E ... incidence matrix

L ... Laplacian

\[L(k) = E K E^T = \sum_{\ell=1}^{m} k_{\ell} e_{\ell} e_{\ell}^T \]

Structured feedback gain \(K = \begin{bmatrix} k_1 & \cdots & k_m \end{bmatrix} \)

Arrive at a structured optimal control problem.

Let's first consider graphs that do not have loops. (trees)

Coordinate transformation:

\[
\begin{bmatrix}
\dot{y}(t) \\
\dot{x}(t)
\end{bmatrix} = \begin{bmatrix}
E^T \\
\frac{1}{N} I^T
\end{bmatrix} \begin{bmatrix}
x(t) \\
T
\end{bmatrix}
\]

\(y(t) \) ... relative difference between adjacent nodes.

\(x(t) \) ... average node.

Then,

\[
\begin{bmatrix}
\dot{y}(t) \\
\dot{x}(t)
\end{bmatrix} = \begin{bmatrix}
-E_t^T E_t & K & 0 \\
O & 0 & 0
\end{bmatrix} \begin{bmatrix}
y(t) \\
x(t)
\end{bmatrix} + \begin{bmatrix}
E_t^T \\
\frac{1}{N} I^T
\end{bmatrix} d(t)
\]

- \(\bar{x}(t) \) is preserved when \(d(t) = 0 \), otherwise it drifts with random walk.
\[\dot{y}(t) = -E_t^T E_t K_y \dot{y}(t) + E_t^T d(t) \]

\[z(t) = \begin{bmatrix} \dot{E}_t \left(E_t^T E_t \right)^{-1} \\ -E_t K \end{bmatrix} y(t) \]

H_2-norm from d to z:

\[J(K) = \frac{1}{2} \text{trace} \left(G^\top K^{-1} + G K \right) \]

where \(G = E_t^T E_t \)

\[J(K) = \frac{1}{2} \sum_{n=1}^{N-1} \left(\frac{1}{k_n g_n} + k_n g_n \right) \]

\[= \frac{1}{2} \sum_{n=1}^{N-1} \frac{1 + \left(k_n g_n \right)^2}{k_n g_n} \]

Can minimize \(J(K) \) by minimizing each term

\[\frac{1 + \left(k_n g_n \right)^2}{k_n g_n} \]

because we have separability between the index 'n' or between nodes.

So, if we use incidence matrix of a tree graph, we can separate the effect of nodes on the objective function, if \(J \) is the difference between the values of each node, and then we can solve the optimal control problem.
General undirected graphs.

Incidence matrix \[E = \begin{bmatrix} E_t & E_c \end{bmatrix} \]
\[\downarrow \]
Part of the incidence matrix where there is a loop (cycle).

Columns of \(E_c \) are linear combination of columns of \(E_t \).

Equality-constrained convex optimization problem

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{s.t.} & \quad Ax - b = 0
\end{align*}
\]

\[\ell(x, y) = f(x) + y^T(Ax - b) \]

If \(f \) is differentiable,

\[\nabla_x \ell(x, y) = \nabla f(x) + A^T y = 0 \]

\[\begin{cases}
E \nabla f(x) = \frac{1}{2} x^T Q x \quad ; \quad Q = Q^T > 0 \\
Q x + A^T y = 0
\end{cases} \]

\[\iff \begin{cases}
x = -Q^{-1} A^T y \\
\frac{x^{k+1}}{y^k} = -Q^{-1} A^T y^k \\
y^{k+1} = y^k + s^k (Ax^{k+1} - b)
\end{cases} \]

Advantage it may lead to distributed implementation.