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Abstract— We consider the cantilever beam model proposed
in the seminal paper of Sader [1], where fluid damping effects
on an oscillating cantilever are modeled. We show that in
Sader’s model, the transfer function of base-to-tip displacement
fails to display high-frequency roll-off. It turns out that this
is also true for the widely-used viscous damped beam model.
We further demonstrate that the addition of Voigt damping to
Sader’s model creates the high frequency roll-off expected of a
realistic model.

I. INTRODUCTION

The atomic force microscope (AFM) [2] provides means
for atomic-scale imaging. The AFM is capable of obtaining
images with resolution many orders of magnitude higher
than optical microscopes, which are bound by the optical
diffraction limit at atomic scales. The AFM operates by
moving a specimen or sample under a micro-cantilever
beam with a sharp tip. The cantilever beam “feels” the
topography of the sample surface based on the inter-atomic
forces between the cantilever tip and the sample; see Fig. 1.
There are two fundamental modes of operation for the
AFM, static mode and dynamic mode.

In static mode operation [3] the base of the cantilever
is not forced, and the cantilever tip is consistently at a
small distance from the sample. It is known that in this
mode the cantilever tip and the imaged sample are subject
to large lateral as well as vertical forces, which leads to
considerable wear of the cantilever tip and the sample. This
drawback of static mode operation renders it unsuitable for
interrogating soft samples which are encountered in most
biological matter.

In dynamic mode operation [4] the cantilever base is
oscillated at a frequency close to its first resonant frequency.
The changes in the frequency and amplitude of the cantilever
oscillations, that result due to its interaction with the sample,
are then monitored to infer sample properties. This method
generally allows for a higher imaging resolution compared
to the static mode, and has the additional advantage of
being less intrusive on the sample. In this paper our focus
will be on dynamic mode operation.

The prevalent cantilever models used in the AFM
literature are those obtained by approximating the cantilever
by a lumped system. In such cases the basic strategy is to use
a finite-dimensional model that captures well the frequency
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response of the cantilever around its first resonant frequency.
The disadvantage of this approach is that it ignores high
frequency dynamics of the cantilever, which can lead
to undesired behavior and spillover effects. Therefore
in this paper we choose to work directly with the partial
differential equations (PDEs) that describe a cantilever beam.

To obtain an accurate PDE description of the cantilever
it is important to model dissipative and damping effects.
Distributed damping mechanisms can be divided into
two categories: internal and external. In the literature on
beam theory, there is some dispute as to what constitutes
the most accurate model of a beam’s internal damping
mechanism; see [5, Chap. 8] and references therein.
Structural damping [6], also known as Voigt or Rayleigh
damping, is a commonly used internal damping model. A
widely used external damping model is given by viscous
damping [6], [7]. Sader [1] describes the external damping
effects of the surrounding fluid on an oscillating cantilever
beam. In this paper we consider cantilever beams with both
internal and external damping, where for internal damping
we use the Voigt model and for external damping we use
the fluid model proposed by Sader.

We emphasize here the importance of accurately
modeling the cantilever dynamics, and in particular, its
damping mechanisms. It is true that once the cantilever is
used in dynamic mode various nonlinear phenomena arise,
which admittedly represent challenging research topics in
their own right. However, a precise model of the cantilever
itself is crucial to achieving higher imaging resolutions.
This fact constitutes our main motivation for this work.

The main contributions of this paper are as follows.
We first consider the fluid damping framework of
Sader [1], which is a widely used framework in the
physics literature, and we obtain the transfer function
of base-to-tip displacement. Using a frequency domain
analysis of this transfer function, we show that the fluid
damping model of Sader leads to a cantilever model that
is physically unrealistic, in that it does not display high-
frequency roll-off. However, we show that the addition of
Voigt internal damping remedies this problem and leads to
a frequency response similar to that observed in experiments.

The insufficiency of external viscous damping as the only
source of damping for the cantilever has already been pointed
out in the context of the cantilever control problem [8], and
our findings emphasize these results. Furthermore, we argue
that it is important to consider the transfer function F (s) of
base-to-tip displacement because: (a) in most AFMs the base
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Fig. 1. The cantilever deflects due to atomic forces between the sample
and the cantilever tip. The amount of deflection can be measured by a laser
incident on the cantilever (not shown).

of the cantilever is forced and the tip deflection is measured
and thus F is relevant to dynamic mode schemes, and (b)
the analysis of F can indicate shortcomings in the cantilever
model. Our analysis of F sheds light on the necessity of
including internal damping in the cantilever model. We also
show that (external) fluid damping is inconsequential on the
cantilever dynamics at high temporal frequencies.

The paper is organized as follows. In Section II we de-
scribe the general mathematical model of the cantilever beam
and derive the transfer functions of interest. In Section III
we highlight the main results of Sader [1]. In Section IV
we augment the beam model of [1] with internal damping.
We finish with conclusions and directions for future work in
Section V.

II. MATHEMATICAL MODEL

Consider an Euler-Bernoulli beam that is clamped at x = 0
and is connected to a spring at x = l. For t ≥ 0 this system
is described by [6]

µψtt + αEI ψtxxxx + EI ψxxxx = f,
0 < x < l,

ψ(0, t) = w(t),

ψx(0, t) = ψxx(l, t) = 0,

αEI ψtxxx(l, t) + EIψxxx(l, t) = φ(ψ(l, t)),

(1)

with output
y(t) = ψ(l, t).

Here, ψ(x, t) describes the vertical displacement of the beam
at location x and time t, the temporal function w describes
the displacement input at the base of the beam, and φ
describes the force acting on the tip of the beam as a
(possibly nonlinear) function of the tip displacement. The
subscripts x and t denote partial differentiation with respect
to time and space, respectively, e.g. ψtxxxx = ∂5ψ

∂t∂4x . The
mass per unit length of the beam is given by µ, E is Young’s
modulus, I is the area moment of inertia of the beam (EI
is also known as the flexural stiffness), and α is the Voigt
damping factor. The distributed forcing along the beam is
described by f . In this paper we consider f to have the
particular form

f(x, t) = (f̃ ∗ ψ)(x, t)

where “∗” denotes temporal convolution and f̃ has no
dependence on x.

The physical meaning of the variables is as follows [9]:
ψ is the displacement, ψx is the rotation, ψxx is the
bending moment, and ψxxx is the shear force. The boundary
condition ψ(0, t) = w(t) forces the base of the beam
to move like w(t). The equations (1) are derived from
the condition for the equilibrium of forces on differential
beam segments [6]. A more elegant method of deriving the
governing equations for a lossless beam (α = 0) is through
the use of energy methods and Hamilton’s variational
principle [10].

We emphasize that (1) is different from most beam models
considered in the AFM literature in that, in addition to force
interactions with the nonlinear spring at the tip of the beam,
it also allows for displacement inputs at the base. This is
indeed a natural setting for the dynamic mode AFM, where
the base is generally forced with a known input and the tip
interacts with a sample whose force effects on the tip are
typically unknown.

A. Representation as Feedback Interconnection

By denoting
u(t) = φ(y(t)),

we rewrite system (1) in the following form

µψtt + αEI ψtxxxx + EI ψxxxx = f,
0 < x < l,

ψ(0, t) = w(t),

ψx(0, t) = ψxx(l, t) = 0,

αEI ψtxxx(l, t) + EIψxxx(l, t) = u(t),

(2)

with output
y(t) = ψ(l, t).

The boundary input to the beam is now v = [w u ]T ,
where w is a displacement input and u is a force input. The
advantage of the new formulation is that we can now use
tools from feedback control theory to analyze the properties
of the interconnection of system (2) with the nonlinearity φ.

B. Open-Loop Transfer Function

Assuming zero initial conditions, we perform a Laplace
transform in time on (2) to get1

ψxxxx = − q(s)ψ, 0 < x < l,

ψ(0, s) = w(s),

ψx(0, s) = ψxx(l, s) = 0,

ψxxx(l, s) =
1

EI(αs+ 1)
u(s),

(3)

with output
y(s) = ψ(l, s),

where

q(s) :=
µs2 − f̃(s)
EI(αs+ 1)

. (4)

1To avoid clutter we use the same notation for ψ in the Laplace domain
and in the time domain. The distinction will be clear from the context.
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Note that in obtaining (3)–(4) we have used the following
property of the Laplace transform

f(x, t) = (f̃ ∗ ψ)(x, t)
Laplace−−−−−→

transform
f(x, s) = f̃(s)ψ(x, s).

We henceforth use H(s) to denote the 1-by-2 transfer
function from the boundary input v = [w u ]T to the output
y of the linear system (3), i.e.,

y(s) = H(s) v(s) =
[
F (s) G(s)

] [ w(s)
u(s)

]
.

Using state-space methods, we obtain (see Appendix for
details)

F (s) =
4 cos(l 4

√
q(s)/4) cosh(l 4

√
q(s)/4)

2 + cos(l 4
√

4 q(s)) + cosh(l 4
√

4 q(s))
, (5)

G(s) =
sin(l 4

√
4 q(s)) − sinh(l 4

√
4 q(s))

2 + cos(l 4
√

4 q(s)) + cosh(l 4
√

4 q(s))
(6)

×
√

2
EI 4
√
q(s)3(αs+ 1)

.

Finally, it can be concluded from the analysis of [11]
that the poles of the transfer functions F and G belong
to the open left-half of the complex plane. Furthermore,
exponentially stability of system (3) was established in [12,
Chap. 4].

C. The Closed-Loop System

Once the nonlinearity φ is put in place, the closed-loop
system can be described by the following block diagram

+
+w̃

w F

G

φ
u

y

where w and w̃ denote displacement input at the base
(x = 0) and force input at the tip (x = l), respectively.

There is another way to represent the above closed-loop
system. By defining W (s) := F (s)/G(s) the previous block
diagram can be redrawn as

+ G

w̃

w

φ
u

W y

where W can be interpreted as the transfer function from
oscillation at the base to forcing at the tip.

III. BEAM MODEL OF SADER: FLUID DAMPING

In this section we first briefly describe the main results
of Sader [1], where it is assumed that the beam has zero
internal damping [i.e., α = 0 in (2) and (3)] and all damping
of the beam is provided by the surrounding fluid. Then
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Fig. 2. The magnitude plots |Im{Γ(ω)}| (red) and |Re{Γ(jω)}| (blue).
The imaginary part of Γ, which is responsible for beam damping, decays
as the temporal frequency is increased.

we employ frequency domain analysis to show that the
beam model of [1] does not yield a transfer function F (s)
that demonstrates the high-frequency roll-off expected of
physical systems.

Reference [1] considers a beam described by (2) with
zero internal damping α = 0, zero input at the boundaries
w = u = 0, and distributed forcing f that accounts for the
“hydrodynamic loading” due to the motion of fluid around
the beam. Therefore f contains all “dissipation” effects and
the beam is otherwise undamped. The surrounding fluid is
assumed to be viscous and incompressible. Using equations
of motion for the fluid, Sader shows that

f̃(jω) = κω2 Γ(ω)∗, κ =
π

4
d2ρ, (7)

where Γ is a complex-valued function of frequency, ρ is the
density of the fluid, d is the width of the beam (which is
assumed to be much smaller that the length of the beam),
and Γ∗ is the complex conjugate of Γ. The dependence of
Γ on ω involves modified Bessel functions of the third kind.
More specifically

Γ(ω) = 1 +
4 j K1(−j

√
j R)√

j RK0(−j
√
j R)

, R =
d2ρ

4 η
ω,

where η is the viscosity of the fluid and ρ is its density. In
particular

Γ(ω) → 1 as ω → ∞.

Fig. 2 shows the magnitude of the imaginary and real
parts of Γ∗ for the parameter values d = 30 × 10−6 m,
ρair = 1.16 kg/m3, and ηair = 18.6 × 10−6 Pa s. The
imaginary part of κΓ∗ models the dissipative effects of
the surrounding fluid, whereas the real part of κΓ∗ acts
as added mass to the beam [1]. In other words, a beam
with mass per unit length equal to µ, when immersed in
fluid, behaves like a beam of mass per unit length equal to
µ+ κRe(Γ∗) in vacuum.

Let us now consider the fluid damping model of Sader in
conjunction with nonzero boundary inputs at the base and
tip of the beam, w 6= 0, u 6= 0. Henceforth we will refer to
this system as “Sader’s model”. From (4) and (7) it is clear
that the transfer functions F (jω) and G(jω) corresponding
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Fig. 3. The magnitude plots |F (jω)| (red) and |G(jω)| (blue) for Sader’s
model with parameter values given in (8). The magnitude of F (jω) does
not show high-frequency roll-off.

to Sader’s fluid-damped beam can be found from (5) and (6)
via the substitution

q(jω) = − ω2

EI

(
µ+ κΓ(ω)∗

)
.

Fig. 3 shows the Bode plots of F (red) and G (blue) for the
following parameter values

d = 30× 10−6 m ηair = 18.6× 10−6 sPa
l = 240× 10−6 m ρair = 1.16 kg/m3

µ = 1.88× 10−7 kg/m EI = 7.55× 10−12 Nm2
(8)

These parameter values have been taken from an actual AFM
setup at the NanoDynamics Systems Lab at the University
of Minnesota.

The Bode plot of F shows that |F (jω)| does not roll-off
as ω → ∞. This means that any noise input to the base of
the cantilever will have significant contribution to the tip
deflection. In fact, the H2 norm of F will be infinite in this
case. We note that the H2 norm quantifies the variance of
the output stochastic process when the input is Gaussian
white noise.

The absence of high-frequency roll-off in F demonstrates
that Sader’s fluid-damped beam model is inaccurate in
describing the beam dynamics at high temporal frequencies.
In the next section we will modify Sader’s model to
account for internal damping of the beam. We will
see that once internal damping is added, the Bode plot
of F demonstrates the roll-off observed in experimental data.

Remark 1: It should be noted that a beam with “viscous
damping” [6] described by

µψtt + β ψt + EI ψxxxx = 0, 0 < x < l,

where β is the viscous damping factor, also does not dis-
play high-frequency roll-off. This can be seen by taking a
temporal Fourier transform and rewriting the equation as

ψxxxx =
ω2

EI

(
µ+

β

jω

)
ψ, 0 < x < l. (9)

As described in [1], the imaginary part of β/(jω), β/ω,
models the dissipative effects of the beam. Clearly β/ω →
0 as ω → ∞ and thus the beam behaves more and more
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Fig. 4. The magnitude plots |F (jω)| (red) and |G(jω)| (blue) for system
(9) with β = µ = l = EI = 1. Viscous damping does not cause high-
frequency roll-off of F .

like an undamped system as the frequency of oscillations is
increased. This is clearly displayed in Fig. 4.

IV. BEAM WITH BOTH FLUID AND VOIGT DAMPING

In this section we consider a beam model that has both
fluid and internal damping. A model of the beam with fluid
damping has been proposed by Sader [1] and was described
in some detail in the previous section. We showed that the
transfer function of Sader’s model does not display the
high-frequency roll-off. In this section we demonstrate that a
model with both fluid and internal (Voigt) damping displays
high-frequency roll-off commonly observed in experiments.

It is to be noted that a beam model with both fluid
and internal damping has been considered by Scherer et
al [13]. But the authors of [13] do not argue that internal
damping is necessary to yield a physically meaningful
model. Furthermore, since in [13] the base is assumed to
be clamped, the behavior of the transfer function F can
not be observed. In fact, since Sader’s fluid damping model
predicts an inaccurate peak of the first resonant frequency,
Scherer et al include internal damping only to match the
first resonant peak of the magnitude plot of G with that
obtained from measurements.

Recall that the effect of fluid damping is captured by
setting

f̃(jω) = κω2 Γ(ω)∗

in (3)–(4), and the effect of internal damping is captured
by the Voigt damping factor α. The equations of motion
describing the beam can thus be written as

ψxxxx =
ω2

EI

(µ+ κΓ(ω)∗

αjω + 1
)
ψ, 0 < x < l,

ψ(0, jω) = w(jω),

ψx(0, jω) = ψxx(l, jω) = 0,

ψxxx(l, jω) =
1
EI

( 1
αjω + 1

)
u(jω).

(10)

Comparing (10) and (3) it is clear that the transfer func-
tions F (jω) and G(jω) corresponding to system (10) can
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be found from (5) and (6) using the following substitution

q(jω) = − ω2

EI

(µ+ κΓ(ω)∗

αjω + 1
)
.

Fig. 5 compares the magnitude and phase plots of F
(red) and G (blue) for Sader’s system (i.e., zero Voigt
damping) and a system with both fluid and internal damping
as described by (10) with parameter values given in (8)
and α = 5 × 10−8 s. This value of α is the same as that
used in [13]. The plots corresponding to a model with both
fluid and Voigt damping are qualitatively similar to those
obtained from experimental measurements.

Remark 2: This paper is clearly not the first to consider
base oscillations of a beam [14]–[16] or to use the Voigt
damping model [13]. Furthermore, it is well-known that the
beam equation with viscous damping has an infinite number
of poles parallel to the imaginary axis [11] whereas the
equation with Voigt damping has poles that bend into the left-
half of the complex plane [11] and corresponds to an analytic
semigroup [12]. However, to the best of our knowledge, the
existing literature on the beam problem does not explicitly
point out the shortcomings – with regards to high frequency
behavior – of the widely-used viscous-damped and fluid-
damped beam models. We believe that the following factors
are responsible for this.

(i) High frequency phenomena will not be correctly ob-
served if a Galerkin projection of the governing PDE
is made onto a finite set of basis functions [14]; only
an infinite-dimensional model is capable of capturing
the true high frequency behavior.

(ii) If a spatial impulse is used to imitate an input at the
base of the beam [11] the resulting transfer function
will be different from that found by considering a
genuine base input (i.e., an input that enters the PDE
as a time-dependent boundary condition). This fact is
acknowledged in the mathematics literature (see for ex-
ample [17, Example 3.3.1]) but does not seem to have
been recognized in the context of the beam problem.
And it can be shown that only transfer functions that
are obtained from genuine boundary inputs are capable
of displaying the correct high frequency response.

(iii) Even if one avoids the pitfalls described above, it
is possible to miss interesting high frequency phe-
nomenon if one does not compute the base-to-tip
transfer function F (s). Indeed, as we have shown in
this paper, the tip-to-tip transfer function G(s) displays
physically acceptable high frequency roll-off.

V. CONCLUSIONS

We consider the cantilever beam of an AFM operating in
dynamic mode. We use the transfer function of base-to-tip
displacement to point out important shortcomings in a widely
used model for the cantilever beam described in [1]. Since
dissipation is the dominant mechanism at high temporal
frequencies, it is expected that the mentioned transfer
function shows high-frequency roll-off. We demonstrate that
this is indeed not the case for the cantilever model proposed
in [1]. We show that realistic roll-off behavior is obtained
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Fig. 5. The parameter values given in (8) have been used for all plots. a)
|F (jω)| (red) and |G(jω)| (blue) for Sader’s model. b) ∠F (jω) (red) and
∠G(jω) (blue) for Sader’s model. c) |F (jω)| (red) and |G(jω)| (blue) for
model with both fluid and Voigt damping. d) ∠F (jω) (red) and ∠G(jω)
(blue) for model with both fluid and Voigt damping.
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when Voigt internal (i.e., structural) damping is added to
the model.

Future work in this direction would include identification
of the Voigt damping parameter using the transfer function
of base-to-tip displacement. The multiplication expansions
proposed in [18] will be utilized in this effort to obtain a
rational approximation of the base-to-tip transfer function.

APPENDIX

The s-parameterized system (3) represent an ordinary
differential equation (in x), which admits the following two-
point-boundary-value state-space realization

∂

∂x
Ψ = As Ψ, (11a)

z = C Ψ, (11b)

Bs v(s) = N0 Ψ(0, s) + N1 Ψ(l, s), (11c)

with

Ψ =

 ψ
ψx
ψxx
ψxxx

 , As =

 0 1 0 0
0 0 1 0
0 0 0 1

−q(s) 0 0 0

 ,
C =

[
1 0 0 0

]
, q(s) =

µs2 − f̃(s)
EI(αs+ 1)

,

N0 =

 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , N1 =

 0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,

Bs =


1 0
0 0
0 0
0 1/(EI)

αs+1

 , v =
[
w
u

]
.

We are interested in finding the output z at point x = l, i.e.,
we seek

y(s) = z(l, s) = C Ψ(l, s).

But Ψ(l, s) is not fully known; equation (11c) only specifies
ψ3(l, s) = 0, ψ4(l, s) = u(s) and does not provide informa-
tion about the values of ψ1(l, s) and ψ2(l, s). To find Ψ(l, s)
we first note that

Ψ(x, s) = eAs(x−l) Ψ(l, s),

and thus

Ψ(0, s) = e−Asl Ψ(l, s). (12)

Substituting (12) into (11c) we obtain

(N0 e
−Asl + N1) Ψ(l, s) = Bs v(s) (13)

which gives

Ψ(l, s) = (N0 e
−Asl + N1)−1Bs v(s)

= eAsl (N0 + N1 e
Asl)−1Bs v(s).

Note that since v is the only input to the system and all
other boundary conditions are homogeneous, then if v is

identically equal to zero we would expect Ψ ≡ 0 to be
the unique solution, and in particular, Ψ(l, s) ≡ 0. Now if
v ≡ 0 then from (13) we have (N0 e

−Asl +N1) Ψ(l, s) = 0.
Thus if Ψ(l, s) ≡ 0 is to be the unique solution we need
that det(N0 e

−Asl + N1) 6= 0, for all s. Therefore the
existence of the inverse (N0 e

−Asl + N1)−1 for all s is
required in order to guarantee well-posedness of system (11).

Using y(s) = C Ψ(l, s), we arrive at

y(s) = C eAsl (N0 + N1 e
Asl)−1Bs v(s)

=
[
F (s) G(s)

] [ w(s)
u(s)

]
,

where MATHEMATICA is employed to obtain the transfer
functions F (s) and G(s) given in (5) and (6).
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