1. In HW2 you have shown that the dynamics of infinitesimal "streamwise-constant" fluctuations around the mean velocity $(U(y), 0,0)$ in a channel flow are governed by the following evolution model

$$
\left[\begin{array}{l}
\psi_{\tau}(\tau) \tag{LNSE}\\
u_{\tau}(\tau)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\mathcal{L} & 0 \\
\operatorname{Re} \mathcal{C}_{p} & \mathcal{S}
\end{array}\right]}_{\mathcal{A}}\left[\begin{array}{l}
\psi(\tau) \\
u(\tau)
\end{array}\right]
$$

Here, u and ψ denote the streamwise velocity and stream-function fluctuations, respectively, and the operators in (LNSE) are given by

$$
\begin{aligned}
\text { Orr-Sommerfeld: } & \mathcal{L}=\Delta^{-1} \Delta^{2} \\
\text { Squire: } & \mathcal{S}=\Delta \\
\text { Coupling: } & \mathcal{C}_{p}=-\mathrm{j} k_{z} U^{\prime}(y)
\end{aligned}
$$

with k_{z} denoting the spanwise wave number and,

$$
\begin{aligned}
\Delta & =\partial_{y y}-k_{z}^{2} \\
\Delta^{2} & =\partial_{y y y y}-2 k_{z}^{2} \partial_{y y}+k_{z}^{4}
\end{aligned}
$$

We will consider the generator \mathcal{A} in (LNSE) on the following Hilbert space

$$
\mathbb{H}=\left[\begin{array}{c}
\mathbb{H}_{o s} \\
L_{2}[-1,1]
\end{array}\right], \quad \mathbb{H}_{o s}=\left\{g \in L^{2}[-1,1] ; g^{\prime \prime} \in L^{2}[-1,1], g(\pm 1)=0\right\}
$$

with the domain of \mathcal{A} determined by

$$
\mathcal{D}(\mathcal{A})=\left[\begin{array}{l}
\mathcal{D}(\mathcal{L}) \\
\mathcal{D}(\mathcal{S})
\end{array}\right], \quad\left\{\begin{array}{l}
\mathcal{D}(\mathcal{L})=\left\{g \in \mathbb{H}_{o s} ; g^{(4)} \in L^{2}[-1,1], g^{\prime}(\pm 1)=0\right\} \\
\mathcal{D}(\mathcal{S})=\mathbb{H}_{o s}
\end{array}\right.
$$

We endow the state-space \mathbb{H} with an inner product

$$
\left\langle\phi_{1}, \phi_{2}\right\rangle_{e}=\left\langle\phi_{1}, \mathcal{Q} \phi_{2}\right\rangle
$$

where $\langle\cdot, \cdot\rangle$ is the standard $L^{2}[-1,1]$ inner product, and \mathcal{Q} is a block diagonal positive self-adjoint operator,

$$
\mathcal{Q}=\left[\begin{array}{cc}
-\Delta & 0 \\
0 & I
\end{array}\right]
$$

(a) Determine the adjoint of the Squire operator \mathcal{S} (with respect to the standard $L_{2}[-1,1]$ inner product) and the adjoint of the Orr-Sommerfeld operator \mathcal{L} (with respect to $\left\langle\psi_{1}, \psi_{2}\right\rangle_{\text {os }}=-\left\langle\psi_{1}, \Delta \psi_{2}\right\rangle$).
(b) Determine the adjoint of the operator \mathcal{A} with respect to $\langle\cdot, \cdot\rangle_{e}$.
(c) Show that the Orr-Sommerfeld operator \mathcal{L} has two sets of the eigenvalues $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ and $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$,

$$
\begin{aligned}
\lambda_{k} & =-\left(p_{k}^{2}+k_{z}^{2}\right) \\
\gamma_{k} & =-\left(q_{k}^{2}+k_{z}^{2}\right)
\end{aligned}
$$

with the corresponding eigenfunctions,

$$
\begin{aligned}
& \psi_{o s 1, k}\left(y, k_{z}, \lambda_{k}\right)=A_{k}\left(\cos \left(p_{k} y\right)-\frac{\cos \left(p_{k}\right)}{\cosh \left(k_{z}\right)} \cosh \left(k_{z} y\right)\right) \\
& \psi_{o s 2, k}\left(y, k_{z}, \gamma_{k}\right)=B_{k}\left(\sin \left(q_{k} y\right)-\frac{\sin \left(q_{k}\right)}{\sinh \left(k_{z}\right)} \sinh \left(k_{z} y\right)\right)
\end{aligned}
$$

where p_{k} and q_{k} are obtained as solutions to the following two equations,

$$
\begin{aligned}
p_{k} \tan \left(p_{k}\right) & =-k_{z} \tanh \left(k_{z}\right) \\
q_{k} \cot \left(q_{k}\right) & =k_{z} \operatorname{coth}\left(k_{z}\right)
\end{aligned}
$$

Figure 1: Channel flow geometry.

Convince yourself that the following choices of $\left\{A_{k}\right\}_{k \in \mathbb{N}}$ and $\left\{B_{k}\right\}_{k \in \mathbb{N}}$,

$$
\begin{aligned}
& A_{k}=\left(\left(p_{k}^{2}+k_{z}^{2}\right)\left(1+\frac{\sin \left(2 p_{k}\right)}{2 p_{k}}\right)\right)^{-\frac{1}{2}} \\
& B_{k}=\left(\left(q_{k}^{2}+k_{z}^{2}\right)\left(1-\frac{\sin \left(2 q_{k}\right)}{2 q_{k}}\right)\right)^{-\frac{1}{2}}
\end{aligned}
$$

give the orthonormal sets of eigenfunctions $\left\{\psi_{o s 1, k}\right\}_{k \in \mathbb{N}}$ and $\left\{\psi_{o s 2, k}\right\}_{k \in \mathbb{N}}$ (with respect to $\langle\cdot, \cdot\rangle_{o s}$).
Note: Even though your analysis will imply that the spectral decompositions of \mathcal{L} in terms of $\left\{\psi_{o s 1, k}\right\}_{k \in \mathbb{N}}$ and $\left\{\psi_{o s 2, k}\right\}_{k \in \mathbb{N}}$ can be considered separately, you will need to use both sets of eigenfunctions to determine the solution to the Orr-Sommerfeld equation.
(d) Show that the Squire operator \mathcal{S} has the eigenvalues $\left\{\theta_{k}\right\}_{k \in \mathbb{N}}$,

$$
\theta_{k}=-\left(\left(\frac{k \pi}{2}\right)^{2}+k_{z}^{2}\right),
$$

with the corresponding eigenfunctions,

$$
u_{s q, k}(y)=\sin \left(\frac{k \pi}{2}(y+1)\right) .
$$

(e) Using results obtained in Parts (c) and (d) determine the eigenvalue decomposition of the operators \mathcal{A} and \mathcal{A}^{\dagger}. Make sure that bi-orthogonality between the eigenfunctions of \mathcal{A} and \mathcal{A}^{\dagger} holds.
2. For the convection-diffusion equation that you studied in HW2,

$$
\begin{aligned}
\phi_{t}(x, t) & =\phi_{x x}(x, t)-\phi_{x}(x, t) \\
\phi(x, 0) & =f(x) \\
\phi(\pm 1, t) & =0
\end{aligned}
$$

(a) Show that the generator of the dynamics,

$$
\left\{\begin{aligned}
{[\mathcal{A} f](x) } & =\left[\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} f}{\mathrm{~d} x}\right](x) \\
\mathcal{D}(\mathcal{A}) & =\left\{f \in L_{2}[-1,1], \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}} \in L_{2}[-1,1], f(\pm 1)=0\right\}
\end{aligned}\right.
$$

is self-adjoint with respect to the following inner product:

$$
\langle f, g\rangle_{w}=\int_{-1}^{1} f(x) \mathrm{e}^{-x} g(x) \mathrm{d} x .
$$

(b) Determine the kernel representation of the inverse of the operator \mathcal{A}.
3. The cantilever beam, shown in Figure 3, of length l deflects due to atomic forces between the sample and the cantilever tip. The model of this system is given by

$$
\left\{\begin{array}{rl}
\mu \psi_{t t}+\alpha E I \psi_{t x x x x}+E I \psi_{x x x x} & =0, \tag{1}\\
\psi(0, t) & =u_{1}(t), \\
\alpha E I \psi_{x}(0, t)=0, \\
(x x x
\end{array}(l, t)+E I \psi_{x x x}(l, t)=u_{2}(t), \quad \psi_{x x}(l, t)=0, ~ l\right.
$$

where μ is the mass per unit length of the beam, E is Young's modulus, I is the area moment of inertia of the beam ($E I$ is also known as the flexural stiffness), and α is the structural damping factor.

(a) Determine the transfer functions $H_{1}(s)$ and $H_{2}(s)$ from the inputs u_{1} and u_{2} to the output

$$
y(t)=\psi(l, t)
$$

(b) Plot the magnitudes and the phases of the frequency responses $H_{1}(\mathrm{j} \omega)$ and $H_{2}(\mathrm{j} \omega)$ for

$$
\mu=1.88 \times 10^{-7} \mathrm{~kg} / \mathrm{m}, \quad E I=7.55 \times 10^{-12} \mathrm{Nm}^{2}, \quad \alpha=5 \times 10^{-8} \mathrm{~s}
$$

(c) Comment of whether the resonant peaks that you uncovered in Part (b) are captured well by the eigenvalues of the dynamical generator in (1) with the following homogeneous boundary conditions:

$$
\left\{\begin{aligned}
\psi(0, t) & =0, \psi_{x}(0, t)=0 \\
\psi_{x x}(l, t) & =0, \psi_{x x x}(l, t)=0
\end{aligned}\right.
$$

