
HW/SW Codesign Incorporating Edge Delays Using Dynamic Programming 
 

Karthikeyan Bhasyam Kia Bazargan 
ECE Department 

University of Minnesota 
Minneapolis, MN 55455 

{karthik, kia} @ece.umn.edu 
 
 

 
 

Abstract 
We present an algorithm based on dynamic programming 
to perform the HW/SW partitioning and scheduling of a 
given task graph for minimum latency subject to resource 
constraint. The major contribution of this paper is to 
consider the edge communication delays in the dynamic 
programming solution of the problem. The algorithm has a 
polynomial run time complexity on trees. We also 
introduce a pruning technique to reduce the runtime of the 
worst-case scenario of directed acyclic graphs (DAGs). 
The algorithm has been implemented and the results are 
reported. A very fast quality heuristic is also proposed and 
implemented to provide good solutions in negligible run 
time. 

1. INTRODUCTION 
 

    The hardware/software (HW/SW) co-design problem 
involves the allocation of operations in a data flow graph 
(DFG) to computing resources to optimize a particular 
optimization objective. This gives rise to several 
conceptually related problems in codesign depending on 
the objective being optimized and the modeling of the 
resources and operations in the data flow graph. The two 
popular problems are latency minimization for given 
resource constraints and resource minimization with a 
given latency constraint. HW/SW codesign is a very 
important step in the design flow and greatly influences the 
performance of the final design. Thus efficient and high 
quality solutions are required to the HW/SW codesign 
problem.  
    There has been extensive research in the area of 
HW/SW codesign. Jantsch et al proposed a dynamic 
programming solution for latency minimization subject to 
resource constraints [1]. They map the problem to a 
knapsack problem and propose a dynamic programming 
solution to meet resource constraints. However, they do 
not perform any graph traversals, i.e., they do not consider 
the interaction between different nodes but consider the 

speed up obtained by mapping an operation in HW 
(FPGA, ASIC) independently. This does not account for 
the resource binding for the fanin and fanout nodes of an 
operation. A dynamic programming approach is proposed 
by Knudsen et al [2] where they move resources to HW 
until the resource constraints are met without performing 
any graph traversal.  
    Bender et al [12] proposed a MILP based model, which 
has high runtime complexity. Several approaches ([4], [5], 
[10]) depend on greedy heuristics, code profiling etc, 
which assign operations to resources greedily. Chang et al 
propose a dynamic programming solution to the codesign 
problem [3]. They use the classic dynamic programming 
approach, which has been used extensively for problems 
not only in codesign but also in buffer insertion, 
technology mapping etc. The solution proposed is 
extensive and is used for codesign of communication 
systems. However they target area minimization given 
latency constraint and do not have resource constraints. 
Also their approach is for coarse-grained HW/SW 
partitioning while this work targets fine-grained HW/SW 
partitioning. More importantly they do not consider delays 
associated with edges in the task graph between two 
processes and hence their approach is different from the 
problem formulation in this work. In embedded system 
design the communication delay between operations 
especially those placed in different partitions is significant. 
Hence incorporating these communication costs in the 
dynamic programming framework is essential. In this 
paper we propose a dynamic programming approach to 
perform the resource constrained HW/SW partitioning for 
minimum latency considering these edge delay costs.  

 

2. PROBLEM FORMULATION 
 

    A task is defined by its Data Flow Graph, which is 
represented by a DAG. The DAG consists of a set of 
operations and communicating edges between operations. 



A set of possible implementations for each operation in 
HW and SW is also given. Also the communication 
between two operations incur a delay depending on the 
partitions in which the two communicating nodes are 
placed. The resource constrained minimum latency 
problem is to assign the operations to HW or SW and 
schedule them for minimum latency subject to a finite HW 
resource constraint. 
    The task graph represents the high level system to be 
implemented. It consists of a set of nodes and a set of 
edges and is represented by G=(V, E) where V is the set of 
nodes and E is the set of edges. Each node represents an 
operation (ADD, MULTIPLY, MEMREAD, etc.) that has 
a specific cost of implementation and speed of execution 
on HW, which could be HW (e.g., FPGA, ASIC) and SW 
(e.g., general-purpose processor, DSP chip). 
    The edges in the data flow graph have communication 
delays depending on the partitions in which the two nodes 
incident on the edge are present. The delay can take 
different values depending on whether the two nodes are 
present in SW/SW or SW/HW or HW/HW. The resource 
constrained scheduling problem is intractable as shown in 
[11]. However the dynamic programming solution 
provides good solution quality for some special case 
problems in polynomial time as shown in this paper. A 
highly effective heuristic is also provided for task graphs 
that have exponential runtimes in the dynamic 
programming solution. 
 

3. DYNAMIC PROGRAMMING 
 

    Our method considers the directed acyclic dependency 
graph (DAG) in a bottom-up fashion. Partial solutions of 
subtrees are kept as non-dominating lists and merged as 
the graph is traversed towards the primary outputs. For 
each node, a list of non-redundant delay/resource usage 
pairs is kept, and used in forming the non-dominating 
solutions of the successor nodes. 
    A solution S for node n is defined as the pair (T, L) 
where T is the time at which n is scheduled to complete 
and L is the amount of finite resource used for this solution 
(e.g., amount of memory or functional units). Each 
solution also corresponds to the node being placed either in 
HW/SW. This solution is obtained by combining the 
solution sets of all its fanin nodes. Thus given a solution 
for a node j mapped to HW or SW we can obtain the time 
step at which it is scheduled and resource assignment of 
every node in the fanin cone of this node. Thus each 
solution for a node corresponds a particular HW/SW 
partitioning of the sub-graph rooted at node j. The load 
then corresponds to the amount of HW used for this 
particular partitioning solution of the sub-graph. If a node 
is placed in SW then its cost is zero since HW partition has 
finite resource constraint while the SW partition is 

assumed to have infinite resources. Each node has a 
solution set which corresponds to a set of solutions of the 
type described above. The solution set can be represented 
as a load delay curve with the corner points being the non-
inferior points. A queue of nodes is created by performing 
a topological sort on the graph and the nodes are processed 
in that order to obtain their load-delay curves. The 
topological sort ensures that primary inputs are processed 
first and the solution sets for the nodes are by combining 
the solution set of its fanin nodes. When the sink of the 
DAG is reached the solution set obtained represents all the 
non-inferior solutions to this task graph. The solution with 
minimum latency is selected from this set and represents 
our final (optimum) solution. If the original given task 
graph has multiple primary outputs (PO) i.e. sinks then a 
dummy node is added to the graph and edges are created 
between this dummy node and all the primary outputs. The 
cost of implementation and delay of this dummy node in 
both HW and SW is assumed to be zero. Further the edges 
connecting this dummy node to the original primary 
outputs are assigned zero delays. The topological sort is 
then performed on this modified task graph.  
 

3.1 MERGE OPERATION 
 

    Merge operation is the process of forming a solution of 
a node by combining the solution sets of its fanin nodes. 
The merge operation is described below. For the purpose 
of illustration we assume the task graph is a balanced tree 
with no re-convergent fanouts. Consider a node A with 
two parents B and C as shown in Figure 1. Let Sb and Sc be 
the solution sets (delay-load curves) for the two fanin 
nodes. Also let the HW resource constraint be Lmax 
 

 
Figure 1. Merge Operation 

 
    Initially assign node A to the HW partition. Let Sn

i be 
the ith solution in the solution set for node n. Then for a 
solution say Sb

1 (Tb, Lb) in Sb find the resulting schedule 
time Ta at A i.e. the time at which A gets the input from 
this fanin node (B) by adding the edge delay between A 
and B. So T=Tb+ (edge delay between A and B). The value 
of the edge delay between A and B depends on the 
partition in which B is placed corresponding to the solution 



point S1
b. This is a valid schedule time at A if there is a 

solution in Sc (Tc, Lc) such that:  
 
             Tc+ edge delay between A and C ≤ T.              (1) 
             Lc +Lb+ cost of implementation of A ≤ Lmax      (2) 
 

                     
    If there is no such solution in Sc then Ta is not a feasible 
solution for A. If more than one such solution exists in C 
then the solution with minimum load is chosen. Then the 
total load used by this solution La is Lb+ Lc+ cost of 
implementation of A in HW1. The time at which A 
completes operation is Ta=T + delay of node A in HW. So 
one of the possible solutions for A is (Ta La). This process 
is performed for all solution points of B and C. Thus we 
obtain a solution set for node A when it is assigned to HW 
partition. This process is again repeated by now assigning 
node A to the SW partition. Note that now node A does 
not contribute to the final load as it is placed in SW and 
only affects the delay of the schedule, including possible 
communication delays. Thus we obtain the complete 
solution set for A which consists of two load-delay curves 
corresponding to HW or SW implementation of node A. 
Whenever a solution is formed for node A it is checked for 
non-inferiority with the current solutions of A. If it is non-
inferior, it is added to the solution set of A, else discarded.  
    The most important property of this process is that if the 
solution set of B has p solutions and solution set of C has q 
solutions then each load-delay curve for A can have at 
most (p+q) solutions, which results in polynomial time 
complexity for trees and most practical cases of DAGs. 
 

3.2 EDGE DELAYS 
 

    The presence of edge delays requires reformulation of 
feasibility constraint as shown in (1) with respect to the 
constraint in [3]. More importantly it requires a different 
pruning approach to be used in the merge operation. In the 
absence of edge delays, a solution S1 (T1, L1) of a node j is 
said to be inferior to another solution S2 (T2, L2) of the 
same node if it meets the following constraint, used by 
some previous works: 
                            T1≥T2  && L1≥L2                (3) 
    We show that this condition can lead to pruning of 
optimal solutions and potentially result in significant 
quality degradation. The main issue that pruning condition 
(3) misses is the consideration of edge delays: it does not 
require that S1 and S2 be in the same partition. S1 may be a 
                                                                 
1 Note that adding these three terms as presented here assumes no 

resource sharing is allowed. However, resource sharing can be added to 
this formulation at increased runtime cost by keeping track of resource 
usages at each node and combining the schedules of the parent nodes. 

solution when j is placed in HW while S2 may correspond 
to a solution when j is placed in SW. The following 
example illustrates why this could lead to quality 
degradation.  

             
Figure 2. Edge Delay 

    Assume nodes A and B are operations of different types 
in Figure 2. Types here refer to functionality of the node 
say ADD, MULT, SHIFT etc. Let the edge delay for 
communication between HW and SW be 10. The edge 
delay for communication between SW and SW or HW and 
HW is 1. Note that time steps are counted from zero so if a 
node is a primary input and has a delay of 2 in HW then it 
will finish its operation at time step 1. Let the HW capacity 
constraint be 10 units 

Table 1. Delay and Cost of Operations 
Node Delay in 

HW 
Delay in 
SW 

Cost in HW 

A 3 3 2 

B 2 7 2 

 

Table 1 gives the delay and cost of implementing each 
node in SW/HW. Note that the cost of implementing in 
any node in SW is zero since only HW has resource 
constraint  

Table 2. Solution Sets for nodes 

Solution for A Solution for B 

(5,4) B is in HW 
(2,2) A is in HW 

(19,2) B is in SW 

(14,2) B is in HW 
(2,0) A is in SW 

(10,0) B is in SW 

 

    Table 2 gives the solution set formed without any 
pruning. Since A is a primary input the solution set of A is 
just the set of possible implementations for A. For each of 
these solutions of A the corresponding solution for B is 
calculated assuming it is placed in HW and in SW. This is 
the exhaustive solution set for both A and B 



 
Table 3. Solution sets of nodes after pruning 
Incorrec
t 
Pruning 
(A) 

Incorrec
t 
pruning 
(B) 

Correct 
Pruning 
(A) 

Correct Pruning 
(B) 

(2,2) in 
HW (5,4) in HW 

(2,0) in 
SW 

(10,0) in 
SW (2,0) in 

SW (10,0) in SW 

 

    Table 3 gives the solution set of nodes by incorrect and 
correct pruning. The incorrect pruning uses condition (3) 
to prune solution (2,2) of A. As a result, when solutions of 
B are formed, A is always implemented in SW. Hence, the 
optimal solution for B, which is (5,4), is never generated. 
To avoid such cases, we use an additional condition when 
pruning a solution. A solution S1 is said to be inferior to S2 
if it satisfies (3) and if both S1 and S2 correspond to node j 
being placed in HW (SW). 

3.3 RECONVERGENT FANOUT 
 

    The data flow graph (DFG) of a task is represented by a 
directed acyclic graph (DAG). The DAG may have nodes 
with reconvergent fan-out. The presence of reconvergent 
fanout imposes a constraint in addition to (1) and (2) 
during the merge operation. Figure 3 shows node A with 
reconvergent fanouts. 

 
Figure 3. Reconvergent fanout 

    During merge when solutions of parent nodes are 
combined it should be made sure that the solutions being 
combined are consistent for any common parent nodes. For 
example in Figure 3 solutions of nodes D and C are 
combined to form the solution set for node B. Let a 
solution of D result in node A being placed in a particular 
partition, e.g., HW. To ensure consistency then a solution 
from C, which will be added to this solution, should also 
result in node A being placed in HW. Otherwise for this 
particular solution of B, node A will be assigned to 
conflicting partitions. 

    This problem is taken care of by the use of status vectors 
in the data structure for each solution similar to the 
solution proposed in [4]. The vector is of size n where n is 
the number of nodes. When a node is being processed 
during the merge operation, vectors of the solutions being 
added are checked for consistency. As already discussed, 
each solution for a node j corresponds to a HW/SW 
partition solution for the sub graph rooted at j. Each bit in 
the vector of a solution for node j corresponds to a node in 
the graph. If node k is placed in SW for this solution then 
the kth entry is set to 0 and if it is placed in HW for this 
solution the entry is set to 1.If the kth node is not present in 
the sub-graph rooted at node j then the entry is set to the 
default value of –1. 
    Consider the example shown in Figure 3. Here a 
solution from D and C are combined if and only if all 
entries that are not default (-1) in both vectors are the 
same. This ensures that a node, which is present in 
solutions of both parents, can be combined if and only if it 
is in the same partition in both solutions.  
    The reconvergent fanout also affects the pruning 
algorithm for nodes on converging paths in two ways: it 
could lead to pruning an optimal solution, or it could lead 
to no feasible solution being found. 
     To illustrate the case where no feasible solutions can be 
found, consider nodes C and D in Figure 3. If only the 
conditions of Section 3.2 are imposed, then it is possible 
that all solutions of C correspond to node A being placed 
in SW and all solutions of D correspond to node A being 
placed in HW. So when the solutions of C and D are 
combined to form the solution set for B, there will be no 
feasible solution for B. This situation arises because 
reconvergent fanout creates dependence between solution 
sets of nodes C and D. In the absence of reconvergent 
fanout, for a given time step the solution corresponding to 
minimum load can be chosen independently from each of 
C and D. The same is not true when converging paths exist 
in the graph.  
    To show how an optimal solution might be lost, 
consider two solutions S1 and S2 of node C, both 
corresponding to C being implemented in SW, but one 
placing A in HW and the other implementing A in SW. If 
we prune out one of these solutions (which would have 
been legal according to Section 3.2), then we might lose 
the optimal solution when we merge solutions of C with 
the solution set of D. So, when considering two solutions 
of C for pruning, not only C has to be implemented in the 
same partition (Section 3.2), but also A has to be in the 
same partition in these two solutions (converging paths). 
The same is true for all nodes on a path diverging from A. 
This has runtime ramifications that will be discussed in 
Section 6. If a node is on converging paths of more than 
one node, all such parent nodes (with reconvergent 
fanouts) put restrictions on pruning of the node. Consider a 



node j which is on a converging path of node k. Consider a 
solution S2 which is about to be added to the solution set of 
j. S2 is inferior to some solution S1 of j if and only if it 
meets the additional pruning constraint given below. 
Vector1 and Vector2 are the status vectors of S1 and S2 
respectively. 
 
 For all i such that i is a reconvergent fanout parent node  
  Vector1[i]==Vector2 [i] or Vector1[i]==-1 or Vector2[i]==-1 
        (4) 

    The constraint is imposed to avoid pruning an optimal 
solution and also avoid situations where no feasible 
solution can be obtained (e.g., all solutions from C 
correspond to A mapped to HW, and all solutions of D 
correspond to A placed in SW). Identifying reconvergent 
fanout nodes and intermediate and final sink nodes can be 
handled during the topological sort process. The vector for 
a node is built from the vectors of its parent nodes during 
the merge process. 

4. THE ALGORITHM 
 

The pseudo code of our algorithm is presented below 
dynamic  (G){ 
              if G has multiple PO’s add dummy PO and covert to a  
                                 single PO DAG 
             q=reverse  topological sort(G) 
             while (q not empty) { 
                     node=pop(q) 
                    merge(node) //form the load-delay curve            } 
            node=PO 
            Sbest=minimum latency solution for node 
           For i in 1 to number of nodes 
                 if Sbest.vector[i]==0 
                       Node i is placed in SW 
                else 
                      Node i is placed in HW 
          The HW resource used is Lbest and the latency is Tbest 
} 

Figure 4. Dynamic programming algorithm 
    The algorithm implements the dynamic programming 
solution discussed in the earlier section. merge is a routine 
that implements the basic addition of load-delay curves of 
a parent. The pruning algorithm is embedded within the 
merge routine and every solution is checked for non-
inferiority through this pruning algorithm before being 
added to the node’s solution set. From the solution set of 
PO we choose the solution with minimum latency as our 
final solution. The HW/SW partitioning solution is 

available from the vector corresponding to the best 
solution for the PO. If no resource sharing is allowed (e.g., 
in partitioning memory arrays between HW and SW), the 
solution obtained is the optimal for resource constrained 
HW/SW partitioning problem for minimum latency. When 
resource sharing is considered, the problem is NP-hard. 
 

5. HEURISTIC ALGORITHM 
 

    It is also possible to combine the basic dynamic 
programming algorithm with greedy heuristics to obtain a 
very efficient and very fast HW/SW partitioning heuristic 
algorithm. Running time analysis shows that the presence 
of reconvergent fan out greatly impacts the running time 
complexity. This is because the minimum load from each 
parent’s solution for a required time step cannot be found 
independently. Hence several possible combinations 
among the sub solutions need to be explored to identify the 
sub solutions which result in minimum load for a given 
time step. However the fanin of most nodes is usually 2~3 
and so we need to explore several possible combination for 
at most 2 sub solutions and this does not add much in run 
time complexity in most cases. However a fast 
approximate algorithm, which gives good results, is 
helpful to designers to evaluate the effectiveness of a 
proposed partitioning solution. Further when the number 
of fanin nodes is very large (which is not true for most 
practical cases) the heuristic algorithm helps us to find a 
good solution in negligible time.  
    The heuristic combines dynamic programming approach 
to build the solution set bottom up. However when a 
reconvergent fan out node is encountered, the sub 
solutions are chosen independently without any 
consideration of reconvergent fan out. If the chosen sub 
solutions result in source of reconvergent fan out being 
assigned to conflicting partitions, it is then assigned to the 
partition dictated by the sub solution with minimum slack 
(difference in ASAP and ALAP start times).  
    For example in Figure 3 let a solution S1 of D and a 
solution S2 of C be combined to form a solution for the 
node B. Let S1 correspond to node A being placed in HW 
and S2 correspond to the node A being placed in SW. Then 
A is greedily assigned to HW or SW depending on which 
of the two sub solutions S1, S2 is most timing critical. The 
heuristic guarantees negligible run time by removing the 
interdependency between sub solutions, which arises due 
to reconvergent fan out. Once the solution set for sink 
node is obtained the solution corresponding to minimum 
latency is taken and the HW/SW partitioning solution for 
the entire graph is obtained. From the HW/SW partitioning 
solution the time step at which each node is scheduled is 
recalculated and obtained. 
 



6. TIME COMPLEXITY 
 

    The dynamic programming algorithm has polynomial 
time complexity for trees and some DAGs even though 
theoretical running time is exponential for worst case 
inputs (where the number of reconverging paths is 
comparable to V, the number of nodes). However we did 
not encounter long runtimes for any of the practical cases 
of DAGs we tried. The time complexity of the algorithm is 
analyzed as follows. For now let us focus on trees only. 
Let the number of possible implementations of each type 
of operation be K. V is the number of nodes in the tree. Let 
the depth of the tree that is the maximum number of nodes 
in a path from PI to PO be D. Consider a node A with 
parents B and C. Let the size of the solution set of B and C 
be p and q respectively. Then for each possible 
implementation of A we have at most p+q solutions if we 
do pruning using only (1). So the total number of solutions 
for A will be K*(p+q), many of which will be pruned out 
when we use (3). Since the depth of the tree is D then the 
number of solutions at the PO will be O (KD*N) where N is 
a polynomial number of solutions in terms of V, number of 
nodes in the graph. So the run time complexity in worst 
case is O(KD*N). Even though theoretically D can be linear 
in terms of V, it is usually in the order of log V for most 
practical circuits. Finally when pruning is considered 
combining p and q solutions results in far fewer than the 
worst-case p+q solutions. Since we considered only 
HW/SW for each node, K is 2 and the running time is O(2 
log V * N) which is O(V N) where N is polynomial in the 
number of nodes. So the run time complexity of the 
algorithm is polynomial for trees.  
     When considering general DAGs, the dynamic 
programming algorithm cannot prune intermediate 
solutions as freely, and might have to keep exponential 
number of solutions to make sure optimality is not lost. In 
the example of Figure 3, node C cannot prune out a 
solution implementing A in SW in favor of another 
solution implementing A in HW. Hence, it has to keep two 
separate lists of intermediate solutions, one for A in HW, 
and another for A in SW. If the number of nodes with 
reconvergent fanouts is not a constant, then the runtime 
becomes exponential. However, this did not happen in any 
of the practical cases that we tried. Furthermore, the 
heuristic algorithm has polynomial runtime, as it greedily 
prunes out solutions, which might lead to inferior 
solutions. 
 

7. EXPERIMENTAL RESULTS 
 

    The algorithm proposed in this work was implemented 
in C++ and executed on an INTEL PENTIUM 4 machine 
running on Windows XP with 1 GB of memory and 

processor speed of 2 GHz. We used a set of benchmark 
circuits from related publications to test the running time 
of the algorithm. The results are presented in Table 4. 
Column 1 gives the name of the bench mark circuit, 
column 2 gives the number of nodes and edges in the 
circuit, column 3 gives the amount of HW resources used 
for this schedule column 4 gives the run time and column 5 
gives the latency of the schedule. All benchmarks were run 
with the following specifications and parameters. Two 
types of operations were assumed namely memory access 
operations and arithmetic operations. All primary inputs 
and primary outputs of a DFG represent memory access 
operations while all the other nodes in the DFG were 
assumed to be arithmetic operations. No resource sharing 
optimization within a partition was done. The edge 
communication delay was assumed to be zero if the two 
nodes were placed in the same partition and assumed to be 
5 when placed in different partitions. For arithmetic 
operations the cost of implementation in HW (SW) was 2 
(0) while the delay of the operation in HW (SW) was 2 (4). 
For memory access operations the corresponding values 
were 1(0) and 1(2). The HW resource constraint was 
assumed to be 30 units. Diff is taken from [6], bender is 
taken from [12], xilinx is a filter benchmark from [7], yen 
is taken from [8], pedram is Figure 13.a from [3] and 
phoneme is taken from [9].  

Table 4. Experimental results for the proposed 
algorithm 

Name Nodes/Edges  HW used 
Run time 
        (s) 

Latency 

diff 21/24 22 0.062 25 

bender 12/14 19 0.062 18 

xilinx 28/38 26 1.218 29 

yen 6/5 10 0.015 5 

pedram 12/15 21 0.015 14 

phoneme 23/22 27 0.046 18 

     

    In Figure 5 the minimum latency of the DFG for various 
HW capacity constraint is shown. It can be seen that as 
HW capacity constraint is tightened (decreased) the 
latency to execute the DFG increases. This is because more 
operations (nodes) are assigned to SW resulting in larger 
execution delay for those operations. The run time showed 
minimal or no change for different HW capacity 
constraints. 



             
Figure 5. Latency Vs Hardware Capacity 

 
    In Table 5 we illustrate the importance of considering 
edge delays during merge operation (described in Section 
3.1) and using modified pruning technique as described in 
Section 3.2. The experiment was conducted with the same 
parameters as discussed above. The quality of our 
proposed algorithm edge_prune is compared with a 
traditional design flow called general, which does not 
account for edge communication delays during merge 
operation and pruning.  
    In general design flow the HW/SW partitioning is done 
assuming no edge delays (i.e., all communication costs to 
be zero). Then a HW/SW partitioning solution is obtained 
with minimum latency assuming no edge delays. For this 
HW/SW partitioning solution the schedule latency is now 
recalculated by assuming edge delays using ASAP 
scheduling. This gives the latency reported in Table 5 
column 2.  The latency of the solutions obtained through 
our proposed algorithm is reported in column 3. 
 

Table 5. Comparison of solution Qualities 

Name 
HW used 
(general) Latency 

(general) 

HW used 
(edge_pru

ne) 

Latency 
(edge_prune) 

diff 22 25 22 25 
bender 19 18 19 18 
xilinx 18 39 26 29 
yen 9 9 10 5 

pedram 17 24 21 14 
phoneme 22 29 27 18 
 
    As seen from Table 5 we can see that our proposed 
algorithm provides significantly better solutions for most 

benchmarks by considering edge delays during the merge 
and pruning operations. 
    In Table 6 the results for the heuristic for the various 
benchmarks are reported. The experiments were run on the 
same machine with the parameters such as HW capacity, 
edge delays being the same as for Table 4. It can be seen 
that the run time is almost zero for all benchmark circuits 
and it gives good results compared to the dynamic 
programming method for all benchmarks. 
 

Table 6. Experimental Results for the heuristic 

Name Nodes/Edges  HW used 
Run time 
        (s) 

Latency 

diff 21/24 30 0.0 25 

bender 12/14 14 0.0 28 

xilinx 28/38 30 0.015 29 

yen 6/5 10 0.0 5 

pedram 12/15 20 0.0 20 

phoneme 23/22 27 0.0 18 

 

8 CONCLUSION 
 

    A dynamic programming solution that solves the 
HW/SW partitioning with finite resource constraint is 
proposed and implemented. The algorithm has polynomial 
running time for most practical circuits and this has been 
experimentally verified. The algorithm is capable of 
handling edge communication delays effectively by 
incorporating them into the dynamic programming 
framework. Pruning techniques are developed to account 
for edge delays and reconvergent fan out without losing 
optimal solutions. A very fast and good quality heuristic 
was also proposed to provide good approximate solutions 
for negligible run times. 
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