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Abstract resemble streamwise vortices and streaks. A somewhat 

We study the Linearized Navier-Stokes (LNS) equa- 
tions from an input-output point of view by analyz- 
ing their spatio-temporal frequency responses. We 
show how the relative roles of Tollmien-Schlichting 
(TS) waves and streamwise vortices and streaks can 
be explained as input-output resonances of the spatio- 
temporal frequency responses. Furthermore, we derive 
important conclusions about the effectiveness of input 
field components, and the contributions of the stream- 
wise, wall-normal, and spanwise velocity perturbations 
to the kinetic energy density. In particular, we show 
that the wall-normal and spanwise forces have much 
stronger influence on the velocity field than the stream- 
wise force. On the other hand, the velocity perturba- 
tions in the direction of a nominal flow achieve much 
bigger magnitudes than the perturbations in the other 
two spatial directions. 

1 Introduction 

In this paper, we analyze the dynamical properties 
of the Navier-Stokes (NS) equations with spatially 
distributed and temporally varying body force fields. 
These fields are considered as inputs, while various 
combinations of the resulting velocity fields are con- 
sidered as outputs. This input-output analysis can in 
principle be done in any geometry and for the full non- 
linear NS equations. In such generality however, it is 
difficult to obtain useful results. We therefore concen- 
trate on the geometry of channel flows, and the input- 
output dynamics of the LNS equations. 

Our work is greatly influenced by recent research in 
what has become known as transient growth mecha- 
nisms for bypass transitions. We will only briefly out- 
line some of the more closely related work here, and 
refer the reader to the recent monograph [l] and the 
references therein for a fuller discussion. The main 
point of departure of this work from classical linear hy- 
drodynamic stability is the fact that the latter is con- 
cerned solely with the existence of exponentially grow- 
ing modes. In other words, it is essentially an asymp- 
totic analysis of infinite time limits. In certain flows 
however, transient (finite-time) phenomena appear to 
play a significant role. While the possibility of tran- 
sient growth has long been recognized, it is only in the 
past two decades that effective mathematical methods 
have been used to analyze it. In [2, 31 initial state with 
the largest transient energy growth in subcritical flows 
were discovered using a singular value analysis. These 
‘worst case’ initial states lead to flow structures that 
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different analysis is done by computing the pseudo- 
spectrum rather than the spectrum of the generating 
dynamics [4], and the most unstable pseudo-spectral 
modes turn out to be related to streamwise vortices 
and streaks. A third analysis method [ 5 ,  6) studies the 
most energetic response of the linearized Navier-Stokes 
equations to stochastic excitation. Yet again, the most 
energetically excited flow structures appear to resemble 
streamwise vortices and streaks. The common theme 
between the three methods is that a certain norm of the 
perturbed flow state is used (namely kinetic energy den- 
sity), and the responses with respect to various types 
of uncertainties are analyzed. 

Our presentation is organized as follows: in section 2 ,  
we give a dynamical description of the flow fluctuations, 
introduce a notion of a spatio-temporal frequency re- 
sponse and define different frequency response quan- 
tities that can be determined based on it. In 5 3, 
we present various portions of the spatio-temporal fre- 
quency response for Poiseuille flow at R = 2000. Our 
main aim is to illustrate the input-output resonances 
from forcing inputs in different directions to different 
components of the velocity field. These input-output 
resonances turn out to always resemble streamwise vor- 
tices and streaks, and a comparison between them and 
internal resonances (TS waves) is given using the fre- 
quency response. One of our other conclusions is that 
forcing in the spanwise and wall normal directions is re- 
spectively much more influential on flow perturbations 
than forcing in the streamwise direction. These facts 
have recently been observed in studies of flow control 
using the Lorentz force [7, 8, 91. An analytical expla- 
nation for this as well as formulae for the dependence 
of this influence on the Reynolds number is given in 
3 4. We conclude by remarking on the utility of input- 
output analysis, and more generally analysis of effects 
of uncertainty on transitional and fully turbulent flows 
and their control. 

2 Dynamical description of flow fluctuations 

We consider externally excited LNS in channel flow ge- 
ometry shown in Figure l. The minimal state-space 
representation of these equations after application of 
Fourier transform in spatially invariant directions takes 
the following form [lo] 
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Furthermore, suprema or averages over different fre- 
quencies can be determined as well, e.g. by computing 
the temporal-supremum of the maximal singular values 
of the operator 3-1 

-1 
[IlNllml (kx, kz) := SUP 5(3-1(kx, kz,w)) ,  (3) 

w 

Figure 1: Three dimensional channel flow. or the temporal-average of the Hilbert--Schmidt norm 
of the operator 7-1 

F k  
where + := [ 'U wy I T ,  d := [ d, dy d, I T ,  and 
&:= [ U w 3' represent state, input, and output 
vector fields, respectively. Each field is assumed to vary 
both temporally and spatially, e.g. d = d(k,,y, k,,t). 
Operators A, 23, and C are given by 

A'' O 1 ,  B := [ a, a, Bz 3 1 A := [ AZI Azz 
All := -ik,A-'UA + ik,A-'U" f -A-'A2, 1 

R 
1 dz2 := -ik,U i- EA, 

Azl := - ik,U', 

-ik,A-'d, 
-ikz a, := 

r e,,. 1 . ik,ay -ik, 1 

where U(y) is a nominal velocity, U' := dU(y)/dy, 
and A := 8," - k; - k:. System (1) is parameter- 
ized by three important parameters: the streamwise 
wave number k,, the spanwise wave number k , ,  and the 
Reynolds number R. State of the system is expressed in 
terms of wall-normal velocity 'U and vorticity wy fields. 
Streamwise and spanwise velocity components are de- 
noted by u and w, and forces in the streamwise, wall- 
normal, and spanwise directions are represented by d,, 
d,, and d,, respectively. The boundary conditions on 

and w, are derived from the original no-slip bound- 
ary conditions and can be written as: w(k,, &l, k,, t )  = 
dyv(k,, +l, k,, t )  = wy(kx, kl, k,, t )  = 0, V k,, k, E 
R, v t 2 0. 

The spatzo-temporal frequency response of system (1) is 
given by 

8 

[IlHll;] (kx, kz)  := 1 l13-1(kx, k,,w)ll&s dw. (4) 

Notation used in (3) and (4) indicates that the cor- 
responding quantities represent, for any given pair 
(k,, k,), 3-1, and Nz-norms of system (I), respectively. 

For stable systems, the quantity defined by (4) can 
be determined based on solutions of the operator Lya- 
punov equations of the form 

27r -, 

AX + X d '  = -BB*,  
A*Y + Y A  = -C*C, 

as 

[IIHII~] (k,, ICz) = trace{X(k,, k,)C'(k,, kz)C(k,, k)} 
= trace(Y(k,, kz)B(kx, kz)B*(kx, k,)}, 

where .A*, B', and C* represent adjoints of operators 
A, B,  and C, respectively. 

It is also relevant to investigate frequency domain prop- 
erties of the operators that map different components 
of the external excitation field to the chosen output. 
By performing analyses of this type, one can derive im- 
portant conclusions about the effectiveness of an input 
applied in a certain spatial direction, and relative im- 
portance of different velocity field components. 

Clearly, operator "(k,, k,, w )  can be represented as 

( 5 )  

where 

where the frequency response is obtained directly from 
the Fourier symbols of the operators defining the state 
space realization. Since N is a function of three inde- 
pendent variables there is a variety of different ways 
to visualize system properties. For example, one can 
study the maximal singular values of the operator N 

C ( X ( k , ,  k , ,  U ) )  := { x ( H * ( k z ,  L, w)"(kx, k ,  U ) ) }  ' , 
or compute the Hilbert-Schmidt norm of 3-1 

\ \7 f (kx ,  kz, w)1\Ls := trace("* (k, L, w)N(lC,, kz ,  w)) .  

denote the operator valued transfer functions from d 
to r, d, to 4, and d, to r evaluated on the iw axis, 
respectively. 

In this paper we confine our attention to the analysis of 
the l-12-norm-like quantities for system (1). We note 
that the analysis of the different portions of the fre- 
quency responses will shed light on different aspects of 
system's dynamics. This is illustrated in 3 3 where we 
discuss the results obtained by numerical computations 
of different notions defined here for Poiseuille flow. 
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3 Frequency responses in Poiseuille flow 
In this section we study the results obtained by comput- 
ing various "2-norm-like quantities for the NS equa- 
tions linearized around a nominal velocity profile of the 
form U(y) = 1 - y2 at R = 2000. All results pre- 
sented here are obtained numerically using the scheme 
described in [lo], with 30 v and wy basis functions. By 
increasing the number of basis functions it is confirmed 
that this resolution is high enough. The "2-norm- 
like quantities are determined based on solutions of the 
corresponding Lyapunov equations, with 50 x 90 grid 
points in the wave-number space ( k , ,  k , ) .  These points 
are chosen in the logarithmic scale with {kXmin := 

k,,,, := 3.02) and {kzmin := lo-', IC,,,, := 
15.84). 

Plots of 

[II%IIi] ( b k z )  := ' 1  l I 'Hs(ks,kZ,w)l l~s dw, 27T pm 

for {s = z,y,z} are shown in Figure 2. These plots 
clearly illustrate that the external excitations applied 
in the wall-normal and spanwise directions have much 
higher influence on the velocity field than the stream- 
wise direction forcing. The explanation for this phe- 
nomenon is given in § 4, where we show that the energy 
of three-dimensional streamwise constant perturbations 
in the presence of either d, or d, achieves O(R3)  ampli- 
fication. On the other hand, only amplification propor- 
tional to the Reynolds number is achievable when ex- 
ternal forcing in the streamwise direction is applied, as 
illustrated in 3 4. Since [11"'.112] ( k , ,  k , )  attains largest 
values in the immediate vicinity of the spanwise wave- 
number axis, the results of § 4 offer a reasonable answer 
for a rather limited role of d, in the process of energy 
amplification. 

hrthermore, both [ I I 'FIyl lzl  (kZ, k z )  and [ l lK1121  (IC,, I C z )  
achieve largest values at the different locations in the 
(kz, k,)-plane than [113-1,112] (k5, I C z ) .  Clearly, the for- 
mer two quantities peak at k ,  = 0 for certain non-zero 
value of k,. These input-output resonances correspond 
to the streamwise vortices and streaks and their impor- 
tance has been studied in great detail by [2, 3, 4, 5, 61, 
among others. On the other hand, the latter quan- 
tity attains the global maximum at. the location where 
both spatial wave-numbers have O(1) values. We also 
observe a local peak at the streamwise wave-number 
axis in the left plot. This peak is caused by the least- 
damped modes of A (TS waves). Even though the pres- 
ence of the least-damped modes in the left plot is more 
prominent than in the middle and right plots, the struc- 
tures that are more amplified by system's dynamics are 
still three-dimensional. These structures correspond to 
the so-called oblique waves [l]. The identification of 
the oblique waves as the input-output resonances illus- 
trates usefulness of the input-output approach to the 
analysis of the problem at  hand. 

Figure 3 illustrates a contribution of different compo- 
nents of the velocity field to the overall energy ampli- 
fication by showing k,-k, dependence of the following 
quantities 

W 

for {T  = U ,  U ,  w}. As one can notice, the stream- 
wise velocity plays much bigger role in the process 
of energy amplification than the other two velocity 
components. The analytical explanation for this ob- 
servation is given in § 4, where we explicitly show 
that the variance of three-dimensional streamwise ve- 
locity perturbations at  k ,  = 0 scales as R3. This is 
in sharp contrast with the amplification that v and 
w experience. Namely, our derivations of 4 prove 
that the variance of streamwise constant wall-normal 
and spanwise velocity perturbations is only propor- 
tional to the Reynolds number. Moreover, we note that 

have their peaks on the k,-axis, k,-axis, and at the 
location in the k,-k, plane where both wave num- 
bers are of 0(1), respectively. These peaks correspond 
to streamwise vortices and streaks (left plot), under- 
damped system modes (middle plot), and oblique waves 
(right plot). Since the evolution of the wall-normal ve- 
locity is governed by the stable Orr-Sommerfeld equa- 
tion, it is not surprising that [11'Ku112] ( k , ,  k,) achieves 
largest values in the immediate vicinity of the least- 
damped modes. On the other hand, both U and w 
depend on wy (cf. (2)), and therefore, they experience 
transient amplification due to a coupling between wall- 
normal velocity and vorticity perturbations. Since for 
streamwise constant perturbations w depends only on v 
(cf. (a)), the amplification of spanwise velocity pertur- 
bations at k ,  = 0 is limited to O ( R ) ,  as shown in § 4. 
Clearly, this amplification becomes larger when non- 
zero streamwise wave-numbers are considered. This can 
be attributed to  the fact that away from the k,-axis 
w is a function of both wall-normal velocity and wall- 
normal vorticity (cf. (2)).  The latter quantity achieves 
much bigger magnitudes than the former due to the 
aforementioned coupling between them, and it is re- 
sponsible for the input-output resonances observed in 
the far right plot. 

The numerical computations of this section are 
strengthened by a rigorous analysis of the various 3-12- 

norms of the streamwise constant three-dimensional 
channel flow perturbations. These analytical consid- 
eration are presented in 3 4. 

[ l l ~ u l l ~ l  (kx, k z ) ,  [113-1u1121 ( k , ,  k z ) ,  and [11%1121 (k5, k z )  

4 Dependence of "2-norm on R at k ,  = 0 

In this section, we study system (1) in the presence of 
streamwise constant three-dimensional perturbations, 
that is at k, = 0. Our considerations are valid for 
an arbitrary nominal velocity profile V(y). The moti- 
vation for a thorough analysis of this particular case 
stems from numerical computations presented in 5 3 
which reveal that the most amplified input-output res- 
onances take place at k,  = 0. The results presented 
here represent a natural continuation of [6]. 

We first study the "2-norms of all components of the 
operator transfer function ( 5 ) ,  that is 

{T  = U , V , W ;  s = z,y,z}. We then investigate the 
effectiveness of an input applied in a certain spatial di- 
rection by studying the Reynolds number dependence 
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of [ll'HsIIz] ( I C z ) ,  for {s = z, y,.}. Finally, we illustrate 
the contribution of particular components of the veloc- 
ity field to the overall energy amplification by doing 
similar analysis for [llHrll;] (&), with { r  = u,w,w} .  
By performing analysis of this type, we are able to de- 
rive important conclusions about the effectiveness of 
input field components, and the contributions of the 
streamwise, wall-normal, and spanwise velocities to the 
overall energy amplification. 

In order to determine the 'Hz-norm of the operator that 
maps d, into r ,  for every { r  = U , W , W ;  s = z, y , z } ,  we 
rewrite system (1)  as 

Based on the analysis of the corresponding operator 
Lyapunov equations we are able to prove the following 
theorem [ll]. 

Theorem 1 For any channel flow with nominal veloc- 
i ty U ( y ) ,  the H 2 - n o n  of system (6) at k ,  = 0 is given 
b y  

l l%x l l i  l l%YIl;  I I H U Z I I ;  
111-IlJ211~ I I 'F lVYI I ;  111-1lJz11~ 
l l%zI l i  ll"w,IIi II'HwZII; 

fux(kt)R g u y ( k z ) R 3  guZ ( k , ) ~ ~  

0 fwy(kt)R fwt(k2)R 

1 (7) 

1 f v , ( k z ) R  f lJz (k2)R . 

[ 
= [  0 

The "2-norm of the streamwise constant perturbations 
scales as R3 from the forces in the wall-normal and the 
spanwise directions to the streamwise velocity. In all 
other cases it scales as R. In particular, a t  k ,  = 0 the 
streamwise direction forcing does not influence the wall- 
normal and the spanwise velocity components. This il- 
lustrates the dominance of the streamwise velocity per- 
turbations and the forces in the remaining two spatial 
directions for high Reynolds number channel flows. 

The expressions for the terms that multiply R in (7) are 
the same for all channel flows, as shown in [ll]. On the 
other hand, the expressions for guy and gut depend on 
the coupling operator Azl := -iICzU'(y), and therefore 
these terms are nominal-velocity dependent. 

In order to determine the influence of various input 
field components to the entire velocity field we rewrite 
system (1)  as 

with {s = z, y, z} .  We are now able to state the follow- 
ing corollary of Theorem 1. 

where 

f x  := fug, fy := fvy + fwy, f z  := f v t  + fwz, 
g g  := g u y ,  gz := g u z .  

Figure 4 graphically illustrates the &dependence of 
functions f,, f,, fz ,  g y r  and gz.  Expressions for fi, 
fyr and f t  are the same for all channel flows, as shown 
in [ll] where the analytical formulae for these quan- 
tities have been derived. On the other hand, both gY 
and g, depend on the nominal velocity. In [ll], the 
analytical expressions for these two quantities in Cou- 
ette flow have been determined by doing the spectral 
decompositions of the Orr-Sommerfeld and Squire o p  
erators. These expressions are given in terms of rapidly 
convergent series and they are shown in the middle plot 
of Figure 4. The numerically computed dependence of 
gy and gz on k ,  in Poiseuille flow is given in the right 
plot of the same figure. 

Therefore, as already indicated by the numerical com- 
putations of 5 3, the forces in the spanwise and wall- 
normal directions have the strongest influence on the 
velocity field. This observation is consistent with re- 
cent work on channel flow turbulence control using the 
Lorentz force [7, 8, 91, where it was concluded that forc- 
ing in the spanwise direction had the strongest effect 
in suppressing turbulence. We confirmed this observa- 
tion by analytical derivations for the streamwise con- 
stant perturbations showing that the square of the "2- 

system-norm from d ,  and d, to velocity vector q!~ scales 
as R3. On the other hand, at k,  = 0, the square of the 
7-l-norm from dx to 4 scales as R. 

For a system of the form 

(9) 
at@ = A@ + Bd, 

r = er+, 
with { r  = U ,  w, w } ,  we state the following corollary of 
Theorem 1. 

Corollary 3 For any channel flow with nominal veloc- 
ity U ( y ) ,  the H 2 - n o m  of system (9) at k,  = 0 is given 
by 

where 

fu := f u x ,  gu := guy + gut,  
f v  := fvy  + f v z ,  f w  := fwy + f w z .  

Figure 5 graphically illustrates the kz-dependence of 
functions fu, fv, fw, and gu. Expressions for fu, f v ,  
and fw are the same for all channel flows, as shown 
in [ll] where the analytical formulae for these quanti- 

Corollary 2 For any channel flow with nominal veloc- 
i ty U(y), the 'H2-no7-m of system (8) at k ,  = 0 is given 
I.". 

ties have been derived. On the other hand, gu depends 
on the underlying mean velocity. In [ll], the analytical 
dependence of gu on k, for Couette flow has been de- 
rived. The right plot in Figure 5 shows the numerically [ll"yll$] ( I C z )  = fy(kz)R + S ~ ( ~ , ) R ~ ,  

[II%II;] ( k z )  = f z ( k Z ) R  + g , ( k , ) ~ ~ ,  computed &-dependence of gu in Poiseuille flow. 
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Thus, the impact of the external excitations is most 
powerful on the streamwise velocity component. We 
confirmed this observation by both numerical compu- 
tations of 5 3 and analytical derivations summarized in 
Corollary 3 for the streamwise constant perturbations 
showing that the square of the ‘Hz-system-norm from 
d to u scales as R3. On the other hand, at I C x  = 0, the 
square of the 7&-norm from d to ‘U and w scales as R. 
It is worth noting that Theorem 1 of 161 follows from 
Theorem 1 of this section. For completeness, we state 
the main result of [6] as the following corollary. 

Corollary 4 For any channel flow with nominal veloc- 
ity U(y), the ?+-norm of system (1) at k ,  = 0 is given 
by 

[ I l ~ l l ~ ]  ( I C z )  = f (kz)R + g(kI.)R3,  

f := fux + fvy + f v z  + fwy + fwz, 
Q := Q1Lv + QUI. .  

where 

5 Concluding Remarks 

The main objective of the present study has been to 
analyze the LNS equations from an input-output point 
of view. In particular, we have investigated the spatio- 
temporal frequency responses of these equations. The 
starting point of our study has been an evolution model 
where the LNS equations are subject to body forces 
that model external excitations. We have analyzed this 
forced evolution model both numerically and analyti- 
cally by deriving the exact formulae for particular fre- 
quency response quantities. We have shown that un- 
der external excitations, the input-output resonances 
of the equations occur at different spatio-temporal fre- 
quencies than the ‘under-damped modes’ of the system. 
These under-damped modes represent TS waves, while 
the input-output resonances are related to the stream- 
wise vortices and streaks and oblique waves, which are 
ubiquitous in both transitional channel and boundary 
layer flows. 

The analytical derivations presented in § 4 indicate that 
all channel flows with a streamwise direction mean ve- 
locity that depends only on the wall-normal coordinate 
are almost alike. This is an important discovery which, 
for example, indicates that the perturbations around 
laminar and turbulent wall-bounded flows should act in 
a similar way. However, the interpretation for these two 
cases is different. While the laminar flow perturbations 
initiate transition and consequently lead to turbulence, 
their turbulent flow counterparts are primarily respon- 
sible for sustenance of the turbulent state. Regardless 
of the interpretation, our results underscore the impor- 
tance of non-modal effects in both transitional and fully 
turbulent channel flows. 

From control point of view the current work can be 
considered as a control oriented modelling. We have 
shown that input-output analysis of the LNS equations 
in the frequency domain has significant implications for 
control of both transitional and fully turbulent chan- 
nel flows. With regard to passive control strategies, 

our results indicate the spatial directions in which the 
application of external body forces is most effective. 
Furthermore, our analysis identifies the dominant flow 
structures and the regions in the frequency space cor- 
responding to these structures. This represents an im- 
portant information for the application of feedback con- 
trol. Arguably, once the phenomena responsible for the 
transition to turbulence have been properly identified, 
modelled, and the control objective defined accordingly, 
feedback control design will be much more likely to give 
satisfactory results at much higher Reynolds numbers 
than currently possible [12, 13). 
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Figure 2: Plots of ( ( ( f i H , j l ~ ]  (kl, I C z ) ,  [I1fiYllz] (kl, b), and [ll 'HzII~] (b, IC=), in Poiseuille Aow with R = 2000. 

Figure 3: Plots of [llHU11z] (kZl kz), [))HV11z] (kz, k,), and [ll'Hw112] (kl,kz), in Poiseuille flow with R = 2000. 

Figure 4: The k,-dependence of fzl  fy, f z ,  gY, and g z .  Expressions for fl, fy, and. fz are the same for all channel 
flows, as demonstrated in ill]. The terms responsible for the O(R3) energy amplification are shown in 
the middle (Couette flow) and right (Poiseuille flow) plots. 

Figure 5:  The k,-dependence of fu, fv, fw, and gu. Expressions €or fu, f,,, and fw are the same for all channel 
flows, as demonstrated in [ll]. The terms responsible for the O(R3)  energy amplification are shown in 
the middle (Couette flow) and right (Poiseuille flow) plots. 
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