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ABSTRACT  
In this paper we propose a partitioning-based placement algorithm 
for FPGAs. The method incorporates simple, but effective 
heuristics that target delay minimization. The placement engine 
incorporates delay estimations obtained from previously placed 
and routed circuits using VPR [6]. As a result, the delay 
predictions during placement more accurately resemble those 
observed after detailed routing, which in turn leads to better delay 
optimization. An efficient terminal alignment heuristic for delay 
minimization is employed to further optimize the delay of the 
circuit in the routing phase. Simulation results show that the 
proposed technique can achieve comparable circuit delays (after 
routing) to those obtained with VPR while achieving a 7-fold 
speedup in placement runtime. 

Categories and Subject Descriptors  
B.7.1 [Integrated Circuits]: Types and Design Style—Gate 
arrays; B.7.2 [Integrated Circuits]: Design Aids—Placement and 
routing. 

General Terms  
Performance, Experimentation  

Keywords  
FPGAs, FPGA placement, timing-driven placement, partitioning 
based placement.  

1. INTRODUCTION  
Ideally, we would like short turnaround times in implementing 
complex circuits on FPGAs, achieving high frequencies. Fast 
synthesis and physical design algorithms targeting delay 
minimization are integral parts of such a design flow. Effective 
delay optimization on large designs is possible only by 
accounting for performance as early as possible in the design 
flow. Placement, as an early design step, should employ timing 
and congestion estimation and optimization techniques, to ensure 
small delay and routability of the circuit in the routing phase. The 

increased size and performance of today’s Field Programmable 
Gate Arrays (FPGAs) allows implementation and deployment of 
more complex designs for dedicated applications. Large logic 
capacity and complex routing structures used in modern FPGAs 
make the development of efficient CAD tools a challenging feat.  

In the last decade, there have been significant improvements in 
the placement and routing algorithms for ASIC and full custom 
designs. However, since the routing architecture in FPGAs is 
notably different than ASIC/full custom, physical design methods 
developed for these platforms cannot be directly applied to 
FPGAs in applications that require high performance and efficient 
resource utilization. There is a large degree of freedom in routing 
of standard cell / full custom designs, as channel widths can 
increase to accommodate highly congested routing regions, over-
the-cell routing can be utilized to increase routing options and so 
on. None of these options are available in FPGAs, where the 
number and capacity of routing channels and internal structure of 
switching boxes are fixed. As a result, placement and routing of 
FPGAs is more challenging. 

Traditionally, partitioning-based placement algorithms (e.g., [11], 
[13]) have been fast and hence scalable for larger design of the 
future. On the other hand, annealing-based placement algorithms 
generate high quality results at the expense of runtime (e.g., [7], 
[10]). It would be desirable to achieve the lower computational 
complexities of divide-and-conquer methods (i.e., partitioning-
based / hierarchical) while obtaining the high qualities of 
annealing-based placement techniques.  

Timing driven placement for FPGAs can be classified into two 
main categories: net-based and path-based approaches. Generally, 
path-based approaches are more accurate but slower than net-
based approaches. This classification is basically the same in 
standard-cell placement approaches. However, differences exist in 
modeling the delay of the signals because of the fixed routing 
architecture of FPGAs. 

It has been shown that the number of segments traveled by a 
routed net plays a more significant role in the delay of the net 
than the traditional geometric distance [5] [14], mainly because 
switches that connect routing segments dominate the delay of the 
segments. As a result, delay estimation based on Manhattan 
distance may be optimistic or pessimistic in an FPGA device with 
variable length segmented routing architecture [15] [16].  
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The differences mentioned above motivated Chang and Chang to 
incorporate an architecture-driven metric in their simultaneous 
placement and routing algorithm [14]. Better timing is obtained 
for circuits optimized using the new delay modeling even though 

 



their results are sensitive to the order in which nets are placed and 
routed. Marquardt et. al. [7] incorporate path-based timing 
analysis and connection-based analysis in the simulated annealing 
algorithm of [6]. They obtained delay improvement at the expense 
of increase in wiring and run-time. In order to achieve better run-
times, weighted-edge partitioning is the choice for the placement 
methodology proposed by Hutton [17]. A network flow based 
technique is used to solve the hierarchical bi-partitioning for the 
placement and global routing approach by Togawa [18]. There 
have been other previous efforts trying to develop faster 
placement and routing algorithms [3] [4]. Clearly, there is a 
tradeoff between placement runtime and the placement quality as 
shown by the authors in [8] [9]. Furthermore, considering routing 
at placement level would greatly improve the delay of the circuit 
after routing [19].  
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In this paper we propose a fast partitioning-based placement 
algorithm, together with a post-refinement step based on a low-
temperature simulated annealing. We incorporate heuristics for 
delay minimization during the hierarchical placement process, 
which lead to circuits with the same delay compared to the state 
of the art VPR physical design tool for FPGAs [6]. To better 
understand how the VPR router behaves we first conduct some 
analysis on the routing of a few representative placed and routed 
circuits. The analysis helps us formulate better timing and 
congestion estimations during placement. It is important to note 
that the analysis is performed on a subset of circuits and the 
resulting data will be used in placing other circuits afterwards. 
Surprisingly, we noticed that VPR routing is not very sensitive to 
the placement algorithm, in the sense that the routing resource 
usage profile is similar across different placements.  

Fig. 1 Schematic diagram of proposed algorithm  
Placement is done by recursive partitioning the circuit using 
hMetis [1]. During partitioning we maintain a tight connection 
between the circuit graph and placement, which represents 
coordinates of all cells on the FPGA fabric. This connection is 
key to the success of applying the net terminal alignment heuristic 
as well as to the accuracy of delay computations. Recursive 
partitioning is done until each leaf in the hierarchical partition tree 
contains less than a constant number of cells (e.g., six). After the 
recursive partitioning is completed, some leaf partitions contain 
more cells than they can accommodate, which in turn results in 
some overlaps. Overlaps are removed by using a greedy 
technique, which moves cells to the closest and best-aligned 
available empty partition. 

Simulation results show that our proposed technique can achieve 
comparable circuit delays (after routing) to those obtained with 
VPR while achieving a 7-fold speedup in placement runtime.  

The rest of this paper is organized as follows. Section 2 presents 
our partitioning-based placement algorithm. The terminal 
alignment heuristic for delay minimization is presented in Section 
3. The delay model and timing criticality computations are 
discussed in Section 4. VPR router analysis is presented in 
Section 5. Simulation results are shown in Section 6. Finally, we 
conclude our main contribution in Section 7.  

Finally, the placement is refined by application of the VPR low 
temperature annealing to further minimize wire length and delay. 
Note that the cell swap operation in VPR is changed so that the 
alignments of the cells from the previous stage are not drastically 
reversed.  

The key factors during recursive partitioning are as follows:  

• Net terminal alignments (see Section 3).   
2. PPFF: PARTITIONING BASED 
PLACEMENT FOR FPGAS  • Delay and timing criticality modeling of the nets 

(discussed in Section 4). In this section we describe our partitioning-based placement, 
which performs simultaneous delay and congestion minimization. 
Delay minimization is achieved by incorporating timing 
criticalities in the edge weights during partitioning, as well as 
terminal alignment of critical nets to reduce the number of 
switches used in routing the net. The terminal alignment heuristic 
also helps in reducing congestion. Furthermore, the partitioning 
engine inherently tries to reduce congestion by minimizing the 
cutsize at different partitioning levels.  

• Slack assignments (covered in Section 4).  

By adopting a partitioning-based approach we speed-up the 
placement process significantly. By using the information from 
the VPR router analysis we estimate timing and congestion more 
accurately, which results in very good circuit timing.  

3. NET TERMINAL ALIGNMENT FOR 
DELAY MINIMIZATION  Intuitively, the alignment of terminals of a given net has positive 

impact on both delay and congestion. Having more terminals 
along the same geometric line means a smaller number of wire 
segments, which translates into better delay.  

Our delay model is architecture-driven. We consider a Virtex II 
like multi-length segment routing architecture, which offers 
routing resources under the form of single-length, double-length, 
six-length, and long lines [2]. The traditional ASIC/full-custom 
measure of delay based on the geometric distance and/or channel The flow of our PPFF algorithm is shown in Fig. 1.  



density is no longer accurate for segmented routing architectures 
of FPGAs. It is known that the number of segments used by a net 
is the most important factor influencing the delay [5].  

Motivated by the fact that the number of segments used in routing 
a net is important, we implemented an efficient heuristic for delay 
minimization. The idea is to align the terminals of the most 
critical nets during the recursive partitioning. Consider nodes X 
and Y of a two-terminal net shown in Fig. 2. Assume that node Y 
is fixed (i.e., already placed at the current placement hierarchy 
level). Then it is more likely to use fewer routing segments to 
connect the two terminals if we lock node X in partition A, as 
opposed to partition B1. In this example node Y acts as an anchor 
point for net alignment. Because node Y is placed before node X, 
we force the partitioning process to fix node X in partition A. 
Note that if Y is not placed, then X has the freedom of being 
placed in either A or B, and after placement becomes the 
alignment anchor for Y. While simple, this heuristic proves to be 
very efficient and with good practical results. Experimental 
results demonstrate that the routing algorithm can effectively 
harness delay minimization opportunities created by terminal 
alignment during placement.  

A 

B 

Y X 
distance 

 
Fig. 2 Illustration of the terminal alignment of a generic two-

terminal net 
We adopted a recursive bi-partitioning method as opposed to 
quadrisection, as it makes the alignment process significantly 
easier to implement. However, the order in which bi-partitioning 
calls are issued makes the whole process look like recursive 
quadrisection as shown in Fig. 3. 
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Fig. 3 Bi-partitioning seen as quadric-section  

Starting with the third level of bi-partitioning (Fig. 3.b), the cut 
direction (horizontal or vertical) is decided based on the criticality 
of nets crossing the four borders of the placement region under 
partitioning. For example, in Fig. 4 (which is the zoom-in of the 
placement region shown in Fig. 3.d), the fifth bi-partitioning will 

be done horizontally and the two sixth level bi-partitionings will 
have to be done vertically. The horizontal cut direction is chosen 
because the largest timing criticality among nets crossing the 
vertical borders of the placement region (i.e., max{0.8,0.9}=0.9) 
is larger than that of nets crossing the horizontal borders (i.e., 
max{0.85,0.4}=0.85).   
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Fig. 4 Deciding the cut direction  

By choosing the horizontal direction in the fifth cut we can either 
align or provide anchor points for the terminals of the most 
critical nets in this region. Fig. 5 shows an example that describes 
how critical nodes are aligned with nodes placed in previous 
placement regions. Node x is fixed in the bottom partition to align 
to the anchor that has already been placed. However, node y is not 
fixed at level 5, as the alignment direction is different from 
partitioning direction (it will be aligned at level 6). Nodes z and t 
are both free before partition 5 is performed, so the partitioning 
engine has the freedom in placing node z in either the top or the 
bottom partitions. However, after partitioning at level 5 in this 
region is done, node z becomes an anchor point (assuming it is a 
timing critical terminal), hence making terminal t ready to be 
aligned.  
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Fig. 5 Net terminal alignment step before bi-partitioning at 
the fifth level  

To better illustrate how the partitioning is performed, Fig. 6 
presents the order in which placement regions are partitioned. For 
every column, we start with the top placement region and 
continue towards bottom. The terminal alignment process 
continues until the last bi-partitioning at the same partitioning 
level is completed, following which  the next level of partitioning 
starts. As the recursive partitioning goes on, nodes are aligned 
along narrower placement stripes. Terminals aligned at higher 
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change the direction of the routing from horizontal to vertical. 



The partitioning engine incorporates a static timing analyzer 
(STA) used for slack computations. All edges in the circuit graph 
to be partitioned by hMetis are weighted. The weights represent 
timing criticality of the edges calculated using the timing slack 
values:  

levels may become unaligned at lower levels if their criticality is 
not preserved throughout the partitioning levels.  
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Using timing criticality as edge weights discourages the 
partitioning engine to cut edges with high criticalities. Therefore, 
critical nets will be kept short and the circuit will have a smaller 
delay. Nets cut at the first partitioning level are assigned delays 
corresponding to a single-length segment in order to ensure that 
these delays are the minimum delays which these nets would have 
after routing is finished. At the next partitioning levels, the (x, y) 
coordinates of all CLBs are more accurately known and therefore 
the minimum length spanned by a net is known better.  

Fig. 6 Placement regions are partitioned from top-left 
downwards, column by column  

The process of delay assignment and slack/criticality update 
is performed at every partitioning level. Hence, timing criticalities 
will be more accurate and a better, tight connection between the 
timing-driven partitioning and placement is developed and 
maintained.  

4. DELAY MODEL AND TIMING 
CRITICALITY UPDATE  
During recursive partitioning, edges are cut at different 
partitioning levels. Delay assignment to cut edges is done as 
follows. The minimum distance spanned by a cut net is 
determined by the level at which it is cut. For example, the net cut 
at level 5 (Fig. 7) spans a minimum distance of 3δ (where δ is the 
width of the smallest placement region at the current partitioning 
level). We cannot know the minimum distance more accurately at 
this stage because the (x, y) coordinates of the cells of this net are 
at the centers of the placement regions 1 and 2. At lower 
partitioning levels the minimum distance spanned by every net is 
more accurately known and hence the delay can be re-assigned 
with a more accurate value.  

5. VPR ROUTER ANALYSIS  
We first perform some analysis on the VPR router to better 
understand its behavior. This will lead to a better delay estimation 
and a tighter coupling between placement and routing. We start 
with a profiling step for the routing resource usage. We use VPR 
to place and route some circuits and then superimpose an 
imaginary grid on the FPGA fabric (Fig. 1), which represents the 
partitioning lines at different levels had the placement been done 
using a partitioning-based method as described in Section 2. The 
last level would consist of tiles containing a single CLB each. 
Nets crossing the grid lines corresponding to Level i are counted 
to get the usage of every type of routing resource at Level i. The 
characteristics of the set of combinational circuits that we used in 
our experiments are shown in Table I.  
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The key point of this step is that we noticed a common trend in 
the way routing resources are used by the routing tool. A typical 
routing resource usage is shown in  

Fig. 8. We can see that long segments are used extensively for 
routing nets cut at higher levels of partitioning, while double-
length segments are used mostly for nets cut at lower levels. 
Single-length segments are used almost uniformly across all 
levels. The shape of these plots is preserved independently on 
what placement tool is used2.  

Fig. 7 A cut edge will span a minimum distance at every 
partitioning level  

We estimate the delay of a cut net based on its timing criticality at 
the time of partitioning and the minimum distance it spans. Our 
delay model takes into account both the number of segments used 
for routing as well as the segment lengths. The delay value 
assigned to a net is the average of all delays of all nets, which 
span at least such a minimum distance in the final placement and 
routing obtained with VPR [12]. This delay value is taken from 
lookup-tables constructed by considering both length and 
criticality of all nets. That is because we are certain that in the 
final placement, this net will span at least that minimum distance. 
Details about the average delay computation will be discussed in 
the next section, during the VPR router analysis.  

The main conclusion of the above discussion is that routing 
resource usage and therefore net delay is predictable. This allows 
us to adopt a lookup-table delay estimation technique tailored for 
the routing method that follows the placement. These delay 
lookup-tables store information about the average delay of nets 
with given criticality, which span a given minimum length. These 
tables are then used inside our partitioning-based placement 
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engines: our placement algorithm, VPR, and random placement.  



algorithm for delay assignment to nets cut at different partitioning 
levels. It is important to note that the delay after routing is what 
matters in determining the performance of a circuit. Hence, if the 
optimizations done by the placement algorithm are in line with 
what the routing is inclined to do, both estimations and 
optimizations at placement level will eventually be more 
effective. 
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Fig. 8 Typical routing resource usage plot  

To verify our intuition, we setup a simulation flow shown in Fig. 
9. The goal is to study whether the information from the VPR 
router can be fed to the placement algorithm to achieve better 
timing estimates, and in turn, better final results (i.e., smaller 
delays after routing).  

Table I Statistics of simulated circuits  

Circuit 
No. of 
CLBs 

No. of  
I/Os 

Circuit 
No. of 
CLBs 

No. of 
I/Os 

ex5p 1064 71 seq 1750 76 

apex4 1262 28 apex2 1878 42 

misex3 1397 28 spla 3690 62 

alu4 1522 22 pdc 4575 56 

des 1591 501 ex1010 4598 20 

 

We placed all circuits using VPR. Then we used the VPR router 
to route all circuits. The delay information was then used inside 
our partitioning-based placement algorithm (VPR delay 
information of each circuit is individually used for each circuit 
separately). Finally we study the timing of each circuit. The 
results are shown in Table II. It can be seen that with this 
simulation setup circuits placed with our placement algorithm 
have better delay for most of the circuits with an average of 3% 
improvement and as high as 9.5% for spla.  

However, we would like to avoid repeating the VPR router 
analysis for each individual circuit because it requires long run-
times. Instead we propose the use of average delay values of only 
a few representative circuits. As simulation experiments will 
show in the next section, this idea proves to be very effective and 

offers practically the same final circuit delay as obtained with 
VPR but at almost seven times shorter run-times. 
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Fig. 9 Simulation setup  

Table II Comparison between our results obtained with our PPFF 
(VPR router analysis information used for each circuit 

separately) and VPR 

PPFF VPR 
Circuit 

Delay Delay 

ex5p 7.69 8.02 
apex4 7.51 6.69 

misex3 7.25 7.48 
alu4 6.72 6.84 

des 9.51 9.52 

seq 8.12 8.1 

apex2 8.33 8.91 

spla 12.3 13.6 

pdc 14.4 15.4 

ex1010 13.8 15.1 

Avg. 0.97 1 

 

6. SIMULATION RESULTS  
In this section we present simulation results obtained using our 
placement algorithm and compare them to those obtained with 
VPR, the state of the art FPGA placement tool [7]. Table III 
presents the simulation results. The placement algorithm uses 
information about the VPR router analysis as average of three 
different representative circuits, which are shown in shaded cells 
in Table I. The representative circuits were selected randomly but 
of all sizes.  

All circuits are placed with our algorithm and with VPR and 
successfully routed with VPR router. It can be seen that netlists 
placed with our algorithm have the same average circuit delay as 
the ones placed with VPR, but at almost 7x faster run-times. Most 
circuits were routed using the best Channel Width (CW), found 
by VPR. Because we use the VPR profiling on a few circuits 
only, our algorithm can be used as a stand-alone placement tool, 
and hence the placement run-time for a larger set of circuits will 
be dramatically decreased. Note that in this situation our 
algorithm can also be used for multiple placement runs of the 
same circuit for quick solution space exploration.  



Table III Comparison between our results obtained with our 
PPFF (VPR router analysis information used as the average of 

three circuits) and VPR 

PPFF VPR 
Circuit 

Delay CW CPU(s) Delay CW CPU(s)

ex5p 7.91 23 30 8.02 22 177 

apex4 7.5 23 35 6.69 23 208 

misex3 8.33 20 38 7.48 19 227 

alu4 6.84 19 41 6.84 19 245 

des 9.4 22 60 9.52 22 382 

seq 7.66 23 51 8.1 23 432 

apex2 7.87 22 56 8.91 22 370 

spla 13.2 30 154 13.6 30 1180 

pdc 15.1 32 221 15.4 32 1599 

ex1010 15.2 22 210 15.1 22 1408 

Avg. 1 236 1 1 234 x6.68 

7. CONCLUSIONS  
We proposed a fast partitioning-based FPGA placement algorithm 
for delay minimization. The proposed algorithm uses delay 
information extracted from only a few representative placed and 
routed circuits. Therefore, it can be used as a fast alternative 
placement method for all other circuits without circuit delay 
degradation. Simulation experiments showed 7x shorter 
placement run-times, with similar circuit delays, and little area 
increase due to larger channel widths.  
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