Due Friday 12/02/11

1. Integral formulation of a differential equation

Consider the following ordinary differential equation with boundary conditions

$$
\begin{align*}
\left(D^{(2)}-\mathrm{i} \omega\right) \phi(y) & =-d(y), \quad \omega \in \mathbb{R}, \tag{1a}\\
\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right] E_{-1}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] E_{1}\right) \phi(y) & =\left[\begin{array}{l}
0 \\
0
\end{array}\right], \tag{1b}
\end{align*}
$$

where $D^{(2)}$ is the second derivative operator, i is the imaginary unit, and E_{-1} and E_{1} denote the point evaluation functionals at the boundaries, e.g.,

$$
E_{-1} \phi(y)=\phi(-1) .
$$

System (1) is obtained by applying the temporal Fourier transform to externally forced diffusion equation on $L_{2}[-1,1]$ with Dirichlet boundary conditions, and it can be brought into an equivalent integral equation by introducing an auxiliary variable

$$
\begin{equation*}
\nu(y)=D^{(2)} \phi(y) . \tag{2}
\end{equation*}
$$

Integration of (2) yields

$$
\begin{align*}
\phi^{\prime}(y) & =\int_{-1}^{y} \nu\left(\eta_{1}\right) \mathrm{d} \eta_{1}+k_{1}=\left[J^{(1)} \nu\right](y)+k_{1}, \\
\phi(y) & =\int_{-1}^{y}\left(\int_{-1}^{\eta_{2}} \nu\left(\eta_{1}\right) \mathrm{d} \eta_{1}\right) \mathrm{d} \eta_{2}+k_{1}(y+1)+k_{2} \tag{3}\\
& =\left[J^{(2)} \nu\right](y)+K^{(2)} \mathbf{k},
\end{align*}
$$

where $J^{(1)}$ and $J^{(2)}$ denote the indefinite integration operators of degrees one and two, the vector $\mathbf{k}=\left[\begin{array}{ll}k_{2} & k_{1}\end{array}\right]^{T}$ contains the constants of integration which are to be determined from the boundary conditions (1b), and

$$
K^{(2)}=\left[\begin{array}{ll}
1 & (y+1)
\end{array}\right] .
$$

The integral form of the 1D diffusion equation is obtained by substituting (3) into (1),

$$
\begin{align*}
\left(I-\mathrm{i} \omega J^{(2)}\right) \nu(y)-\mathrm{i} \omega K^{(2)} \mathbf{k} & =-d(y), \tag{4a}\\
{\left[\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
k_{2} \\
k_{1}
\end{array}\right]+\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right] E_{-1}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] E_{1}\right) J^{(2)} \nu(y) } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] . \tag{4b}
\end{align*}
$$

Now, by observing that

$$
E_{-1} J^{(1)} \nu(y)=\int_{-1}^{-1} \nu(\eta) \mathrm{d} \eta=0
$$

we can use (4b) to express the constants of integration \mathbf{k} in terms of ν,

$$
\left[\begin{array}{l}
k_{2} \tag{5}\\
k_{1}
\end{array}\right]=-\frac{1}{2}\left[\begin{array}{rr}
2 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] E_{1} J^{(2)} \nu(y)=\left[\begin{array}{c}
0 \\
-1 / 2
\end{array}\right] E_{1} J^{(2)} \nu(y) .
$$

Finally, substitution of (5) into (4a) yields an equation for ν,

$$
\begin{equation*}
\left(I-\mathrm{i} \omega J^{(2)}+\frac{1}{2} \mathrm{i} \omega(y+1) E_{1} J^{(2)}\right) \nu(y)=-d(y) \tag{6}
\end{equation*}
$$

System (6) only contains indefinite integration operators and point evaluation functionals which are known to be well-conditioned.

- Make sure that you understand the above derivation.
- Determine the solution to (1) with

$$
d(y)=y \sin \left(\frac{1}{2} \pi(y+1)\right)+y^{2}, \quad \omega=1
$$

using:
(a) Matlab Differentiation Matrix Suite [Weidemann \& Reddy (2000)];
(b) Chebfun's differential operators; and
(c) Chebfun's indefinite integration operators. See the attached m-file to see how to do this.

- Repeat items (a)-(c) above for the heat equation with Neumann boundary conditions.

2. Consider the following boundary value problem

$$
\phi^{\prime \prime \prime \prime}(y)-2 \cos (2 y) \phi^{\prime \prime \prime}(y)+\left[48 \cos ^{2}(2 y)(1+\sin (2 y))-16 \sin (2 y)(1+3 \sin (2 y))\right] \phi(y)=0
$$

with boundary conditions

$$
\phi(0)=1, \quad \phi^{\prime}(0)=2, \quad \phi^{\prime}(2 \pi)=2, \quad \phi^{\prime \prime}(2 \pi)=4
$$

- Determine the solution using
(a) Chebfun's differential operators;
(b) Chebfun's indefinite integration operators.
- Compare your solutions to (a) and (b) with the exact solution

$$
\phi(y)=\exp (\sin (2 y)) .
$$

- Compute the condition number of the underlying operators in (a) and (b) for different numbers of collocation points and comment on them.

3. Singular values of the frequency response operator

Let a one-dimensional diffusion equation with homogenous Dirichlet boundary conditions and zero initial conditions be subject to spatially and temporally distributed forcing $d(y, t)$,

$$
\begin{align*}
\phi_{t}(y, t) & =\phi_{y y}(y, t)+d(y, t) \\
\phi(\pm 1, t) & =0, \tag{7}\\
\phi(y, 0) & =0, \quad y \in[-1,1] .
\end{align*}
$$

Considering ϕ as the field of interest, the frequency response operator for this system (from input d to output ϕ) is given by

$$
\begin{equation*}
\mathcal{T}(\omega)=\left(\mathrm{i} \omega I-D^{(2)}\right)^{-1} \tag{8}
\end{equation*}
$$

where $D^{(2)}$ is the second derivative operator with homogenous Dirichlet boundary conditions, I is the identity operator, and ω is the temporal frequency. Alternatively, by applying the temporal Fourier transform on (7) we obtain the following input-output differential equation representing the frequency response operator

$$
\mathcal{T}(\omega):\left\{\begin{array}{l}
\phi^{\prime \prime}(y, \omega)-\mathrm{i} \omega \phi(y, \omega)=-d(y, \omega) \\
\phi(\pm 1, \omega)=0
\end{array}\right.
$$

(a) Convince yourself that the adjoint of (8) is given by

$$
\begin{equation*}
\mathcal{T}^{\dagger}(\omega)=-\left(\mathrm{i} \omega I+D^{(2)}\right)^{-1} \tag{9}
\end{equation*}
$$

Find the equivalent input-output differential equation for (9) and for the composition operator $\mathcal{T} \mathcal{T}^{\dagger}$.
(b) Determine the largest singular value of the frequency response operator \mathcal{T},

$$
\sigma_{\max }^{2}(\mathcal{T})=\lambda_{\max }\left(\mathcal{T} \mathcal{T}^{\dagger}\right)
$$

as a function of the temporal frequency ω using Matlab Differentiation Matrix Suite.
(c) Find the equivalent integral formulation of the input-output differential equations for the operator $\mathcal{T} \mathcal{T}^{\dagger}$.
(d) Write a program to compute the largest singular value of \mathcal{T} as a function of ω using Chebfun indefinite integration operators.

Hint: You will need the following command to construct operators with inverses:

```
% Realizing an operator T = A^{-1}*B, where A and B are linear operators
% in Chebfun
    dom = domain(-1,1); % domain of functions
% n-by-n realization
mat = @(n) A(n) \ B(n);
% functional expression
op = @(v) (A \ B)*vv;
% Realization of the operator T = A^{-1}*B
T = linop(mat,op,dom);
```

(e) Change the m-file Smax_HeatEq_inteigs to compute the largest singular value of \mathcal{T} as a function of ω. Compare the results with the largest singular values computed in (b) and (d).

Note: Make sure to have functions Smax_FreqResp_inteigs.m and inteigs_system_TTs.m in the directory in which you are doing your MATLAB computations.
4. Consider the following boundary value problem

$$
\begin{aligned}
\phi_{t}(y, t) & =\phi_{y y}(y, t)-\left(\mathrm{i} k_{x}\left(1-y^{2}\right)+k_{x}^{2}\right) \phi(y, t)+d(y, t) \\
\phi(\pm 1, t) & =0 \\
\phi(y, 0) & =0, \quad y \in[-1,1]
\end{aligned}
$$

where k_{x} is the real number.

- Find the input-output differential equation representing the frequency response operator.
- Compute the largest singular values of the frequency response operator as a function of ω for several nonzero values of k_{x} using function Smax_FreqResp_inteigs.m. Comment on your results and compare them with $k_{x}=0$ computations (standard diffusion equation).
- Compute the H_{2} norm of your system (from d to ϕ) as a function of k_{x}.
- Determine the value of k_{x} at which the H_{2} peaks and compute the principal eigenfunction of the controllability Gramian at this value of k_{x}.

