Nonlinear Systems

Lecture 21

04/16/13

Last time

Input output stability

Finite gain L^p stability

$$\|y\|_p \leq K \|u\|_p + \beta$$

$$V(x) \leq 0 \quad \forall T \geq 0$$

$$\dot{y} = \begin{cases} \dot{y}(t) & 0 \leq t < T \\ 0 & 0.10. \end{cases}$$

A state-space condition for L^2 stability of

$$\begin{align*}
\dot{x} &= f(x) + g(x)u \\
y &= h(x)
\end{align*}$$

If there is a continuously differentiable, positive definite $V(x)$

st.
\[
\frac{\partial V}{\partial x} f(x) + \frac{1}{2\alpha} \frac{\partial V}{\partial x} g(x)^T g(x) \frac{\partial V}{\partial x} + \frac{1}{2} h^T(x) h(x) \leq 0 \text{ (HJ)}
\]

then \(\bar{\gamma} \) has an \(L_2 \) gain \(\leq \gamma \)

Hamilton-Jacobi inequality

Prof: let (HJ) hold

\[
V(x) = \frac{\partial V}{\partial x} x = \frac{\partial V}{\partial x} f(x) + \frac{\partial V}{\partial x} g(x)^T u
\]

\[
V \leq \frac{\partial V}{\partial x} f(x) + \frac{1}{2\alpha} \frac{\partial V}{\partial x} g(x)^T g(x) \frac{\partial V}{\partial x} + \frac{\alpha}{2} u^T u
\]

\[
\left[\begin{array}{c}
\alpha \cdot b \\
\frac{1}{2\alpha} a^2 + \frac{\alpha}{2} b^2
\end{array} \right] \iff 0 \leq \left(\frac{a}{\sqrt{\alpha}} - \sqrt{\alpha} b \right)^2
\]

Now from (HJ) with \(\alpha = \gamma^2 \)

\[
\Rightarrow \quad \dot{V} \leq -\frac{1}{2} h^T(x) h(x) + \frac{\gamma^2}{2} u^T u
\]

\[
= \frac{1}{2} y^T(t) y(t) + \frac{\gamma^2}{2} u(t)^2 u(t)
\]
Now, integrate from 0 to T:

\[V(x(T)) - V(x(0)) \leq -\frac{1}{2} \| y_r \|^2 + \frac{\beta^2}{2} \| u_r \|^2 \]

\[\downarrow \]

\[-V(x(0)) \leq V(x(T)) - V(x(0)) \]

\[\downarrow \]

\[\| y_r \|^2 \leq \frac{\beta^2}{2} \| u_r \|^2 + 2 V(x(0)) \]

we have: \(\sqrt{a^2 + b^2} \leq |a| + |b| \)

\[\Rightarrow \| y_r \|^2 \leq \frac{\beta^2}{2} \| u_r \|^2 + \sqrt{2 V(x(0))} \]

\[\downarrow \]

\[K \]

\[\beta \]

Note:
Lyapunov-like functions that are used to establish input-output stability are known as "storage functions."
For linear systems

\[x = Ax + Bu \]
\[y = Cx \]

(HJ) holds with

\[V(n) = \frac{1}{2} x^T P x \]

and it simplifies to

\[x^T (A^T P + PA + \frac{1}{\delta^2} PBB^T P + \frac{1}{\delta} C^T C) x \leq 0 \]

\[\downarrow \]

\[A^T P + PA + \frac{1}{\delta^2} PBB^T P + \frac{1}{\delta} C^T C \leq 0 \]

\[\text{negative definite} \]
* Bounded Real Lemma:

Suppose \(A \) is Hurwitz \((\lambda_1(A) < 0 \text{ for } i = 1, \ldots, n) \)
and let \(\gamma^* \) denote the \(L_2 \)-induced gain of

\[
(\text{H}_\infty \text{ norm}) \rightarrow \text{peak value of Bode-mag. plot}
\]

\[
\begin{align*}
\mathbf{x} &= A\mathbf{x} + B\mathbf{u} \\
\mathbf{y} &= C\mathbf{x}
\end{align*}
\]

Then for every \(\gamma > \gamma^* \), there is \(P = P^T > 0 \) s.t.

\[
A^TP + PA + \frac{1}{\gamma^2}PB\tilde{B}^TP + CC < 0
\]

* Small gain thm:

\[
\begin{align*}
\mathbf{u}_1 &\quad \rightarrow e_1 \quad \rightarrow H_1 \quad \rightarrow d_1 \\
\mathbf{y}_2 &\quad \leftarrow H \quad \leftarrow e_2 \quad \leftarrow u_2 \\
H : [\mathbf{u}_1, \mathbf{u}_2] &\quad \rightarrow [\mathbf{y}_1, \mathbf{y}_2]
\end{align*}
\]
Suppose H_i has lp gain $< k_i$, $\forall i = 1, 2, \ldots$

If $\| y_i \|_2 < 1$ then the fbk interconnection H is

lp stable.

Proof,

$H_1 : \| y_i \|_p \leq k_i \| e_{1T} \|_p + \beta_i$

$H_2 : \| y_i \|_p \leq k_i \| e_{2T} \|_p + \beta_i$

\[e_1 = u_1 + y_1 \]

\[e_2 = u_2 + y_2 \]

This is a very general context; holds for everything

$\| y_{1T} \|_p \leq k_i \| u_{1T} + y_{2T} \|_p + \beta_i$

$\leq \delta_i \| u_{1T} \|_p + k_i \| y_{2T} \|_p + \beta_i$

$\leq \delta_i \| u_{1T} \|_p + k_i \| y_{2T} \|_p + \delta_i \| y_{2T} \|_p + \delta_i \beta_2 + \beta_i$
\[\|y_1\|_p \leq \frac{\delta_1}{1-\delta_1 \delta_2} \|u_1\|_p + \frac{\delta_2}{1-\delta_1 \delta_2} \|u_2\|_p + \frac{\beta_1 + \delta_1 \beta_2}{1-\delta_1 \delta_2} \]

and similarly for \(\|y_2\|_p \)

\[\delta_1 \delta_2 \neq 1 \quad \text{if} \quad \delta_1 \delta_2 = 1 \quad \text{well posedness is violated} \]
\[\delta_1 \delta_2 > 1 \quad \text{positiveness of } L_0 \text{ gains is violated} \]

This is a sufficient condition on the stability of such interconnected systems, but it is highly conservative. Info. from phase is not taken into account!

Robust Control

\[\Delta \]

\[\text{\Delta can be anything as long as it is norm bounded} \]

In adaptive control the structure of uncertainty \(\Delta \) is taken into account.
Δ: modeling uncertainty with L_2 gain $\leq \frac{1}{\bar{\delta}}$

P: Plant

If L_2 gain $\delta_P \leq \frac{1}{\bar{\delta}}$

\Rightarrow robust stability

What does L_p gain $\leq \gamma$ mean for a memoryless function?

\[u \rightarrow h(u) \rightarrow y \]

\[y = h(u) \]

\[|y| = |h(u)| \leq K |u| , \quad K > 0 \]

-bow-tie!
Passivity

\[u \xrightarrow{H} y \]

(Same \# of inputs and outputs)

\[H : L_2e \rightarrow L_2e \text{ is passive if for all } u \in L_2e \]

and \(T > 0 \)

\[\langle y_T, u_T \rangle_2 = \int_0^T y_T(t)u_T(t) \, dt \geq -\beta \]

for some \(\beta > 0 \).

If you don't have any initial condition \(\beta = 0 \).

i.e., \(\beta \) accounts for initial conditions and if \(x(0) = 0 \)

\[\Rightarrow \langle y_T, u_T \rangle_2 > 0 \]