

THEME ARTICLE: Top Picks

Bespoke Processors for
Applications with Ultra-
Low Area and Power
Constraints

This article makes the case for bespoke processor

design, an automated approach that tailors a general-

purpose processor IP to a target application by

removing all gates from the design that can never be

used by the application. The resulting processors are

more area- and energy-efficient without sacrificing

performance.

A large class of emerging applications is characterized by
severe area and power constraints. For example, wearables1 and implantables2 are extremely
area- and power-constrained. Several IoT applications, such as stick-on electronic labels,3
RFIDs,4 and sensors,5 are also extremely area- and power-constrained. Area constraints are also
expected to be severe for printed plastic6 and organic7 applications.
Cost concerns drive many of the above applications to use general-purpose microprocessors and
microcontrollers instead of much more area- and power-efficient ASICs, because, among other
benefits, development cost of microprocessor IP cores can be amortized by the IP core licensor
over many chip makers and licensees. In fact, ultra-low-area- and power-constrained micropro-
cessors and microcontrollers powering these applications are already the most widely used type
of processing hardware in terms of production and usage,8,9 despite their well-known ineffi-
ciency compared to ASIC- and FPGA-based solutions. Given this mismatch between the ex-
treme area and power constraints of emerging applications and the relative inefficiency of
general-purpose microprocessors and microcontrollers compared to their ASIC counterparts,
there is a considerable opportunity to make microprocessor-based solutions for these applica-
tions much more area- and power-efficient.

Hari Cherupalli
University of Minnesota

Henry Duwe
Iowa State University

Weidong Ye and Rakesh
Kumar
University of Illinois at
Urbana-Champaign

John Sartori
University of Minnesota

32
IEEE Micro Published by the IEEE Computer Society

0272-1732/18/$33.00 ©2018 IEEEMay/June 2018

Authorized licensed use limited to: University of Minnesota. Downloaded on October 11,2021 at 16:26:16 UTC from IEEE Xplore. Restrictions apply.

 IEEE MICRO

One big source of area inefficiency in a microprocessor is that a general-purpose microprocessor
is designed to target an arbitrary application and thus contains many more gates than what a spe-
cific application needs. These unused gates continue to consume power, resulting in significant
power inefficiency. While adaptive power management techniques (such as power gating) help
reduce power consumed by unused gates, their effectiveness is limited due to the coarse granu-
larity at which they must be applied, as well as significant implementation overheads such as do-
main isolation and state retention. These techniques also worsen area inefficiency.
One approach to significantly increasing the area and power efficiency of a microprocessor for a
given application is to eliminate all logic in the microprocessor IP core that will not be used by
the application. Eliminating logic that is guaranteed to not be used by an application can produce
a design tailored to the application—a bespoke processor—that has significantly lower area and
power than the original microprocessor IP that targets an arbitrary application. As long as the
approach to creating a bespoke processor is automated, the resulting design retains the cost bene-
fits of a microprocessor IP, because no additional hardware or software needs to be developed.
Also, because no logic used by the application is eliminated, area and power benefits come at no
performance cost. The resulting bespoke processor does not require programmer intervention or
hardware support, either, because the software application can still run, unmodified, on the be-
spoke processor.
In this article, we present a methodology to automatically generate a bespoke processor for an
application out of a general-purpose processor/microcontroller IP core. Our methodology relies
on gate-level symbolic simulation that identifies gates in the microprocessor IP that cannot be
toggled by the application, irrespective of the application inputs, and automatically eliminates
them from the design to produce a significantly smaller and lower-power design with the same
performance. Because the original design is pruned at the granularity of gates, the resulting
methodology is much more effective than any approach that relies on coarse-grained application-
specific customization. The proposed methodology can be used by either IP licensors or licen-
sees to produce bespoke designs for the application of interest (see Figure 1). Simple extensions
to our methodology can be used to generate bespoke processors that can support multiple appli-
cations or different degrees of in-field software programmability, “debuggability,” and updates.

Figure 1. General-purpose processors are overdesigned for a specific application (top). A bespoke
processor design methodology allows a microprocessor IP licensor or licensee to target different
applications efficiently without additional software or hardware development cost (bottom).

WHY BESPOKE PROCESSORS?
Area- and power-constrained microprocessors and microcontrollers are the most abundant type
of processor produced and used today, with projected deployment growing rapidly.8,9 This explo-
sive growth is fueled by emerging area- and power-constrained applications, such as the IoT,

33May/June 2018 www.computer.org/micro

Authorized licensed use limited to: University of Minnesota. Downloaded on October 11,2021 at 16:26:16 UTC from IEEE Xplore. Restrictions apply.

 TOP PICKS

wearables, implantables, and sensor networks. The microprocessors and microcontrollers used in
these applications are designed to include a wide variety of functionalities to support many di-
verse applications with different requirements. On the other hand, the embedded systems de-
signed for these applications typically consist of one application or a small number of
applications, running over and over on a general-purpose processor for the lifetime of the sys-
tem.10 Given that a particular application might only use a small subset of the functionalities pro-
vided by a general-purpose processor, there might be a considerable amount of logic in a
general-purpose processor that is not used by an application. Figure 2 illustrates this point, show-
ing the fraction of gates in an openMSP43011 processor that are not toggled when a variety of
applications are executed on the processor with many different input sets. The bars in the figure
show the intersection of all gates that were not exercised (toggled) by the application for any in-
put, and the intervals show the range in fraction of unexercised gates across different inputs. For
each application, a significant fraction (around 30-60 percent) of the processor’s gates were not
toggled during any execution of the application. These results indicate that there might be an op-
portunity to reduce area and power significantly by removing logic from the processor that can-
not be exercised by the software running on the processor, if it can be guaranteed that removed
logic will never be needed for any possible execution of the software.

Figure 2. A significant fraction of gates in an openMSP430 processor are not toggled when an
application executes. Each bar represents gates not toggled by any input for an application; the
interval shows the range of unexercised gates for different inputs.

Identifying all the logic that is guaranteed to never be used by an application is not straightfor-
ward, however. One possible approach is profiling, wherein an application is executed for many
inputs, and the set of gates that were never exercised is recorded, as in Figure 2. However, profil-
ing cannot guarantee that the set of gates used by an application will not be different for a differ-
ent input set. Indeed, profiling results in Figure 2 show considerable variations in exercised gates
(up to 13 percent) for different executions of the same application with different inputs. Thus, an
application might require different gates and execute incorrectly for an unprofiled input. Another
possible approach is performing a static analysis of the instructions that are used in an applica-
tion and the corresponding software-visible modules those instructions use. Unfortunately, dif-
ferent applications use different portions of logic at a fine granularity (for example, two
applications might use a different set of gates within one module). Additionally, which logic is
used also depends on the ordering of instructions within an application.

Because different applications can exercise substantially different parts of a processor at a fine
granularity, and simply profiling or statically analyzing an application cannot guarantee which
parts of the processor can and cannot be used by an application, tailoring a processor to an appli-
cation requires a technique that can identify all the logic in a processor that is guaranteed to
never be used by the application and remove unusable logic in a way that leaves the functionality
of the processor unchanged for the application. The next section provides our approach to safely
producing general-purpose processors that have been tailored to an individual application. We

34May/June 2018 www.computer.org/micro

Authorized licensed use limited to: University of Minnesota. Downloaded on October 11,2021 at 16:26:16 UTC from IEEE Xplore. Restrictions apply.

 IEEE MICRO

call the resulting designs bespoke processors, reminiscent of bespoke clothing, in which a ge-
neric clothing item is tailored for an individual person.

TAILORING A BESPOKE PROCESSOR
A bespoke processor, tailored to a target application, must be functionally equivalent to the origi-
nal processor when executing the application. As such, the bespoke implementation of a proces-
sor design should retain all the gates from the original processor design that might be needed to
execute the application. Any gate that could be toggled by the application and propagate its tog-
gle to a state element or output port performs a necessary function and must be retained to main-
tain functional equivalence. Conversely, any gate that can never be toggled by the application
can safely be removed, as long as each fanout location for the gate is fed with the gate’s constant
output value for the application. Removing constant (untoggled) gates for an application could
result in significant area and power savings and, unlike conventional energy-saving techniques,
will introduce no performance degradation (indeed, no change at all in application behavior).
Figure 3 shows our process for tailoring a bespoke processor to a target application. The first
step—input-independent gate activity analysis—performs a type of symbolic simulation,12 where
unknown input values are represented as Xs and gate-level activity of the processor is character-
ized for all possible executions of the application and for any possible inputs to the application.
The second phase of our bespoke processor design technique—gate cutting and stitching—uses
gate-level activity information gathered during gate activity analysis to prune away unnecessary
gates and reconnect the cut connections between gates to maintain functional equivalence to the
original design for the target application. (See the “Bespoke Processor Tool Flow Example”
sidebar for an example of this tool flow.)

Figure 3. Bespoke processor tool flow. Our technique performs input-independent gate activity
analysis to determine which gates of a processor cannot be toggled in any execution of the
application. These gates are then cut from the design to form a custom, bespoke processor with
reduced area and power.

Input-Independent Gate Activity Analysis
The set of gates that an application toggles during execution can vary depending on application
inputs. This is because inputs can change the control flow of execution through the code, as well
as the data paths exercised by the instructions. Because exhaustive profiling for all possible in-
puts is infeasible, and limited profiling might not identify all exercisable gates in a processor, we
have implemented an analysis technique based on symbolic simulation that is able to character-
ize the gate-level activity of a processor executing an application for all possible inputs with a
single gate-level simulation. During this simulation, inputs are represented as unknown logic val-
ues (Xs), which are treated as both 1s and 0s when recording possible toggled gates.
During input-independent gate activity analysis, the values of all memory cells and gates are ini-
tialized to Xs. The application binary is loaded into program memory, providing the values that

35May/June 2018 www.computer.org/micro

Authorized licensed use limited to: University of Minnesota. Downloaded on October 11,2021 at 16:26:16 UTC from IEEE Xplore. Restrictions apply.

 TOP PICKS

effectively constrain which gates can be toggled during execution. During simulation, our simu-
lator sets all inputs to Xs, which propagate through the gate-level netlist during simulation. After
each cycle is simulated, the toggled gates are removed from the list of unexercisable gates. Gates
where an X propagated are considered toggled, because some input assignment could cause the
gates to toggle. If an X propagates to the PC, indicating input-dependent control flow, our simu-
lator branches the execution tree and simulates execution for all possible branch paths, following
a depth-first ordering of the control flow graph.

Cutting and Stitching
Once gates that the target application cannot toggle have been identified, they are cut from the
processor netlist for the bespoke design. After cutting out a gate, the netlist must be stitched back
together to generate the final netlist and laid-out design for the bespoke processor. Figure 4
shows our method for cutting and stitching a bespoke processor. First, each gate on the list of
unusable (untoggled) gates is removed from the gate-level netlist. After removing a gate, all fan-
out locations that were connected to the output net of the removed gate are tied to a static voltage
(1 or 0) corresponding to the constant value of the gate observed during simulation. Because the
logical structure of the netlist has changed, the netlist is re-synthesized after cutting all unusable
gates to allow additional optimizations that reduce area and power. Because some gates have
constant inputs after cutting and stitching, they can be replaced by simpler gates. Also, toggled
gates left with floating outputs after cutting can be removed, because their outputs can never
propagate to a state element or output port. Cutting can reduce the depth of logic paths, so some
paths might have extra timing slack after cutting, allowing faster, higher-power cells to be re-
placed with smaller, lower-power versions of the cells. Finally, the re-synthesized netlist is
placed and routed to produce the bespoke processor layout, as well as a final gate-level netlist
with necessary buffers, introduced to meet timing constraints.

Figure 4. Tool flow for cutting and stitching.

RESULTS
Bespoke processors have fewer gates, lower area, and lower power than their general-purpose
counterparts. Figure 5 shows the reduction in gates, area, and power afforded by bespoke proces-
sors tailored to several applications. Area savings are up to 92 percent, and power savings are up
to 74 percent, relative to the baseline design. Even the application with the smallest gate count
reduction (44 percent) reduces area by 47 percent and power by 37 percent. In this way, tailoring
bespoke processors out of general-purpose processors provides power- and area-efficient designs
with a low design cost.

CONCLUSION
Ultra-low-power (ULP) processors are already the most abundant type of processor manufac-
tured and used today. Due to emerging trends like the IoT, computing systems built around these
low-power processors are projected to be even more ubiquitous in the future. Considering the
sheer number of low-power processors being produced, their importance for future technologies,
and the stringent power and cost constraints of these systems, techniques to automatically reduce

Gate-level
Netlist

Cut
Unused Gates

Set Unconnected
Gate Inputs to
Constant Values

Bespoke Gate-
level Netlist

Place
& Route Synthesis

Bespoke GDSII
File

List of Unused
Gates

List of Constant
Gate Values

36May/June 2018 www.computer.org/micro

Authorized licensed use limited to: University of Minnesota. Downloaded on October 11,2021 at 16:26:16 UTC from IEEE Xplore. Restrictions apply.

 IEEE MICRO

the power and cost of such systems can have a significant enabling impact on the future of com-
puting systems. This article focuses on an effective and automated tool to reduce the power and
cost for such systems. We envision our work having several impacts.

Figure 5. Percent reduction in gate count, area, and power for a bespoke design, compared to the
baseline processor.

First, bespoke processors represent a new design point on the programmability and efficiency
continuum. Emerging trends such as the IoT rely on the ability to generate millions of applica-
tion-specific systems that are resource-constrained, because they are powered by energy harvest-
ers or implemented in new, less-dense substrates that target IoT applications, such as printable
thin-film processors. These opposing forces require customization to meet resource constraints,
yet easy development to support the massive number of unique applications. To meet these chal-
lenges, the bespoke process presented here can effectively support efforts to make hardware de-
sign as approachable and popular as software development. At first glance, bespoke processors
lower the design effort to produce a custom chip by providing pushbutton customization that an
application developer can use without relying on a hardware designer. Digging deeper, the appli-
cation developer gets all the benefits of having a mature general-purpose processor infrastruc-
ture. This includes having mature compilation and debug tool-chains, as well as extensive
libraries available for rapid development. On top of the added tool-chain support, a developer
can prototype the whole system using a full, non-custom version of the baseline processor rather
than spending more time debugging system-level issues concurrently with any silicon-level bugs.

Second, the underlying approach of the bespoke processor tool flow establishes the foundations
for the automatic editing of processors. Example uses of automatic editing of processors include
the removal of instructions or components within a processor that are deprecated, contain bugs,
or have security vulnerabilities. Another use occurs when processors are used to debug immature
technology processes and limited, yet known functionality is required (such as being able to run
a small number of code segments that perform certain I/O tasks on the new technology node).

Third, this work represents a new type of analysis: hardware-software co-analysis. The gate-level
hardware-software co-analysis framework that forms the critical backbone of the bespoke pro-
cessor approach can be leveraged in many other use cases. For example, the analysis can be used
for the control of novel module-oblivious power-gating domains, for determining stricter peak
power and energy constraints for ULP processors and for verifying software-based information-
flow security on commodity ULP processors. These applications of the co-analysis provide sev-
eral launch points from which further software and hardware techniques can be built.

In the coming IoT era, where extreme power and area efficiency must be balanced with design
costs, bespoke processor design provides a balanced approach that allows designers to easily
generate efficient hardware for a specific use case.

0
10
20
30
40
50
60
70
80
90

100

Pe
rc
en

ta
ge

 S
av
in
gs

Gate Savings Area Savings Power Savings

37May/June 2018 www.computer.org/micro

Authorized licensed use limited to: University of Minnesota. Downloaded on October 11,2021 at 16:26:16 UTC from IEEE Xplore. Restrictions apply.

 TOP PICKS

SIDEBAR: BESPOKE PROCESSOR TOOL FLOW
EXAMPLE
Bespoke processor design is a fully automated process. Here, we illustrate how bespoke proces-
sor design tailors a processor design to a particular application. Figure 6 illustrates the bespoke
design tool flow. The left part of Figure 6 shows input-independent gate activity analysis for a
simple example circuit (top right). During symbolic simulation of the target application, logical
1s, 0s, and unknown symbols (Xs) are propagated throughout the netlist. Because tmp2 is never
toggled during any of the possible executions of the application, Gate c is marked for cutting,
and its constant output value (1) is stored for stitching. Although Gate d is never toggled in Cy-
cles 0-2 nor down the left execution path, it does toggle in the right execution path and thus can-
not be marked for cutting. Gates a and b also toggle and thus are not marked for cutting.

Figure 6. An end-to-end example of the bespoke processor tool flow.

Once gate activity analysis has generated a list of unexercisable (cuttable) gates and their con-
stant values, cutting and stitching begins. Because Gate c was marked for cutting, it is removed
from the netlist, leaving the input to its fanout (d) unconnected. During stitching, d’s floating in-
put is connected to c’s known constant output value for the application (1). After stitching, the
gate-level netlist is re-synthesized. Synthesis removes gates that are not driving any other gates
(Gates a and b), even though they toggled during symbolic simulation, because their work does
not affect the state or output function of the processor for the application. Synthesis also per-
forms optimizations, such as constant propagation, which replaces Gate d with an inverter, be-
cause the constant controlling input of 1 to the XOR gate makes it function as an inverter.
Finally, place and route produces a fully laid-out bespoke design.

ACKNOWLEDGMENTS
We thank James Myers and the anonymous reviewers for helpful suggestions and feedback.

REFERENCES
1. M. Magno et al., “Wearable low-power dry surface wireless sensor node for healthcare

monitoring application,” IEEE 9th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), 2013, pp. 189–195.

2. S. Narasimhan, H. Chiel, and S. Bhunia, “Ultra-low-power and robust digital-signal-
processing hardware for implantable neural interface microsystems,” IEEE
Transactions on Biomedical Circuits and Systems, vol. 5, no. 2, 2011, pp. 169–178.

38May/June 2018 www.computer.org/micro

Authorized licensed use limited to: University of Minnesota. Downloaded on October 11,2021 at 16:26:16 UTC from IEEE Xplore. Restrictions apply.

 IEEE MICRO

3. K. Myny et al., “A thin-lm microprocessor with inkjet print-programmable memory,”
Scientific Reports, 2014.

4. B. Ransford, J. Sorber, and K. Fu, “Mementos: system support for long-running
computation on RFID-scale devices,” ACM SIGPLAN Notices, 2012.

5. G. Hackmann et al., “Cyber-Physical Codesign of Distributed Structural Health
Monitoring with Wireless Sensor Networks,” IEEE Transactions on Parallel and
Distributed Systems, 2014.

6. K. Myny et al., “An 8b organic microprocessor on plastic foil,” IEEE International
Solid-State Circuits Conference, 2011.

7. B.K. Kjellander et al., “Optimized circuit design for exible 8-bit RFID transponders
with active layer of ink-jet printed small molecule semiconductors,” Organic
Electronics, 2013.

8. H. Blodget et al., “The Internet of Everything: 2015,” Business Insider, 2014.
9. “Microcontroller Sales Regain Momentum after Slump,” IC Insights, 2017;

www.icinsights.com/news/bulletins/Microcontroller-Sales-Regain-Momentum-After-
Slump.

10. “Products with an MSP430,” 43oh, 2012; http://43oh.com/2012/03/winner-products-
using-the-msp430/.

11. O. Girard, OpenMSP430 Project, 2013.
12. R. Bryant, “Symbolic Simulation -- Techniques and Applications,” Proceedings of the

27th ACM/IEEE Design Automation Conference (DAC), 1990, pp. 517–521.

ABOUT THE AUTHORS
Hari Cherupalli is a PhD candidate at the University of Minnesota. His research interests
are in power management in ULP processors and hardware security. He has a master’s de-
gree in electrical engineering from the Indian Institute of Technology Kharagpur. Contact
him at cheru007@umn.edu.
Henry Duwe is an assistant professor at Iowa State University. His research interests range
from automated generation of application-specific processors to designing secure low-
power processors and architecting transient processors. Contact him at duwe@iastate.edu.

Weidong Ye has a master’s degree in electrical and computer engineering from the Univer-
sity of Illinois at Urbana-Champaign. He previously studied at Arizona State University.
Contact him at wye5@illinois.edu.

Rakesh Kumar is an associate professor in the Electrical and Computer Engineering De-
partment at the University of Illinois at Urbana-Champaign. His research and teaching inter-
ests are in computer architecture, hardware design, and low-power, trustworthy, and error-
resilient computer systems. Contact him at rakeshk@illinois.edu.

John Sartori is an assistant professor at the University of Minnesota. His research interests
include computer architecture, electronic design automation, embedded systems, and algo-
rithm development, especially focused on energy-efficient computing, high-performance
computing, stochastic computing, and application-aware design and architecture methodol-
ogies. Contact him at jsartori@umn.edu.

39May/June 2018 www.computer.org/micro

Authorized licensed use limited to: University of Minnesota. Downloaded on October 11,2021 at 16:26:16 UTC from IEEE Xplore. Restrictions apply.

