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Abstract

We study output-feedback control of systems on lattices
with spatially distributed sensing and actuating capa-
bilities. These systems are encountered in a wide range
of modefn applications such as: platoons of vehicles,
arrays of microcantilevers, unmanned aerial vehicles in
formation, and satellites in synchronous orbit. We use
a Lyapunov-based framework as a tool for stabiliza-
tion/regulation of systems in which nonlinearities de-
pend only on the distributed cutput variable. We first
present results for nominal design and then describe
the design of adaptive output-feedback controllers in
the presence of parametric uncertainties. These uncer-
tainties are assumed to be temporally constant, but are
allowed to be spatially varying. We show that our de-
sign yields the distributed controllers that inherit the
information passing structure from the original plant.
We also provide several examples of systems on lattices
and validate derived results using computer simulations
of systems containing a large number of units.

1 Introduction

Systems on lattices arise in a variety of modern tech-
nical applications. Typical examples of such systems
inctude: platoons of vehicles {[1, 2, 3}), arrays of mi-
crocantilevers [4], unmanned aerial vehicles in forma-
tion (5], and satellites in synchronous orbit ([6, 7]).
These systems are characterized by the interactions be-
tween different subsystems which often results in sur-
prisingly complex behavior. A distinctive feature of
this class of systems is that every single unit is equipped
with sensors and actuators. The controller design prob-
lem is thus dominated by architectural questions such
as localized versus centralized control, and the informa-
tion passing structure in both the plant and the con-
troller. This is in contrast with ‘spatially lumped’ con-
trol design problems, where the dominant issues are
optimal and reduced order controller design.

A framework for considering spatially distributed sys-
tems is that of a spatio-temporal system {8]. In the spe-
cific case of systems on discrete spatial domains, signals
of interest are functions of time and a spatial variable
n & F, where F is a discrete spatial lattice (e.g. Z or
N}. '

In this paper, we extend results of [9] to the case where
only distributed output is available for measurement,
rather than the entire state of the system. We con-
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sider models in which nonlinearities depend only on
the measured signals and use a Lyapunov-based ap-
proach to provide stability /regulation of nominal sys-
tems and systems with parametric uncertainties. In
the latter case, we assume that the unknown param-
eters are temporally constant, but are allowed to be
spatially varying. As a result of our adaptive design,
boundedness of all signals in the closed-loop in the pres-
ence of unknown parameters is guaranteed. In addition
to that, the adaptive controllers provide convergence of
the states of the original system to their desired val-
ues. We also show that the distributed design results
in controllers whose information passing structure is
similar to that of the original plant. This means, for
example, that if the plant has only nearest neighbor in-
teractions, then the distributed controller also has only
nearest neighbor interactions.

Our presentation is organized as follows: in section 2,
we give an example of systems on lattices and describe
the classes of systerns for which we design output-
feedback controllers in § 3. In § 4, we discuss appli-
cation of controllers developed in § 3, analyze their
structure, and validate their performance using com-
puter simulations of systems containing a large number
of units. We conclude by summarizing major contribu-
tions and future research directions in § 5.

2 Systems on lattices

In this section ‘an example of systems on lattices is
given. In particular, we consider a mass-spring system
on a line. This system is chosen because it represent a
simple non-trivial example of an unstable system where
the interactions between different plant units are caused

by the physical connections between them. Another ex-
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ample of systems with this property is given by an array
of microcantilevers [4]. We remark that the interactions
between different plant units may also arise because of a
specific control objective that we want to meet. Exam-
ples of systems on lattices with this property include: a
system of cars in an infinite string, aerial vehicles and
spacecrafts in formation flights. We alse describe the
classes of systems for which we design output-feedback
controllers in § 3.

2.1 An example of systems on lattices

A system consisting of an infinite number of masses and
springs on a line is shown in Figure 1. The dynamics
of the n-th mass are given by

mnfén - Fn#l + Fn + tUn, 'ﬂ,EZ, (1)
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Figure 1: Mass-spring system.

where z, represents the displacement from a reference
position of the n-th mass, F,, represents the restor-
ing force of the n-th spring, and u. is the control ap-
plied on the rn-th mass. For relatively small displace-
ments, restoring forces can be considered as linear func-
tions of displacements F;, = ku(Zn41 — Zn), Fr-1 =
kpn-1(Tn—1 — Tn), n € Z, where ky, is the n-th spring
constant. We also consider a situation in which the
spring restoring forces depend nonlinearly on displace-
ment. One such model is given by the so-called fiarden-
ing spring (see, for example [10]) where, beyond a cer-
tain displacement, large force increments are obtained
for small displacement increments -

Fo = kn {(xn+1 ~Zp) + €2 (Tnt1 — wn)a}
= Rn{Tnt1 — Zn) + Gul(Tny1 — Ta)7,
Fact =  ko1{(Zno1 = Tn) + o1 (Tn-1 — 2a)°}

kn—l(mn«I - In) + Qn—l(In—l — xn)a-

For both cases (1) can be rewritten in terms of its state-
space representation Vn € Z as

’Jfln = ¢2n',
-d}?ft = f"l(d“lyﬂ—lswlﬂ»dJ][n{»l) + Kpln, (2)
Yn = wlns

where ¥1n := zn and ta, = &n, provided that the

positions of all masses are available for measurement.

In the particular situation in which the restoring forces
are linear functions of displacements and all masses
and springs are homogeneous, that is, m, = m =
const., k, = k = const.,, Yn € Z, {2) represents a
linear spatially invariant system. This implies that it
can be analyzed using the tools of [11, 12]. The other
mathematical representations of a mass-spring system
are either nonlinear or spatially-varying. The main pur-
pose of the present study is to design output-feedback
controllers for this broader class of systems.

2.2 Classes of systems

In this subsection, we briefly summarize the classes
of systems for which we design output-feedback con-
trollers in § 3. In particular, we consider m-th or-
der subsystems over discrete spatial lattice ¥ with fi-
nite number of interconnections with other plant units
and nonlinearities that do not depend on the unmea-
sured signals. We assume that all subsystems satisfy
the matching condition |13]. Clearly, the models pre-
sented in § 2.1 belong to this class of systems, as well as
the model of an array of microcantilevers [4], provided
that we can measure the positions of all masses (re-
spectively microcantilevers). Furthermore, we remark
that our results can be also used for control of fully
actuated systems in two and three spatial dimensions
with nonlinearities that depend only on the distributed
output.
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We consider output-feedback design for nominal sys-
tems of the form

"j’ln = T,quq ne F, (33)
tan = tan, neF, (3b) -

Ibmn : fn (¢]) + KnUn, ne F, (3C)

Yn = wln.; ne F, (3d)

and systems with parametric uncertainties of the form

yi’ln = 'fl’}2ni REF, (43‘)
"¢l'2n = 'V')er' neF, (4b)
Ymn = Talth) + AL(¥1)0n + Knun, n€F, (40)
Yn = tin, neF, (4d)

where ¥ i= {kn},epr £ € {1,...,m}, and &y's are
the so-called control coefficients [13]. The distributed
output is denoted by 5 := {yn},.c5 = {¥1n},cp> On rep-
resents a vector of unknown parameters, and **’ denotes
the transpose of vector Ay.

We introduce the following assumptions about the sys-
tems under study:

Assumption 1 The number of interconnections be-
tween different plant units is uniformly bounded. In
other words, there exist M € N, M # M{n), such that
fr, hn, and 7 depend on ot most M elements of 1.

Assumption 2 f,, h,, and 7, are known, continu-
ously differentiable functions of their arguments.

Assumption 8 The signs of &n, Vn €F, in ({c) are
known.

These assumptions are used in the sections related to
the distributed control design. We remark that under
these assumptions the well-posedness of both open and
closed-loop systems can be easily established,

Remark 1 For notational convenience, the control de-
sign problems are solved for second order systems over
discrete spatial lattice ¥, that is for m = 2.

3 Lyapunov-based distributed control design

In this section, we address the problem of design-
ing output-feedback controllers that provide stabil-
ity /regulation of systems described in § 2.2. Assuming
that every unit is equipped with sensors and an ac-
tuator, we use the Lyapunov-based approach to solve
this problem. The Lyapunov design is very suitable be-
cause it leads to distributed controllers with the same
localization as the original plant. This feature is of
paramount importance for practical implementation.



3.1 Nominal output-feedback design

The controllers of 9] provide stabil-
ity /regulation/asymptotic tracking of the closed-loop
systems on lattices under the assumption that the
full state information is available. Here, we study a
more realistic situation in which only a distributed
output variable is measured. We show that, as in the
case of finite dimensional systems (13], the observer
backstepping can be used as a tool for fulfilling the
desired control objective for systems on lattices in
which nonlinesrities depend only on the measured
signals. The starting point of the output-feedback
approach is a design of an observer which guarantees
the exponential convergence of the state estimates
to their real values. Once this is accomplished, the
combination of backstepping and nonlinear damping is
used to account for the observation errors and provide
closed-loop stability.

We rewrite (3), for m = 2, in a form suitable for ob-
server design

Un = An + ¢nly) + kneaun, n€F,  (5a)
Yn = Ctn, neF, (5h)
where

T.L‘I-n
w‘Zn
01
0 0

0
13’,)17 = 1

| |
|

We proceed by designing an equivalent of Krener-
Isidori observer (see, for example, [14, 13]) for (5)

]‘“”“‘y) = [fn?y)]’ez ‘=[
],C::[l 0].

A'IL-,—. + Ln(yn _Qn) + !Pn(y) + Kné€oin, (63)
Cm, (6b)

$n
Gn

where Ly, := [ lin  lon ]‘ is chosen such that Ag, =
A — L,C is a Hurwitz matrix for every n € F. Clearly,
this is going to be satisfied if and only if l;, > 0, Vi =
{1,2}, ¥n € F. In this case, an exponentially stable
system of the form

’V’Jn = AUnJ}n: (7)

is obtained by subtracting (6) from {5). The prop-
erties of Aonﬁ imply the exponential convergence of
Yn 1= 1¥n — tm to zero and the existence of the positive
definite matrix Fo, that satisfies

nek,

AjnPon + PondAon = -1, VneF. (8)

We are now ready to design an output-feedback con-
troller that guarantees stability of (3).

Step 1 The observer-backstepping design starts with
subsystem (3a) by rewriting it as

V:th = EL’A'2n + TLZm n € F, (9)
and considering 'n,f:gn as a virtual control and 1,52,1 as a
disturbance generated by (7). We propose a CLF for
the ‘n-th subsystem’ of (9)

- 1 1 - -
Vln('d)ln: V‘Jn) = Ed)?n + th wn Ponifm,
n

where Fo, is & positive definite matrix that satisfies
(8), and din > 0 is a design parameter. The derivative
of Vi, along the solutions of (9,7) for every n € F is
determined by

Vin = tunlan + o) — o[l
< Y1n(don + dinthn) + ﬁ’tﬂgn - a%:”lbnng
< Ganllian + dintin) = o lBalll (10)

where Young’s Inequality (see (13}, expression (2.254))

is used to upper bound 'dlln'lzgn’: In particular, the

choice of a ‘stabilizing function’ ¥2,¢ of the form
V’;an = —(an + dln)'lplns ¥ne F-.

clearly renders Vip(win,9n) negative definite. Since
420 is not actually a control, but rather, an estimate of

an, > 0,

_a state variable, we introduce the change of variables

CQn = 713211 - T,&an 'J)?n + (an + dln)’ﬂ[)lns (11)
for every n € F, which adds an additional term on the
right-hand side of (10)

. 3 -
Vin < —anw?n - m”'ﬂbﬂ”g + Y1nien. (12)

The sign indefinite term in (12) will be taken care of at
the second step of backstepping.

Step 2 We express the ‘n-th subsystem’ of our system
into new coordinates as

Yin = —(@n + d1a)W1in + C2n + Von, (13a)

Can = {an + dln)(’u':‘zn + P2n) + lza(Pin — 1)
+ faly) + Kotn, (13b)
Y = Aontn, {13¢)

and propose the following CLF for it
: 1 I o-ap -
V2n(w1nac2n:'d)n) = Vln + Ecgn + a—z—lbnpt)nwm

with dan, > 0. The derivative of Va, along the solutions
of (13) for every n € F is determined by

. . o, 1 ~
Ven = Vin + CZnC?n - dz EE'U"YIH%
3,1 0 1.
< - 2 - L= - n 2
< —anthy - M+ Dl +

CZn{finUn -+ 'd)ln + (an +d1n)u;2n + fn(y) +
l2n('¢1n - 'J’ln) + d2n(an -+ dln)ZCZH}-

A control law of the form
1 " N
Un = — K_{'Jiln + (an + dln)d"?n + £2n(ﬂ,}]n - "45111) +

fn(y) + d2n(an + d]n)zc2n + bn(?ﬁ},

with bn > 0 for every n € F, guarantees negative defi-

(14)

. niteness of Vi,, that is
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3,1 1., 5 2
Z(E + E)lld}n”z-
Therefore, we conclude that our design guarantees
global asymptotic stability of the origin of the closed-
locp system (3,7,14), for m = 2, on the Banach space
B:i= Il Xiloo X log ¥ loo.

’ 2
Van < _an’ﬂbln T bﬂggn -



3.2 Adaptive output-feedback design
We rewrite (4), for m = 2, in a form suitable for adap-
tive output-feedback design

A + 0e(y) + z Oinwin(y) + wneoun, (13a)
i=1

Yn

¥n = Ctu, {15b)

where, for every n € F, ¢, := [ Win  Yon ]' and

e N e I |

SRR

0 0 1
We proceed by designing filters which provide ‘virtual
estimates’ of unmeasured state variables (see [13], § 7.3)

[1 0].

AOn'fr&D) + Layn + maly),

0) (16a)
EY) = Aont? + ¢inly), 1<j<r  (16b)
ttn = Aoatn + eain, (160)

where L, := [ lin  l2n ]’ is chosen such that Ag, =
A — L,C is Hurwitz for every n € F. Clearly, Aoy is
going to be Hurwitz if and only if Lin > 0, ¥i= {1,2},
v n € F. In this case, an exponentially stable system of
the form

)

En = A0n£n1

is obtained by combining (15) and (16) for every n € F,
with En = 'll'fn — {é,&o) + E;zl Bjng-,(i?) + Kn'Un}. The
properties of Ag, imply the exponential convergence
of £, to zero and the existence of the positive definite
matrix Pon that satisfies (8).

We are now ready to design an adaptive output-
feedback controller for (4) using backstepping.

Step 1 The adaptive observer-backstepping design
starts with subsystem (4a) by rewriting it as

Yin €S (18)

+ Katen + E2n,

and considering van a5 a virtual control and 2, as a
disturbance generated by {17). If va, were control, and
all parameters were known, then (18) could be stabi-
lized by

Oim

Vop = {{to) +{an + dln)wln} Z ‘Egiz)i (19)

where a¢n and d;, are positive design parameters. To
account for parametric uncertainties we add and sub-
tract the right-hand side of (19) to v2n in (18) to obtain

Q.L]n = _(an +d]n)1ﬂ’)1n + ’in{UZn +w$11)‘1§1(1.1)} +
ﬁnwff)-@le) + £2a, (20}
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where
1]
(0) + (an + din)wln Kn
W 1n
wil = " e B
i brn
B
and 1‘9&1) = 195.1) - 1§,(1]), with 9% denoting the vector

of unknown parameters.

We propose a CLF of the form

~ 1 K| 211 me1
Vounldin, W0,e0) = Sk, + Lolgorrongn 4
1
5 Pn n,
dlns On&

where Po, is a positive definite matrix that satisfies
(8), din > 0 is a design parameter, and ', =T, > 0.
The derivative of Va1, along the solutions of (20,17) for
every n € F is determined by

an"}"ln + Nn"\bln(v2n + m(l)‘ 19(]))
i

‘.;clln = ”6!1.”2

+ Slgn(mn)wmwn }

where we used Young’s Inequality (see [13], expression
(2.254)) to upper bound t1aé2s. In particular, the fol-
lowing choices of a ‘stabilizing function’ vsne and up-
date law for the estimate 1%‘1)

Vond = w,(,l)-é,(f), YnePF,

Y = sign(sa)yrnTawn’,  YneF,
clearly render Viin(¥in,9%,€.) negative semi-
definite.  Since vz, is not actually a contrel, we
introduce the second error variable as
C?n = VY2n — Wond — U2n T+ szl)‘&fgl); VHEF!

which adds an additional term on the right-hand side

of Vein '
- 2 3 2

Valn S - anwln - _"”E'HHZ + K-n'wlnCZn.-

4dln

The sign indefinite term in the last equation will be

taken care of at the second step of backstepping.

Step 2 The differentiation of (2, with respect to time
for m = 2 yields
)

Can Uzn + w(l) Y 4w

= —ltin + un + G0 + WO

We now use the definition of w& to rewrite WU 9§’

as
SOTED 2 D 4 (an+ di) W

it + (an + dia)0ED 4 550) +
HDLD 9@,



(1)

where 19{11,3 represents the first element of vector 8§

and
A
WP = (an + dun) [ €Y € wn |
3D = [ bin e 5 )"
Hence, C.2n can be expressed as
Con = on + WD 4 (@n + din)dVezn + un,
where
on = —lopvin + wn) 15‘(1) + ;5&1) +
50 (an + )+ oI
IO = gD _ G,

The CLF from Step 1 is augmented by the three terms
that penalize {on, xS , and &y, respectively, to obtain

%2n(w1ny§2n11§1(11),1§1(12)5E'n) = Vuln(wlnsﬁﬁzl)ssn)‘*‘

1 1) o qs 1.
icgn + E’BS'IZ) _Anlﬁ'&z) + TEnPOr:En,

where dan, > 0 and A, = A}, > 0. The derivative of
Vaon is determined by

. . . —raye 1% 1
Vign = Vain + Conlon + 857 AP — E-nsnn%

1A

2 3. 1 1 2
antin 4(d1n + dzn)”“?n”z +

oy

‘§$12)‘ {A;]éﬁf) + Gon(Pinerpr + 9
C2n{un + on + wlne:+11§1(12) +

dan ((an + dln)'&;([:-,_))Q(?n }1

i+

with e,41 being the (r+1)-st coordinate vector in R™*?,
In particular, the following choices of a control law u,
and update law for the estimate ¢

Up = _{O'n + ¢1ne;+11§(2) + b C‘)n +
dan((an + dia)95,))2C2n},
L N
with b, > 0, for every m € F, transform

Vazn (P10, Can, FIORIgE €n) into a negative semi-
definite function of the form

3
—_— 2 —_— —_—
bn C2r1 1

1

‘/a?n din

1 2
< e n
< (g + )l

2
- a'ﬂd)ln

<

0, YneF

One can establish boundedness of all signals in the
closed-loop adaptive system and asymptotic conver-
gence of Y1, (on, and g, to zero for every n € F, using
similar proof technique to the one presented in [9].

4 Examples

In this section, we discuss application of controllers de-
veloped in § 3 to the systems described in § 2.1. Fur-
thermore, we analyze the structure of these controllers
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Figure 2: Controller architecture of mass-spring sys-
tem with controllers of § 3.1 and § 3.2.

and validate their performance using computer simula-
tions of systems containing a large number of units.

Figure 2 illustrates controller architecture of mass-
spring system with the aforementioned controllers. We
observe that nominal and adaptive output-feedback de-
signs result in the closed-loop systems with the same
passage of information. Remarkably, in both these
cases, Lyapunov-based design yields decentralized con-
trollers K,, ¥n € Z, that require only measurements
from the n-th plant unit G, and its immediate neigh-
bors G'n—s and Gp41, to achieve desired objective.

In applications, we clearly have to work with systems on
lattices that contain large but finite number of units.
All considerations related to infinite dimensional sys-
tems are applicable here, but with minor modifications.
For example, if we consider the mass-spring system
shown in Figure 3 with N masses (n = 1,2,...,N¥)

both the equations presented in § 2.1 and the control
laws of § 3 are still valid with appropriate ‘boundary
conditions’ of the form: z; = & = u; = 0, Vj €
N}.

Z\{1,2,...,

k2

1 WALl LN, BN

Figure 3: Finite dimensional mass-spring system.

4.1 Nominal output-feedback design

The nominal Lyapunov-based output-feedback design
for mass-spring system leads to decentralized dynamic
distributed controllers of the form

?,Z’ln = than + lUn(in — 'Jim)

"‘j’Qn = l2n(d)1n - 12;111.) + fn + Knlun
Up = '_'_‘['d)ln + (an+d1n)w2n + fn
JZR(wln_'wln) + (d2n(an+d1n) + bn)x
(’&'f'Zn + {an+d1n)w1n)}
(21)

where, for example, for a nonlinear mass-spring system
with a hardening spring and {mn, =m, kn =k, gn = g,
¥n € Z}, frn is determined by

fr

%{'ﬂbl,n—l - 2%, + Yram)+
L {1t — 1) + (Wrmi — $10)°}.



Figure 4 illustrates simulation results of nominal non-
linear mass-spring system with N = 100 masses and
my, = kn = gqn 1. Output-feedback control law
(21) is used with a, = b = 1, din = dan = 0.2,
ln = 5, lan = 6, and $1,(0) = ¥2.(0) = 0, ¥Vn

1,2,...,N. The initial state of the system is randomly -

selected. Clearly, numerical results show that the nomi-
nal output-feedback distributed controller (21) achieves
desired control objective in an effective manner with a
reasonable amount of control effort.

Figure 4: Nominal output-feedback control of nonlin-
ear mass-spring system.

4.2 Adaptive output-feedback design

Formulae for adaptive ocutput-feedback controllers for
mass-spring systems can be readily obtained combining
results of § 2.1 and § 3.2. We remark that as a resuit of
our design we obtain decentralized distributed dynamic
controllers whose architecture is shown in Figure 2.

5 Concluding remarks

This paper has dealt with the output-feedback dis-
tributed control of spatially discrete infinite dimen-
sional systems in which nonlinearities depend only on
the distributed output variable. It has been illustrated
that Lyapunov-based approach can be successfully used
to obtain ocutput-feedback controllers for both nominal
systems and systems with parametric uncertainties. It
has been also shown that the design procedure yields
dynamical controllers that inherit the passage of infor-
mation from the original plant. Therefore, as a result
of Lyapuncv-based design control systems with an in-
trinsic degree of decentralization are obtained.

Qur current efforts are directed towards development
of modular adaptive schemes in which parameter up-
date laws and controllers are designed separately. The
major advantage of using this approach rather than the
Lyapunov-based design is the versatility that it offers.
Namely, adaptive controllers of this paper are limited
to Lyapunov-based estimators. From a practical point
of view it might be advantageous to use the appropri-
ately modified standard gradient or least-squares type
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identifiers.
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