Lecture 1:

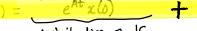
- · Nonlinear Dynamics and Chaos W/ Applications to Physics, Biology, Chemistry & Engineering. (Steven Strogatz)
- · Nonlinear Dynamical Systems
 - Static eqn: algebraic eqn
 - eg: f(x) = 0Dynamical eqⁿ: $\frac{dx}{dt} = f(x)$ (1)
 - LHS: rate of change RHS: nonlinear function of x
 - of quantity x t: time
 - $\frac{d}{dt}$: derivative wrt time x(t): state vector: x(t)=
 - f: nonlinear function of 2
- $x_i(t) \in \mathbb{R}$ $z(t) \in \mathbb{R}^n \quad (\mathbb{R}^{n\times 1})$
- In this course:

 Le Study analysis of systems of the form $\frac{dx}{dt} = f(x)$ or its time varying version:
- $\frac{dx}{dt} = f(x,t) \qquad \qquad \qquad (2)$ L* Also systems w/ inputs: $\frac{dx}{dt} = f(x, u)$ where $u(t) = \begin{bmatrix} u_1(t) \\ \vdots \\ u_n(t) \end{bmatrix} \in \mathbb{R}^m$ — (3) input could be disturbance or control
- If (3) can be converted to (1); easier Note: If u = u(z) (3) \longrightarrow (1)
- (exogenous) (to be designed)
- Many tools for analysis will be useful in the context of synthesis (i.e. control design)
- In EE 5231 linear Systems ->
 - (1) simplifies to:
- $\frac{dx}{dt} = Ax \qquad (:: f(z) = Az \text{ is a linear function of } x)$

 - (3) simplifies to: $\frac{dz}{dt} = Az + Bu$
- not Az+b: affine $A \in \mathbb{R}^{n \times n} \longrightarrow \text{generates dynamics}$ $B \in \mathbb{R}^{n \times m} \longrightarrow \text{infroduces exogeneous inputs}$
 - both state & input enter linearly
- Linear Non-Linear
 - loses superposition.
- re for linear systems, superposition holds

 At x(x)

 + So to A(t-z) Bu(z) dz



- contribution of IC contribution of input
- also holds for time-varying cases where A and B are time-varying matrices (state bransition matrices).

- $m\frac{d^2y}{dt^2} + ky = F \otimes$ input-output differential equation

F: external force (input) U - no derivatives of input w.r.t. time in (8) y: position (output) \Rightarrow : can choose: $x_1(t) = y(t)$ $\dot{x_1} = \dot{y} = x_2$ $x_2(t) = \dot{y}(t)$ $\dot{x_2} = \ddot{y} = -\frac{k}{m}x_1 + \frac{1}{m}u$ From (*): $\ddot{y} = -\frac{k}{m}z_1 + \frac{1}{m}u$ $\Rightarrow \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \chi_2 \\ -\frac{k}{m}x_1 + \frac{1}{m}U \end{bmatrix} = f(x, u) = \begin{bmatrix} f_1(x_1, x_2, u) \\ f_2(x_1, x_2, u) \end{bmatrix}$ In this case, clearly, we have a linear system $\Rightarrow \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u$ State space representation $y = x_1 \Rightarrow y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$ - Choose physical states from 0 to $(n-1)^{th}$ derivative. If no derivatives of input present y, y for 2nd order ODE \geq Eq: (2) $\dot{x} = \sin(x)$ $\chi(t) \in \mathbb{R}$; scalar · Look at equilibrium points, \bar{z} : solutions of $f(\bar{x}) = 0$ i.e. $\frac{d\bar{z}}{dt} = 0$ i.e. "you start at $\bar{x} \Rightarrow you$ stay there forever (i.e. \forall time t > 0)" I I In the linear case: $A\bar{x}=0$ $\Rightarrow \overline{x} = 0$ is always an equilibrium point • If A is invertible \Rightarrow det(A) $\neq 0$ \Rightarrow $\ddot{\tilde{z}} = 0$ is a unique equ^m pt. *If A is non-invertible ⇒ det (A) = 0 > 2 € eVall (A) = { 2 € Rn; A = 03 Can compute null space by singular value decomposition . Either unique equin point: $\overline{x}=0$ or infinitely many of them (eVall (A)) (entire subspace of equin pt.s) Equal pt: $\sin(\bar{x}) = 0 \Rightarrow \bar{x} = k\pi \quad k = 0, \pm 1, \pm 2, ...$ infinitely many, isolated equa pts -3π -2η -π Ο π 2π 3π > Stable or unstable equm? L> Consider i us z O stable. eques unstable equ^{ms}. $\frac{df(x)}{dx} = \cos(x) \left| \begin{array}{c} \cos(2n\pi) = +1 & \longrightarrow & k \text{ even} \\ \cos(2n\pi) = -1 & \longrightarrow & k \text{ odd} \end{array} \right|$