
Fast Timing-driven Partitioning-based Placement for
Island Style FPGAs

Pongstorn Maidee Cristinel Ababei Kia Bazargan

Electrical and Computer Engineering Department
University of Minnesota, Minneapolis, MN 55455

{pongstor, ababei, kia}@ece.umn.edu

ABSTRACT
In this paper we propose a partitioning-based placement algorithm
for FPGAs. The method incorporates simple, but effective
heuristics that target delay minimization. The placement engine
incorporates delay estimations obtained from previously placed
and routed circuits using VPR [6]. As a result, the delay
predictions during placement more accurately resemble those
observed after detailed routing, which in turn leads to better delay
optimization. An efficient terminal alignment heuristic for delay
minimization is employed to further optimize the delay of the
circuit in the routing phase. Simulation results show that the
proposed technique can achieve comparable circuit delays (after
routing) to those obtained with VPR while achieving a 7-fold
speedup in placement runtime.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Style—Gate
arrays; B.7.2 [Integrated Circuits]: Design Aids—Placement and
routing.

General Terms
Performance, Experimentation

Keywords
FPGAs, FPGA placement, timing-driven placement, partitioning
based placement.

1. INTRODUCTION
Ideally, we would like short turnaround times in implementing
complex circuits on FPGAs, achieving high frequencies. Fast
synthesis and physical design algorithms targeting delay
minimization are integral parts of such a design flow. Effective
delay optimization on large designs is possible only by
accounting for performance as early as possible in the design
flow. Placement, as an early design step, should employ timing
and congestion estimation and optimization techniques, to ensure
small delay and routability of the circuit in the routing phase. The

increased size and performance of today’s Field Programmable
Gate Arrays (FPGAs) allows implementation and deployment of
more complex designs for dedicated applications. Large logic
capacity and complex routing structures used in modern FPGAs
make the development of efficient CAD tools a challenging feat.

In the last decade, there have been significant improvements in
the placement and routing algorithms for ASIC and full custom
designs. However, since the routing architecture in FPGAs is
notably different than ASIC/full custom, physical design methods
developed for these platforms cannot be directly applied to
FPGAs in applications that require high performance and efficient
resource utilization. There is a large degree of freedom in routing
of standard cell / full custom designs, as channel widths can
increase to accommodate highly congested routing regions, over-
the-cell routing can be utilized to increase routing options and so
on. None of these options are available in FPGAs, where the
number and capacity of routing channels and internal structure of
switching boxes are fixed. As a result, placement and routing of
FPGAs is more challenging.

Traditionally, partitioning-based placement algorithms (e.g., [11],
[13]) have been fast and hence scalable for larger design of the
future. On the other hand, annealing-based placement algorithms
generate high quality results at the expense of runtime (e.g., [7],
[10]). It would be desirable to achieve the lower computational
complexities of divide-and-conquer methods (i.e., partitioning-
based / hierarchical) while obtaining the high qualities of
annealing-based placement techniques.

Timing driven placement for FPGAs can be classified into two
main categories: net-based and path-based approaches. Generally,
path-based approaches are more accurate but slower than net-
based approaches. This classification is basically the same in
standard-cell placement approaches. However, differences exist in
modeling the delay of the signals because of the fixed routing
architecture of FPGAs.

It has been shown that the number of segments traveled by a
routed net plays a more significant role in the delay of the net
than the traditional geometric distance [5] [14], mainly because
switches that connect routing segments dominate the delay of the
segments. As a result, delay estimation based on Manhattan
distance may be optimistic or pessimistic in an FPGA device with
variable length segmented routing architecture [15] [16].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, CA, USA.
Copyright 2003 ACM 1-58113-688-9/03/0001…$5.00.

The differences mentioned above motivated Chang and Chang to
incorporate an architecture-driven metric in their simultaneous
placement and routing algorithm [14]. Better timing is obtained
for circuits optimized using the new delay modeling even though

their results are sensitive to the order in which nets are placed and
routed. Marquardt et. al. [7] incorporate path-based timing
analysis and connection-based analysis in the simulated annealing
algorithm of [6]. They obtained delay improvement at the expense
of increase in wiring and run-time. In order to achieve better run-
times, weighted-edge partitioning is the choice for the placement
methodology proposed by Hutton [17]. A network flow based
technique is used to solve the hierarchical bi-partitioning for the
placement and global routing approach by Togawa [18]. There
have been other previous efforts trying to develop faster
placement and routing algorithms [3] [4]. Clearly, there is a
tradeoff between placement runtime and the placement quality as
shown by the authors in [8] [9]. Furthermore, considering routing
at placement level would greatly improve the delay of the circuit
after routing [19].

Routing resource usage
profiling with VPR

Level
1

2 2

3

3

3

3
Delay assignment & slack update

after every partitioning level

Net terminals alignment before
every bi-partitioning

Partitioning-based Placement

Overlap removal

VPR Low-temperature SA

VPR Routing

Go to next level

In this paper we propose a fast partitioning-based placement
algorithm, together with a post-refinement step based on a low-
temperature simulated annealing. We incorporate heuristics for
delay minimization during the hierarchical placement process,
which lead to circuits with the same delay compared to the state
of the art VPR physical design tool for FPGAs [6]. To better
understand how the VPR router behaves we first conduct some
analysis on the routing of a few representative placed and routed
circuits. The analysis helps us formulate better timing and
congestion estimations during placement. It is important to note
that the analysis is performed on a subset of circuits and the
resulting data will be used in placing other circuits afterwards.
Surprisingly, we noticed that VPR routing is not very sensitive to
the placement algorithm, in the sense that the routing resource
usage profile is similar across different placements.

Fig. 1 Schematic diagram of proposed algorithm
Placement is done by recursive partitioning the circuit using
hMetis [1]. During partitioning we maintain a tight connection
between the circuit graph and placement, which represents
coordinates of all cells on the FPGA fabric. This connection is
key to the success of applying the net terminal alignment heuristic
as well as to the accuracy of delay computations. Recursive
partitioning is done until each leaf in the hierarchical partition tree
contains less than a constant number of cells (e.g., six). After the
recursive partitioning is completed, some leaf partitions contain
more cells than they can accommodate, which in turn results in
some overlaps. Overlaps are removed by using a greedy
technique, which moves cells to the closest and best-aligned
available empty partition.

Simulation results show that our proposed technique can achieve
comparable circuit delays (after routing) to those obtained with
VPR while achieving a 7-fold speedup in placement runtime.

The rest of this paper is organized as follows. Section 2 presents
our partitioning-based placement algorithm. The terminal
alignment heuristic for delay minimization is presented in Section
3. The delay model and timing criticality computations are
discussed in Section 4. VPR router analysis is presented in
Section 5. Simulation results are shown in Section 6. Finally, we
conclude our main contribution in Section 7.

Finally, the placement is refined by application of the VPR low
temperature annealing to further minimize wire length and delay.
Note that the cell swap operation in VPR is changed so that the
alignments of the cells from the previous stage are not drastically
reversed.

The key factors during recursive partitioning are as follows:

• Net terminal alignments (see Section 3).
2. PPFF: PARTITIONING BASED
PLACEMENT FOR FPGAS • Delay and timing criticality modeling of the nets

(discussed in Section 4). In this section we describe our partitioning-based placement,
which performs simultaneous delay and congestion minimization.
Delay minimization is achieved by incorporating timing
criticalities in the edge weights during partitioning, as well as
terminal alignment of critical nets to reduce the number of
switches used in routing the net. The terminal alignment heuristic
also helps in reducing congestion. Furthermore, the partitioning
engine inherently tries to reduce congestion by minimizing the
cutsize at different partitioning levels.

• Slack assignments (covered in Section 4).

By adopting a partitioning-based approach we speed-up the
placement process significantly. By using the information from
the VPR router analysis we estimate timing and congestion more
accurately, which results in very good circuit timing.

3. NET TERMINAL ALIGNMENT FOR
DELAY MINIMIZATION Intuitively, the alignment of terminals of a given net has positive

impact on both delay and congestion. Having more terminals
along the same geometric line means a smaller number of wire
segments, which translates into better delay.

Our delay model is architecture-driven. We consider a Virtex II
like multi-length segment routing architecture, which offers
routing resources under the form of single-length, double-length,
six-length, and long lines [2]. The traditional ASIC/full-custom
measure of delay based on the geometric distance and/or channel The flow of our PPFF algorithm is shown in Fig. 1.

density is no longer accurate for segmented routing architectures
of FPGAs. It is known that the number of segments used by a net
is the most important factor influencing the delay [5].

Motivated by the fact that the number of segments used in routing
a net is important, we implemented an efficient heuristic for delay
minimization. The idea is to align the terminals of the most
critical nets during the recursive partitioning. Consider nodes X
and Y of a two-terminal net shown in Fig. 2. Assume that node Y
is fixed (i.e., already placed at the current placement hierarchy
level). Then it is more likely to use fewer routing segments to
connect the two terminals if we lock node X in partition A, as
opposed to partition B1. In this example node Y acts as an anchor
point for net alignment. Because node Y is placed before node X,
we force the partitioning process to fix node X in partition A.
Note that if Y is not placed, then X has the freedom of being
placed in either A or B, and after placement becomes the
alignment anchor for Y. While simple, this heuristic proves to be
very efficient and with good practical results. Experimental
results demonstrate that the routing algorithm can effectively
harness delay minimization opportunities created by terminal
alignment during placement.

A

B

Y X
distance

Fig. 2 Illustration of the terminal alignment of a generic two-

terminal net
We adopted a recursive bi-partitioning method as opposed to
quadrisection, as it makes the alignment process significantly
easier to implement. However, the order in which bi-partitioning
calls are issued makes the whole process look like recursive
quadrisection as shown in Fig. 3.

Level 1
2 2

3
4 4

3 4

4

a) b)

c)
... 6 5

6

d)

placement
region

Fig. 3 Bi-partitioning seen as quadric-section

Starting with the third level of bi-partitioning (Fig. 3.b), the cut
direction (horizontal or vertical) is decided based on the criticality
of nets crossing the four borders of the placement region under
partitioning. For example, in Fig. 4 (which is the zoom-in of the
placement region shown in Fig. 3.d), the fifth bi-partitioning will

be done horizontally and the two sixth level bi-partitionings will
have to be done vertically. The horizontal cut direction is chosen
because the largest timing criticality among nets crossing the
vertical borders of the placement region (i.e., max{0.8,0.9}=0.9)
is larger than that of nets crossing the horizontal borders (i.e.,
max{0.85,0.4}=0.85).

5 6

6 crit = 0.8

crit = 0.4

crit = 0.85

crit = 0.9

placement
region

Fig. 4 Deciding the cut direction

By choosing the horizontal direction in the fifth cut we can either
align or provide anchor points for the terminals of the most
critical nets in this region. Fig. 5 shows an example that describes
how critical nodes are aligned with nodes placed in previous
placement regions. Node x is fixed in the bottom partition to align
to the anchor that has already been placed. However, node y is not
fixed at level 5, as the alignment direction is different from
partitioning direction (it will be aligned at level 6). Nodes z and t
are both free before partition 5 is performed, so the partitioning
engine has the freedom in placing node z in either the top or the
bottom partitions. However, after partitioning at level 5 in this
region is done, node z becomes an anchor point (assuming it is a
timing critical terminal), hence making terminal t ready to be
aligned.

- free

 5

placement
region

regions already
placed at same
level

x

y
z t

- ready for alignment
- locked (anchor point)
- ready for alignment after ne
- locked (anchor) after one

 5 do
 5 d

Fig. 5 Net terminal alignment step before bi-partitioning at
the fifth level

To better illustrate how the partitioning is performed, Fig. 6
presents the order in which placement regions are partitioned. For
every column, we start with the top placement region and
continue towards bottom. The terminal alignment process
continues until the last bi-partitioning at the same partitioning
level is completed, following which the next level of partitioning
starts. As the recursive partitioning goes on, nodes are aligned
along narrower placement stripes. Terminals aligned at higher

1 Otherwise, at least one vertical segment would be needed to

change the direction of the routing from horizontal to vertical.

The partitioning engine incorporates a static timing analyzer
(STA) used for slack computations. All edges in the circuit graph
to be partitioned by hMetis are weighted. The weights represent
timing criticality of the edges calculated using the timing slack
values:

levels may become unaligned at lower levels if their criticality is
not preserved throughout the partitioning levels.

to be partitioned placement regions

currently
partitioned
placement
region

partitioned placement regions

1

2

3

4

5

6

7

slack
slackycriticalit

alledges

i
i max

1−= (1)

Using timing criticality as edge weights discourages the
partitioning engine to cut edges with high criticalities. Therefore,
critical nets will be kept short and the circuit will have a smaller
delay. Nets cut at the first partitioning level are assigned delays
corresponding to a single-length segment in order to ensure that
these delays are the minimum delays which these nets would have
after routing is finished. At the next partitioning levels, the (x, y)
coordinates of all CLBs are more accurately known and therefore
the minimum length spanned by a net is known better.

Fig. 6 Placement regions are partitioned from top-left
downwards, column by column

The process of delay assignment and slack/criticality update
is performed at every partitioning level. Hence, timing criticalities
will be more accurate and a better, tight connection between the
timing-driven partitioning and placement is developed and
maintained.

4. DELAY MODEL AND TIMING
CRITICALITY UPDATE
During recursive partitioning, edges are cut at different
partitioning levels. Delay assignment to cut edges is done as
follows. The minimum distance spanned by a cut net is
determined by the level at which it is cut. For example, the net cut
at level 5 (Fig. 7) spans a minimum distance of 3δ (where δ is the
width of the smallest placement region at the current partitioning
level). We cannot know the minimum distance more accurately at
this stage because the (x, y) coordinates of the cells of this net are
at the centers of the placement regions 1 and 2. At lower
partitioning levels the minimum distance spanned by every net is
more accurately known and hence the delay can be re-assigned
with a more accurate value.

5. VPR ROUTER ANALYSIS
We first perform some analysis on the VPR router to better
understand its behavior. This will lead to a better delay estimation
and a tighter coupling between placement and routing. We start
with a profiling step for the routing resource usage. We use VPR
to place and route some circuits and then superimpose an
imaginary grid on the FPGA fabric (Fig. 1), which represents the
partitioning lines at different levels had the placement been done
using a partitioning-based method as described in Section 2. The
last level would consist of tiles containing a single CLB each.
Nets crossing the grid lines corresponding to Level i are counted
to get the usage of every type of routing resource at Level i. The
characteristics of the set of combinational circuits that we used in
our experiments are shown in Table I.

δ

5

minimum distance

 placement
region 2 placement

region 1

The key point of this step is that we noticed a common trend in
the way routing resources are used by the routing tool. A typical
routing resource usage is shown in

Fig. 8. We can see that long segments are used extensively for
routing nets cut at higher levels of partitioning, while double-
length segments are used mostly for nets cut at lower levels.
Single-length segments are used almost uniformly across all
levels. The shape of these plots is preserved independently on
what placement tool is used2.

Fig. 7 A cut edge will span a minimum distance at every
partitioning level

We estimate the delay of a cut net based on its timing criticality at
the time of partitioning and the minimum distance it spans. Our
delay model takes into account both the number of segments used
for routing as well as the segment lengths. The delay value
assigned to a net is the average of all delays of all nets, which
span at least such a minimum distance in the final placement and
routing obtained with VPR [12]. This delay value is taken from
lookup-tables constructed by considering both length and
criticality of all nets. That is because we are certain that in the
final placement, this net will span at least that minimum distance.
Details about the average delay computation will be discussed in
the next section, during the VPR router analysis.

The main conclusion of the above discussion is that routing
resource usage and therefore net delay is predictable. This allows
us to adopt a lookup-table delay estimation technique tailored for
the routing method that follows the placement. These delay
lookup-tables store information about the average delay of nets
with given criticality, which span a given minimum length. These
tables are then used inside our partitioning-based placement

2 We performed experiments with three different placement

engines: our placement algorithm, VPR, and random placement.

algorithm for delay assignment to nets cut at different partitioning
levels. It is important to note that the delay after routing is what
matters in determining the performance of a circuit. Hence, if the
optimizations done by the placement algorithm are in line with
what the routing is inclined to do, both estimations and
optimizations at placement level will eventually be more
effective.

apex2

Long

L6

L2

L1

Hierarchy level

No
. o

f S
eg

 o
f E

ac
h

Ty
pe

U

se
d

at
 E

ac
h

Le
ve

l

Fig. 8 Typical routing resource usage plot

To verify our intuition, we setup a simulation flow shown in Fig.
9. The goal is to study whether the information from the VPR
router can be fed to the placement algorithm to achieve better
timing estimates, and in turn, better final results (i.e., smaller
delays after routing).

Table I Statistics of simulated circuits

Circuit
No. of
CLBs

No. of
I/Os

Circuit
No. of
CLBs

No. of
I/Os

ex5p 1064 71 seq 1750 76

apex4 1262 28 apex2 1878 42

misex3 1397 28 spla 3690 62

alu4 1522 22 pdc 4575 56

des 1591 501 ex1010 4598 20

We placed all circuits using VPR. Then we used the VPR router
to route all circuits. The delay information was then used inside
our partitioning-based placement algorithm (VPR delay
information of each circuit is individually used for each circuit
separately). Finally we study the timing of each circuit. The
results are shown in Table II. It can be seen that with this
simulation setup circuits placed with our placement algorithm
have better delay for most of the circuits with an average of 3%
improvement and as high as 9.5% for spla.

However, we would like to avoid repeating the VPR router
analysis for each individual circuit because it requires long run-
times. Instead we propose the use of average delay values of only
a few representative circuits. As simulation experiments will
show in the next section, this idea proves to be very effective and

offers practically the same final circuit delay as obtained with
VPR but at almost seven times shorter run-times.

VPR placement VPR Routing

Routing Statistics
(Delay Lookup-tables)

Circuit netlist

Our
placement

Timing

Fig. 9 Simulation setup

Table II Comparison between our results obtained with our PPFF
(VPR router analysis information used for each circuit

separately) and VPR

PPFF VPR
Circuit

Delay Delay

ex5p 7.69 8.02
apex4 7.51 6.69

misex3 7.25 7.48
alu4 6.72 6.84

des 9.51 9.52

seq 8.12 8.1

apex2 8.33 8.91

spla 12.3 13.6

pdc 14.4 15.4

ex1010 13.8 15.1

Avg. 0.97 1

6. SIMULATION RESULTS
In this section we present simulation results obtained using our
placement algorithm and compare them to those obtained with
VPR, the state of the art FPGA placement tool [7]. Table III
presents the simulation results. The placement algorithm uses
information about the VPR router analysis as average of three
different representative circuits, which are shown in shaded cells
in Table I. The representative circuits were selected randomly but
of all sizes.

All circuits are placed with our algorithm and with VPR and
successfully routed with VPR router. It can be seen that netlists
placed with our algorithm have the same average circuit delay as
the ones placed with VPR, but at almost 7x faster run-times. Most
circuits were routed using the best Channel Width (CW), found
by VPR. Because we use the VPR profiling on a few circuits
only, our algorithm can be used as a stand-alone placement tool,
and hence the placement run-time for a larger set of circuits will
be dramatically decreased. Note that in this situation our
algorithm can also be used for multiple placement runs of the
same circuit for quick solution space exploration.

Table III Comparison between our results obtained with our
PPFF (VPR router analysis information used as the average of

three circuits) and VPR

PPFF VPR
Circuit

Delay CW CPU(s) Delay CW CPU(s)

ex5p 7.91 23 30 8.02 22 177

apex4 7.5 23 35 6.69 23 208

misex3 8.33 20 38 7.48 19 227

alu4 6.84 19 41 6.84 19 245

des 9.4 22 60 9.52 22 382

seq 7.66 23 51 8.1 23 432

apex2 7.87 22 56 8.91 22 370

spla 13.2 30 154 13.6 30 1180

pdc 15.1 32 221 15.4 32 1599

ex1010 15.2 22 210 15.1 22 1408

Avg. 1 236 1 1 234 x6.68

7. CONCLUSIONS
We proposed a fast partitioning-based FPGA placement algorithm
for delay minimization. The proposed algorithm uses delay
information extracted from only a few representative placed and
routed circuits. Therefore, it can be used as a fast alternative
placement method for all other circuits without circuit delay
degradation. Simulation experiments showed 7x shorter
placement run-times, with similar circuit delays, and little area
increase due to larger channel widths.

8. REFERENCES
[1] G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar ,

“Multilevel Hypergraph Partitioning: Application in VLSI
domain”, Proc. ACM/IEEE DAC, 1997.

[2] Xilinx Inc., The Programmable Logic Data Book, 2002.
[3] P. K. Chan and M. D. F Wong , “Parallel Placement for

Field-Programmable Gate Arrays”, Proc. of the Eleventh
International Symposium on FPGAs, 2003.

[4] M. G. Wrighton and A. M. DeHon , “Hardware-Assisted
Simulated Annealing with Application for Fast FPGA
Placement”, Proc. of the Eleventh International Symposium
on FPGAs, 2003.

[5] Y.-W Chang, K. Zhu and D. F. Wong , “Timing-Driven
Routing for Symmetrical Array-Based FPGAs”, ACM Trans.

on Design Automation of Electronic Systems, vol. 5, no. 3,
pp. 433-450, July 2000.

[6] V. Betz and J. Rose, “VPR: A New Packing, Placement and
Routing Tool for FPGA Research”, IWFPLA 1997.

[7] A. Marquardt, V. Betz and J. Rose, “Timing-Driven
Placement for FPGAs”, FPGA 2000.

[8] C. Mulpuri and S. Hauch , “Runtime and quality tradeoffs in
FPGA Placement and routing”, Proc. of the Ninth
International Symposium on FPGAs, 2001.

[9] Y. Sankar and J. Rose , “Trading quality for compile time:
ultra-fast placement for FPGAs”, Proc. of the Seventh
International Symposium on FPGAs, 1999.

[10] W. Swartz and C. Sechen , “Timing Driven Placement for
Large Standard Cell Circuits”, Proc. ACM/IEEE DAC, 1995.

[11] D. J.-H. Huang and A.B. Kahng , “Partitioning-based
Standard-cell Global Placement with an Exact Objective”,
Proc. ACM/IEEE ISPD, 1997.

[12] V. Betz, J. Rose and A. Marquardt, Architecture and CAD
for Deep-submicron FPGAs, Kluwer Academic Publishers,
1999.

[13] M. Wang, X. Yang and M. Sarrafzadeh , “DRAGON2000:
Standard-Cell Placement Tool for Large Industry Circuits”,
Proc. ACM/IEEE ICCAD, 2000.

[14] Y.-W. Chang and Y.-T. Chang, “An Architecture-Driven
Metric for Simultaneous Placement and Global Routing for
FPGAs”, Proc. ACM/IEEE DAC, 2000.

[15] M. Khellah, S. Brown and Z. Vranesic , “Minimizing
Interconnection Delays in Arrays-based FPGAs”, CICC
1994.

[16] V. Betz and J. Rose , “FPGA Routing Architecture:
Segmentation and Buffering to Optimize Speed and
Density”, FPGA 1999.

[17] M. Hutton, K. Adibsamii and A. Leaver , “Timing-Driven
Placement for Hierarchical Programmable Logic Devices”,
FPGA 2001.

[18] N. Togawa, M. Sato and T. Ohtsuki , “A Simultaneous
Placement and Global Routing Algorithm with Path Length
Constraints for Transport-Processing FPGAs”, 1997.

[19] S. K. Nag and R. A. Rutenbar, “Pertbrmance-driven
simultaneous placement and routing for FPGAs”, IEEE
Trans. on Computer-Aided Design, Vol. 17, No. 6, pp. 499-
518, June 1998.

	ABSTRACT
	INTRODUCTION
	PPFF: PARTITIONING BASED PLACEMENT FOR FPGAS
	NET TERMINAL ALIGNMENT FOR DELAY MINIMIZATION
	DELAY MODEL AND TIMING CRITICALITY UPDATE
	VPR ROUTER ANALYSIS
	SIMULATION RESULTS
	CONCLUSIONS
	REFERENCES

