
EE 3025 S2010 Demo 10 — Apr 19-20, 2010

Reading Assignment: Read Sections 9.5 and 10.1-10.5 of the EE 3025 Matlab Notes.

Part I(25 min): Matlab

Part II(25 min): Worked Problems on Chap 10

1 Matlab

1.1 Estimating Process Means and Autocorrelations

Let X(t) be a random process. Suppose we sample at time t = t0, getting the sample X(t0).
If we look at many different realizations and average the X(t0) values, then we obtain an
estimate of E[X(t0)]. Suppose we sample at another time t = t1, and compute the product
X(t0)X(t1). Looking at many different realizations and averaging the X(t0)X(t1) values, we
obtain an estimate of the autocorrelation E[X(t0)X(t1)] at these two times. This method
of estimating process means and autocorrelations by averaging across realizations is called
“space averaging”.

Example. We do the preceding estimation procedure for a Poisson arrival process X(t)
with arrival rate of 2 arrivals per unit time. At each time t > 0, X(t) is the number of
arrivals that have occurred in the time interval [0, t]. If we sample at time t = t0, then we
have

E[X(t0)] = 2t0.

In our Matlab script, we take t0 = 4. Then theoretically we have

E[X(4)] = 2(4) = 8.

The following script estimates E[X(4)] across 1000 realizations.

arr_rate=2;

n=1000; %number of realizations

for i=1:1000

t=0;

arrivaltimes=[];

while t<=4

t=t-log(rand(1,1))/arr_rate; %time of next arrival

arrivaltimes=[arrivaltimes t];

end

x4(i)=sum(arrivaltimes<=4); %X(4) on i-th realization

end

EX4_estimate=mean(x4)

EX4_estimate =

8.0370

Note that the estimate is about right. In the script, the “while loop” counts the number
of arrivals occuring at times up to and including time 4, which is the random value X(4).
The length of the time interval between arrivals is modeled as

-log(rand(1,1))/arr_rate

which is an exponentially distributed random variable whose mean is the reciprocal of the
arrival rate.

Example. With the same arrival rate 2 for our Poisson process X(t), we now estimate
the autocorrelation E[X(2)X(4)] across 1000 realizations. From Chap 10 of your textbook,
the theoretical value of E[X(t0)X(t1)] for t0 < t1 is:

E[X(t0)X(t1)] = λt0 + λ2t0t1,

where λ is the arrival rate. One proves this using the facts that

• Cov(X(t0), X(t1)) = λt0.

• E[X(t0)] = λt0.

• E[X(t1)] = λt1.

Plugging in λ = 2, t0 = 2, and t1 = 4, we obtain

E[X(2)X(4)] = 36.

The following Matlab script estimates this quantity across 1000 realizations of the Poisson
process.

arr_rate=2;

n=1000; %number of realizations

for i=1:1000

t=0;

arrivaltimes=[];

while t<=4

t=t-log(rand(1,1))/arr_rate; %time of next arrival

arrivaltimes=[arrivaltimes t];

end

x2(i)=sum(arrivaltimes<=2); %X(2) on i-th realization

x4(i)=sum(arrivaltimes<=4); %X(4) on i-th realization

end

aucorr_estimate=mean(x2.*x4)

aucorr_estimate =

36.6800

1.2 Plotting Poisson Process Realizations

The Poisson process (also called Poisson arrival process) is used to model arrivals in a
queueing system. In this experiment, we show how to plot a realization of a Poisson process.

Consider a Poisson process for which there is one arrival per second, on average. We can
simulate the first six arrival times via the Matlab code:

t=cumsum(-log(rand(1,6)));

Let these six arrival times be t1, t2, t3, t4, t5, t6; these are the entries of the vector t. Consider
the step function defined s(t) over the time interval 0 ≤ t ≤ t6 defined as follows: s(t) is equal
to 0 in the time interval 0 ≤ t < t1, is equal to 1 in the time interval t1 ≤ t < t2, 2 in the time
interval t2 ≤ t < t3, etc., ending up equal to 5 in the time interval t5 ≤ t ≤ t6. If we were
to consider more and more arrivals until we had infinitely many, then the step function s(t)
would keep getting extended until the result would be a realization of the Poisson process.
We plot s(t) using the following Matlab script:

t=cumsum(-log(rand(1,6)));

t=round(10^3*t)/10^3; %rounds arrival time to 3 decimal places

delta=.001;

x1=0:delta:t(1)-delta; y1=0*ones(1,length(x1));

x2=t(1):delta:t(2)-delta; y2=1*ones(1,length(x2));

x3=t(2):delta:t(3)-delta; y3=2*ones(1,length(x3));

x4=t(3):delta:t(4)-delta; y4=3*ones(1,length(x4));

x5=t(4):delta:t(5)-delta; y5=4*ones(1,length(x5));

x6=t(5):delta:t(6)-delta; y6=5*ones(1,length(x6));

plot([x1 x2 x3 x4 x5 x6],[y1 y2 y3 y4 y5 y6])

axis([0 t(6) 0 6])

xlabel(’time axis t’)

ylabel(’number of arrivals s(t) up through time t’)

title(’plot of realization of Poisson process’)

Fig.1 gives the realization plot when we got the one time we ran the above script. Of course,
the realization plot will change each time you run the script.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

time axis t

nu
m

be
r

of
 a

rr
iv

al
s

s(
t)

 u
p

th
ro

ug
h

tim
e

t

plot of realization of Poisson process

Figure 1: Plot of Poisson Process Realization (Arrival Rate = 1)

Look at your realization s(t), and answer the following questions:

• At what times do each of the first 6 arrivals occur?

• What is the length of time between the first arrival and the second arrival, or between
the second arrival and the fourth arrival?

• What does the arrival rate seem to be in number of arrivals per second (approximately)?

Re-run the preceding lines of code repeatedly to get other realizations. They should all
give you roughly 6 arrivals in the first 6 seconds. But of course no two realizations will be
the same.

Exercise. Suppose you now want the arrival rate of the Poisson process to be two arrivals
per second. Then, you replace the first line of the Matlab script with

t=cumsum(-log(rand(1,6))/2);

Run the preceding Matlab script after making this change and then look at the realization
of the Poisson process that you see plotted on your Matlab screen. It should look somewhat
like Figure 2.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

time axis t

nu
m

be
r

of
 a

rr
iv

al
s

s(
t)

 u
p

th
ro

ug
h

tim
e

t

plot of realization of Poisson process

Figure 2: Plot of Poisson Process Realization (Arrival Rate = 2)

1.3 Predictor Design for WSS Process

Let (Xn) be a WSS process. Letting RX(τ) be the autocorrelation function, we can compute
autocorrelations as

E[XmXn] = RX(|m− n|).
The minimum mean-square first, second, and third order linear predictors for Xn take the
form:

X̂n = AXn−1

X̂n = BXn−1 + CXn−2

X̂n = DXn−1 + EXn−2 + FXn−3

In each case, the predictor coefficients are selected so that the mean-square prediction error

E[(Xn − X̂n)
2]

is a minimum. The orthogonality principle can be used to find the predictor coefficients, and
the solutions are:

• The first order predictor coefficient A is given by the equation

A = RX(1)/RX(0). (1)

• The second order predictor coefficients B,C are obtained by solving the matrix equa-
tion: [

RX(0) RX(1)
RX(1) RX(0)

] [
B
C

]
=

[
RX(1)
RX(2)

]
(2)

• The third order predictor coefficients D,E, F are obtained by solving the matrix equa-
tion: ⎡

⎢⎣ RX(0) RX(1) RX(2)
RX(1) RX(0) RX(1)
RX(2) RX(1) RX(0)

⎤
⎥⎦
⎡
⎢⎣ D

E
F

⎤
⎥⎦ =

⎡
⎢⎣ RX(1)
RX(2)
RX(3)

⎤
⎥⎦ (3)

Example. Let the WSS process Xn have autocorrelation function

RX(τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5, τ = 0
−1, τ = ±1
2, τ = ±2
0, elsewhere

Run the following Matlab script, which separately computes the predictor coefficients for
the first, second, and third order predictor:

R=[5 -1 2 0];

%find first order predictor coefficient A

A = R(2)/R(1);

%find second order predictor coefficients B,C

Q2=inv(toeplitz(R(1:2)))*R(2:3)’;

B=Q2(1), C=Q2(2);

%find third order predictor coefficients D,E,F

Q3=inv(toeplitz(R(1:3)))*R(2:4)’;

D=Q3(1), E=Q3(2), F=Q3(3);

[A 0 0; B C 0; D E F]

Observe what you get on your computer screen from running the preceding script. You should
see a 3×3 matrix. The first entry in the first row gives the first order predictor coefficient A.
The first two entries in the second row give the second order predictor coefficients B,C. The
third row gives the third order predictor coefficients D,E, F . This matrix gives a convenient
way to express all three of these predictors.

Note the Matlab function “toeplitz” in the script. This function allows one to easily
generate a square matrix constant along the diagonal and subdiagonals. For example, the
command

toeplitz([x y z])

generates the 3× 3 matrix

x y z

y x y

z y x

What does the command toeplitz([x,y,z,w]) generate?
Prediction Errors. The mean-square prediction errors E[(Xn − X̂n)

2] for the the first,
second, and third order predictors are given by the formulas

first order pred error = RX(0)−ARX(1)

second order pred error = RX(0)− BRX(1)− CRX(2)

third order pred error = RX(0)−DRX(1)− ERX(2)− FRX(3)

For example, for the 3rd order predictor, this is because

E[(Xn − X̂n)
2] = E[Xn − X̂n)Xn] = E[X2

n]−DE[XnXn−1]− EE[XnXn−2]− FE[XnXn−3],

the quantity E[(Xn − X̂n)X̂n] = 0 having dropped out due to the orthogonality principle.
Exercise. Use Matlab to compute the prediction errors for the first three predictors.

2 Worked Problems

2.1 Auto- and Cross-Correlation

X(t) is a WSS process with mean 0 and autocorrelation function

RX(τ) = exp(−|τ |).
Θ is uniformly distributed in [0, 2π] and independent ofX(t). Y (t) and Z(t) are the processes

Y (t) = X(t) cos(2πf0t +Θ).

Z(t) = X(t− 1) cos(2πf0t +Θ).

(a) Are Y (t) and Z(t) WSS? If so, what are their mean and autocorrelation functions?

Solution.
E[Y (t)] = E[X(t)]E[cos(2πf0t+Θ)] = 0

E[Z(t)] = E[X(t− 1)]E[cos(2πf0t+Θ)] = 0

E[Y (t)Y (t+ τ)] = E[X(t)X(t+ τ)]E[cos(2πf0t+Θ) cos(2πf0(t + τ) + Θ)] =

RX(τ)(1/2){E[cos(2πf0τ)] + E[cos(2πf0(2t+ τ) + 2Θ)]}.
The second term within the braces is of the form∫ 2π

0
(1/2π) cos(C + 2θ)dθ = 0.

Therefore,
E[Y (t)Y (t+ τ)] = (1/2)RX(τ) cos(2πf0τ).

Similarly,
E[Z(t)Z(t + τ)] = (1/2)RX(τ) cos(2πf0τ).

We conclude that Y (t) and Z(t) are both WSS and both have mean 0 and

RY (τ) = RZ(τ) = (1/2) exp(−|τ |) cos(2πf0τ).

(b) Determine the cross-correlation function

RZY (t, τ) = E[Z(t)Y (t+ τ)].

Solution.

E[Z(t)Y (t+ τ)] = E[X(t− 1)X(t+ τ)]E[cos(2πf0t+Θ) cos(2πf0(t+ τ) + Θ)].

The first expected value on the right is

E[X(t− 1)X(t+ τ)] = RX(τ + 1).

The second expected value was already treated in (a) solution. Therefore,

RZY (t, τ) = (1/2) exp(−|τ + 1|) cos(2πf0τ).

2.2 Nonstationary X(t) Stable as t → ∞
Worked Problem 5.2.4.

2.3 Ergodic WSS Processes

Worked Problems 5.3.2-5.3.4 as time permits.

Background. A discrete-time ergodic WSS process (Xn) has the property that process
parameters can be computed as time averages along realizations. For example, you’ll
have

μX = lim
N→∞

(1/N)
N∑

n=1

Xn

with probability one, and for any fixed τ ,

RX(τ) = lim
N→∞

(1/N)
N∑

n=1

XnXn+τ

with probability one. Also,
μ2
X = lim

τ→∞RX(τ),

if the limit exists.

