized flow equations in the presence of periodic
controls.
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Appendix A. Base velocity
In order to determine the corrections to base parabolic profile in flows subject to

small-amplitude travelling waves, we use a weakly nonlinear analysis to solve (2.3)
subject to (2.2). We only present the equations for corrections up to second order in
α; similar equations can be obtained for higher-order corrections. Stream functions,
Ψ1,±1(y), can be used to determine the first harmonic in Fourier series representation
of the base velocity (cf. (2.6)),

U1,±1(y) = Ψ ′
1,±1(y), V1,±1(y) = ∓iωxΨ1,±1(y), (A 1)

where Ψ1,±1(y) are solutions to

(1/Rc)�
2
ωx

Ψ1,±1 ± iωx((c − U0) �ωx
Ψ1,±1 + U ′′

0 Ψ1,±1) = 0,

Ψ1,−1(±1) = ±i/ωx, Ψ1,1(±1) = ∓i/ωx, Ψ ′
1,±1(±1) = 0.

}
(A 2)

Here, �ωx
= ∂yy −ω2

x with Dirichlet boundary conditions and �2
ωx

= ∂yyyy −2ω2
x∂yy +ω4

x

with Cauchy boundary conditions. Moreover, U2,0 is obtained by equating terms of
order α2 in the streamwise averaged x-momentum equation:

(1/Rc)U
′′
2,0 = V1,1 U ′

1,−1 − U1,1 V ′
1,−1 + V1,−1 U ′

1,1 − U1,−1 V ′
1,1, U2,0(±1) = 0. (A 3)

Appendix B. Frequency representation of the evolution model
We first describe how the base velocity modified by the travelling waves enters in

the evolution model (3.1). The frequency representation of the evolution model is
discussed next. It turns out that the components of the base velocity determine the
coefficients of the operator F in (3.1). For the base velocity, ub = (U (x, y), V (x, y), 0),
F is a 2 × 2 block operator with components

F 11 = (1/Rc)�
2 + ((�U ) − (U − cI )�)∂x − (�V )∂y − V �∂y

−2Vx∂xy + Ux(� − 2∂xx) − (�Vy) + (2(�V )∂x + �Vx

+Vx(� − 2∂yy) − 2Ux∂xy

)
(∂xx + ∂zz)

−1∂xy,

F 12 = −(2(�V )∂x + �Vx + Vx(� − 2∂yy) − 2Ux∂xy)(∂xx + ∂zz)
−1∂z,

F 21 = −(Uy∂z + Vx(∂xx + ∂zz)
−1∂yyz),

F 22 = (1/Rc)� − (Ux + (U − cI )∂x + V ∂y) − Vx(∂xx + ∂zz)
−1∂xy,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 1)

where (∂xx + ∂zz)
−1 is defined by

(∂xx + ∂zz)
−1 : f �→ g ⇔

{
f = (∂xx + ∂zz)g

= gxx + gzz.
(B 2)

The frequency representation (see (3.5)) of the linearized evolution model (3.1) can
be determined using the following simple rules (Fardad et al. 2008).
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(a) A spatially invariant operator L with Fourier symbol L(kx) has a block-
diagonal representation, Lθ = diag{L(θn)}n ∈ �. For example, if L = ∂x , then
Lθ = diag{i(θ + nωx)I}n ∈ �. Operators E, G, C, F0 and Fl,r in (3.1) are spatially
invariant and, thus, their representations are block-diagonal.

(b) A spatially periodic function T (x) with Fourier series coefficients {Tn}n ∈ � has
a θ-independent block-Toeplitz representation

T = toep
{

. . . , T2, T1, T0 , T−1, T−2, . . .
}

=

⎡
⎢⎢⎢⎢⎢⎣

. . .

T0 T−1 T−2

T1 T0 T−1

T2 T1 T0

. . .

⎤
⎥⎥⎥⎥⎥⎦, (B 3)

where the box denotes the element on the main diagonal of T. For example, T (x) =
e−irx has a block-Toeplitz representation, T = Sr , with the only non-zero element
T−r = I .

(c) A representation of the sums and cascades of spatially periodic functions
and spatially invariant operators is readily determined from these special cases.
For example, a matrix representation of operator e−irx∂x is given by Sr diag{i(θ +
nωx)I}n ∈ �.

Based on these, we get the following representations for Aθ , Bθ and Cθ in (3.5):

Aθ = E−1
θ Fθ = E−1

θ F0θ +

∞∑
l=1

αl

l∑
r

2
= −l

E−1
θ S−rFl,rθ = A0θ +

∞∑
l=1

αl Alθ ,

Bθ = E−1
θ Gθ , Gθ = diag{G(θn)}n ∈ �, Cθ = diag{C(θn)}n ∈ �,

⎫⎪⎬
⎪⎭ (B 4)

where we have used the fact that Eθ =diag{E(θn)}n ∈ � is an invertible operator.
For convenience of later algebraic manipulations, we rewrite Alθ as Alθ =∑l

r
2
= −l

S−r Al,rθ , where Al,rθ = diag{Al,r (θn)}n ∈ � = diag{E−1(θn+r ) Fl,r (θn)}n ∈ �. In

other words, for a given l � 1 operator, Alθ has non-zero blocks only on rth sub-
diagonals with r ∈ {−l, −l + 2, . . . , l − 2, l}. The frequency symbols of the operators
E(θn), G(θn), C(θn) and Fl,r (θn) are given by

F 11
0 (θn, kz) = (1/Rc)�

2 + iθn(U
′′
0 − (U0 − c)�), F 12

0 (θn, kz) = 0,

F 21
0 (θn, kz) = −ikzU

′
0, F 22

0 (θn, kz) = (1/Rc)� − iθn(U0 − c),

}
(B 5)

and

F 11
l,r (θn, kz) = iθn

((
�rωx

Ul,r

)
− Ul,r � − 2i(rωx)Vl,r∂y

)
−
((

�rωx
Vl,r

)
+ V �

)
∂y − irωxUl,r

(
� + 2θ2

n

)
− irωx

(
�rωx

Ul,r

)
− (θn/k2)

(
2θn

((
−�rωx

Vl,r

)
∂y + irωxUl,r∂yy

)
− rωx

((
�rωx

Vl,r

)
+ Vl,r (� − 2∂yy)

)
∂y

)
,

F 12
l,r (θn, kz) = (kz/k2)

(
2θn

((
−�rωx

Vl,r

)
+ irωxUl,r∂y

)
− rωx

((
�rωx

Vl,r

)
+ Vl,r (� − 2∂yy)

))
,

F 21
l,r (θn, kz) = − ikz(U

′
l,r − (irωx/k2) Vl,r∂yy),

F 22
l,r (θn, kz) = −Vl,r∂y − irωxUl,r + iθn((irωx/k2)Vl,r∂y − Ul,r ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 6)
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where k2 = θ2
n + k2

z , � = ∂yy − k2 and �rωx
= ∂yy − (rωx)

2 with Dirichlet boundary
conditions, and �2 = ∂yyyy −2k2∂yy + k4 with Cauchy boundary conditions. Operators
E, G and C are given by

E(θn, kz) =

[
� 0
0 I

]
, G(θn, kz) =

[
−iθn∂y −k2I −ikz∂y

ikzI 0 −i∂y

]
,

C(θn, kz) =

⎡
⎢⎣

i(θn/k2)∂y −ikz/k2

I 0

i(kz/k2)∂y iθn/k2

⎤
⎥⎦.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(B 7)

Appendix C. Perturbation analysis of energy density
As discussed in § 3.3, the steady-state energy density, Ē(θ, kz), of the linearized

system (3.5), can be determined using the solution to the operator Lyapunov
equation (3.9). For sufficiently small values of α, the solution of (3.9) can be expressed
as a perturbation series Xθ =

∑∞
m=0 αm Xmθ . After substituting into (3.9) and factoring

out the terms with equal power in α, we have

α0 : A0θ X0θ + X0θ A∗
0θ = −Bθ B∗

θ ,

αm : A0θ Xmθ + Xmθ A∗
0θ = −

m∑
l=1

(Alθ Xm−lθ + Xm−lθ A∗
lθ ), m � 1.

⎫⎪⎬
⎪⎭ (C 1)

Since operator A0θ is block-diagonal, Xmθ inherits the same structure as the right-
hand side of (C 1). One can show that Xmθ has non-zero blocks only on the first s � m

odd (for odd m) or even (for even m) upper and lower sub-diagonals. Up to second
order in α, we have

X0θ = X0,0θ ,

X1θ = S1 X1,1θ + X∗
1,1θ S−1,

X2θ = S2 X2,2θ + X2,0θ , +X∗
2,2θ S−2,

⎫⎬
⎭ (C 2)

where Xm,sθ = diag{Xm,s(θn)}n ∈ � and Sr is defined in Appendix B. Substituting
into (C 1) yields

A0θ X0,0θ + X0,0θ A∗
0θ = −Bθ B∗

θ ,

A0θ S1X1,1θ + S1 X1,1θ A∗
0θ = −(S1 A1,−1θ X0,0θ + X0,0θ A∗

1,1θ S1),

A0θ X2,0θ + X2,0θ A∗
0θ = −(A2,0θ X0,0θ + X0,0θ A∗

2,0θ + S−1 A1,1θ S1 X1,1θ

+ S1 A1,−1θ X∗
1,1θ S−1 + S1 X1,1θ A∗

1,−1θ S−1

+ X∗
1,1θ S−1 A∗

1,1θ S1).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(C 3)

Finally, each block on the main diagonal of Xm,sθ in (C 3) is obtained from

A0(θn)X0,0(θn) + X0,0(θn)A
∗
0(θn) = −B(θn)B

∗(θn),

A0(θn−1)X1,1(θn) + X1,1(θn)A
∗
0(θn) = −(A1,−1(θn)X0,0(θn) + X0,0(θn−1)A

∗
1,1(θn−1)),

A0(θn)X2,0(θn) + X2,0(θn)A
∗
0(θn) = −(A2,0(θn)X0,0(θn) + X0,0(θn)A

∗
2,0(θn)

+ A1,1(θn−1)X1,1(θn) + A1,−1(θn+1)X
∗
1,1(θn+1)

+ X1,1(θn+1)A
∗
1,−1(θn+1) + X∗

1,1(θn)A
∗
1,1(θn−1)).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(C 4)
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