Due Tu 03/22/16 (at the beginning of the class)

- 1. Khalil, Problem 4.14 (attached).
- 2. What kind of equilibrium stability (stable (in the sense of Lyapunov), or AS, or GAS) if any, is exhibited by the state representation of
 - (a) The $\frac{1}{s^2}$ plant with no input, i.e. $\dot{x}_1 = x_2$, $\dot{x}_2 = 0$.
 - (b) The magnetically suspended ball: $\dot{x}_1 = x_2$ $\dot{x}_2 = \frac{-c}{m} \frac{\bar{u}^2}{x_1^2} + g$ with $\bar{u} = \sqrt{\frac{mg}{c}Y} = \text{const.}$
- 3. The Morse oscillator is a model that is frequently used in chemistry to study reaction dynamics. The equations for an unforced Morse oscillator are given by

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = -\mu(e^{-x_1} - e^{-2x_1}).$

- (a) Find the equilibrium points of the system.
- (b) Investigate their stability properties.
- 4. Consider the following nonlinear system

$$\dot{x}_1 = -\frac{x_2}{1+x_1^2} - 2x_1 \dot{x}_2 = \frac{x_1}{1+x_1^2}.$$

- (a) Show that the origin is an equilibrium point.
- (b) Using the candidate Lyapunov function

$$V(x) = x_1^2 + x_2^2,$$

what are the stability properties of the equilibrium point?

(c) Linearize the nonlinear system around the equilibrium point.

 $\dot{x}_1 = x_2$

- (d) What can you deduce about the stability properties of the origin based on linearization?
- (e) Obtain a suitable Lyapunov function by solving the Lyapunov equation

$$A^T P + P A = -Q,$$

where

$$Q = \left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right]$$

5. Consider the system:

$$\dot{x}_2 = -g(k_1x_1 + k_2x_2), \qquad k_1, k_2 > 0,$$

where the nonlinearity $g(\cdot)$ is such that

$$g(y) y > 0, \quad \forall y \neq 0$$
$$\lim_{|y| \to \infty} \int_{0}^{y} g(\xi) d\xi = +\infty$$

- (a) Using an appropriate Lyapunov function, show that the equilibrium x = 0 is globally asymptotically stable.
- (b) Show that the saturation function $sat(y) = sign(y) min\{1, |y|\}$ satisfies the above assumptions for $g(\cdot)$. What is the exact form of your Lyapunov function for this saturation nonlinearity?

(c) Parts (a) and (b) imply that a double integrator with a saturating actuator

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = \operatorname{sat}(u)$$

can be stabilized with the state-feedback controller $u = -k_1x_1 - k_2x_2$. Design k_1 and k_2 to place the eigenvalues of the linearization at $-1 \pm j$, and simulate the resulting closed-loop system both with, and without, saturation. Compare the resulting trajectories. (Please provide plots of $x_1(t)$ and $x_2(t)$ rather than phase portraits.) 4.10. EXERCISES

UTY

0-

d

(a) Show that $V(x) \to \infty$ as $||x|| \to \infty$ along the lines $x_1 = 0$ or $x_2 = 0$.

(b) Show that V(x) is not radially unbounded.

4.10 (Krasovskii's Method) Consider the system $\dot{x} = f(x)$ with f(0) = 0. Assume that f(x) is continuously differentiable and its Jacobian $[\partial f/\partial x]$ satisfies

$$P\left[\frac{\partial f}{\partial x}(x)\right] + \left[\frac{\partial f}{\partial x}(x)\right]^T P \le -I, \quad \forall \ x \in \mathbb{R}^n, \quad \text{where} \ P = P^T > 0$$

(a) Using the representation $f(x) = \int_0^1 \frac{\partial f}{\partial x}(\sigma x) x \, d\sigma$, show that

$$x^T P f(x) + f^T(x) P x \le -x^T x, \quad \forall \ x \in R^n$$

- (b) Show that $V(x) = f^T(x)Pf(x)$ is positive definite for all $x \in \mathbb{R}^n$ and radially unbounded.
- (c) Show that the origin is globally asymptotically stable.

4.11 Using Theorem 4.3, prove Lyapunov's first instability theorem: For the system (4.1), if a continuously differentiable function $V_1(x)$ can be found in a neighborhood of the origin such that $V_1(0) = 0$, and \dot{V}_1 along the trajectories of the system is positive definite, but V_1 itself is not negative definite or negative semidefinite arbitrarily near the origin, then the origin is unstable.

4.12 Using Theorem 4.3, prove Lyapunov's second instability theorem: For the system (4.1), if in a neighborhood D of the origin, a continuously differentiable function $V_1(x)$ exists such that $V_1(0) = 0$ and V_1 along the trajectories of the system is of the form $\dot{V}_1 = \lambda V_1 + W(x)$ where $\lambda > 0$ and $W(x) \ge 0$ in D, and if $V_1(x)$ is not negative definite or negative semidefinite arbitrarily near the origin, then the origin is unstable.

4.13 For each of the following systems, show that the origin is unstable:

(1) $\dot{x}_1 = x_1^3 + x_1^2 x_2, \qquad \dot{x}_2 = -x_2 + x_2^2 + x_1 x_2 - x_1^3$ (2) $\dot{x}_1 = -x_1^3 + x_2, \qquad \dot{x}_2 = x_1^6 - x_2^3$

Hint: In part (2), show that $\Gamma = \{0 \le x_1 \le 1\} \cap \{x_2 \ge x_1^3\} \cap \{x_2 \le x_1^2\}$ is a nonempty positively invariant set, and investigate the behavior of the trajectories inside Γ .

4.14 Consider the system

$$\dot{x}_1 = x_2, \qquad \dot{x}_2 = -g(x_1)(x_1 + x_2)$$

where g is locally Lipschitz and $g(y) \ge 1$ for all $y \in R$. Verify that $V(x) = \int_0^{x_1} yg(y) \, dy + x_1x_2 + x_2^2$ is positive definite for all $x \in R^2$ and radially unbounded, and use it to show that the equilibrium point x = 0 is globally asymptotically stable.

183