EE 8215 HW 3 Spring 2013

Due Tu 02/19/13 (at the beginning of the class)

1. Consider the following system:

T = —T1 + T2
2
. T
By =—5 — 0.5x9
1 + X1

(a) Define the shifted state variables &1 = x1 — 1, 3 = x3 — 1 so that the equilibrium z = (1,1) is
now & = (0,0). Rewrite the state equations above in terms of #; and o, eliminating all z; and
To terms.

(b) Linearize he system found in part (a) at the origin and show that one of the eigenvalues is zero.
Next, find variables y and z to bring the system to the form discussed in the lecture on center
manifold theory.

(c) Determine stability properties of Z = (0, 0).

(d) Use numerical simulation to plot the phase portrait in the original (x1,x2) coordinates and su-
perimpose the lines y =0 and z = 0 on the same plot. Discuss whether the phase portrait is
consistent with the properties of the center manifold discussed in class.

2. Strogatz, Problem 3.7.3 (attached).

3. Strogatz, Problem 3.7.4 (attached).



At high temperature the spins point in random directions and so m = 0 ; the mater-
ial is in the paramagnetic state. As the temperature is lowered, m remains near
zero until a critical temperature 7, is reached. Then a phase transition occurs and
the material spontaneously magnetizes. Now m > 0 ; we have a ferromagnet.

But the symmeiry between up and down spins means that there are two possible
ferromagnetic states. This symmetry can be broken by applying an external mag-
netic field &, which favors either the up or down direction. Then, in an approxima-
tion called mean-field theory, the equation governing the equilibrium value of m is

h=Ttanh™ m~ Jnm

where J and n are constants; J > 0 is the ferromagnetic coupling strength and n

is the number of neighbors of each spin (Ma 1985, p. 459).

a) Analyze the solutions m* of h=Ttanh™ m~Jnm, using a graphical ap-
proach.

b) For the special case # =0, find the critical temperature 7, at which a phase
transition occurs.

3.7 Insect Outbreak

3.7.1  (Warm-up question about insect outbreak model) Show that the fixed
point x* = 0 is always unstable for Equation (3.7.3).

3.7.2 (Bifurcation curves for insect outbreak model)

a) Using Equations (3.7.8) and (3.7.9), sketch r(x) and k(x) vs. x . Determine the
limiting behavior of r(x) and k(x) as x =1 and x — o,

b) Find the exact values of r, k, and x at the cusp point shown in Figure 3.7.5.

3.7.3 (A model of a fishery) The equation N = rN(l- X)— H provides an ex-
tremely simple model of a fishery. In the absence of fishing, the population is as-
sumed to grow logistically. The effects of fishing are modeled by the term —H,
which says that fish are caught or “harvested” at a constant rate H > 0, indepen-
dent of their population N . (This assumes that the fishermen aren’t worried about
fishing the population dry—they simply catch the same number of fish every day.)
a) Show that the system can be rewritten in dimensionless form as

dx
= x(1-x)-h,
for suitably defined dimensionless quantities x, 7,and & .
b) Plotthe vector field for different values of 4.
¢) Show that a bifurcation occurs at a certain value 7., and classify this bifurca-
tion.
d) Discuss the long-term behavior of the fish populationfor 2 < h_and 2> h_, and
" give the biological interpretation in each case.
There’s something silly about this model—the population can become nega-
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tive! A better model would have a fixed point at zero population for all values of
H . See the next exercise for such an improvement.

3.7.4 (Improved model of a fishery) A refinement of the model in the last exer-
cise is

N:rN(l—ﬁ)—H al
K A+N

where H >0 and A > 0. This model is more realistic in two respects: it has a fixed
point at N =0 for all values of the parameters, and the rate at which fish are
caught decreases with N. This is plausible—when fewer fish are available, it is
harder to find them and so the daily catch drops.

a) Give abiological interpretation of the parameter A; what does it measure?

b) Show that the system can be rewritten in dimensionless form as

£=x(l—x)—h x ,
dz a+x
for suitably defined dimensionless quantities x, 7, a, and h.
¢) Show that the system can have one, two, or three fixed points, depending on the
values of a and h . Classify the stability of the fixed points in each case.
d) Analyze the dynamics near x =0 and show that a bifurcation occurs when
h =a . What type of bifurcation is it?
e) Show that another bifurcation occurs when h=+(a+1)?, fora < a, . where a,
is to be determined. Classify this bifurcation.
f) Plot the stability diagram of the system in (a, h) parameter space. Can hystere-
sis occur in any of the stability regions?

3.7.5 (A biochemical switch) Zebra stripes and butterfly wing patterns are two
of the most spectacular examples of biological pattern formation. Explaining the
development of these patterns is one of the outstanding problems of biology; see
Murray (1989) for an excellent review of our current knowledge.

Asone ingredient in a model of pattern formation, Lewis et al. (1977) considered
a simple example of a biochemical switch, in which a gene G is activated by a bio-
chemical signal substance S. For example, the gene may normally be inactive but
can be “switched on” to produce a pigment or other gene product when the concen-
tration of S exceeds a certain threshold. Let g(t) denote the concentration of the
gene product, and assume that the concentration s, of S is fixed. The model is

2

kg

= A +
§ 150 ~ K2 § k42+g

2

where the k’s are positive constants. The production of gis stimulated by s, at a
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