
 

THEME ARTICLE: Top Picks 

Bespoke Processors for 
Applications with Ultra-
Low Area and Power 
Constraints 

This article makes the case for bespoke processor 

design, an automated approach that tailors a general-

purpose processor IP to a target application by 

removing all gates from the design that can never be 

used by the application. The resulting processors are 

more area- and energy-efficient without sacrificing 

performance. 

A large class of emerging applications is characterized by 
severe area and power constraints. For example, wearables1 and implantables2 are extremely 
area- and power-constrained. Several IoT applications, such as stick-on electronic labels,3 
RFIDs,4 and sensors,5 are also extremely area- and power-constrained. Area constraints are also 
expected to be severe for printed plastic6 and organic7 applications.  
Cost concerns drive many of the above applications to use general-purpose microprocessors and 
microcontrollers instead of much more area- and power-efficient ASICs, because, among other 
benefits, development cost of microprocessor IP cores can be amortized by the IP core licensor 
over many chip makers and licensees. In fact, ultra-low-area- and power-constrained micropro-
cessors and microcontrollers powering these applications are already the most widely used type 
of processing hardware in terms of production and usage,8,9 despite their well-known ineffi-
ciency compared to ASIC- and FPGA-based solutions. Given this mismatch between the ex-
treme area and power constraints of emerging applications and the relative inefficiency of 
general-purpose microprocessors and microcontrollers compared to their ASIC counterparts, 
there is a considerable opportunity to make microprocessor-based solutions for these applica-
tions much more area- and power-efficient.  
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One big source of area inefficiency in a microprocessor is that a general-purpose microprocessor 
is designed to target an arbitrary application and thus contains many more gates than what a spe-
cific application needs. These unused gates continue to consume power, resulting in significant 
power inefficiency. While adaptive power management techniques (such as power gating) help 
reduce power consumed by unused gates, their effectiveness is limited due to the coarse granu-
larity at which they must be applied, as well as significant implementation overheads such as do-
main isolation and state retention. These techniques also worsen area inefficiency.  
One approach to significantly increasing the area and power efficiency of a microprocessor for a 
given application is to eliminate all logic in the microprocessor IP core that will not be used by 
the application. Eliminating logic that is guaranteed to not be used by an application can produce 
a design tailored to the application—a bespoke processor—that has significantly lower area and 
power than the original microprocessor IP that targets an arbitrary application. As long as the 
approach to creating a bespoke processor is automated, the resulting design retains the cost bene-
fits of a microprocessor IP, because no additional hardware or software needs to be developed. 
Also, because no logic used by the application is eliminated, area and power benefits come at no 
performance cost. The resulting bespoke processor does not require programmer intervention or 
hardware support, either, because the software application can still run, unmodified, on the be-
spoke processor.  
In this article, we present a methodology to automatically generate a bespoke processor for an 
application out of a general-purpose processor/microcontroller IP core. Our methodology relies 
on gate-level symbolic simulation that identifies gates in the microprocessor IP that cannot be 
toggled by the application, irrespective of the application inputs, and automatically eliminates 
them from the design to produce a significantly smaller and lower-power design with the same 
performance. Because the original design is pruned at the granularity of gates, the resulting 
methodology is much more effective than any approach that relies on coarse-grained application-
specific customization. The proposed methodology can be used by either IP licensors or licen-
sees to produce bespoke designs for the application of interest (see Figure 1). Simple extensions 
to our methodology can be used to generate bespoke processors that can support multiple appli-
cations or different degrees of in-field software programmability, “debuggability,” and updates.  

 
Figure 1. General-purpose processors are overdesigned for a specific application (top). A bespoke 
processor design methodology allows a microprocessor IP licensor or licensee to target different 
applications efficiently without additional software or hardware development cost (bottom).  

WHY BESPOKE PROCESSORS? 
Area- and power-constrained microprocessors and microcontrollers are the most abundant type 
of processor produced and used today, with projected deployment growing rapidly.8,9 This explo-
sive growth is fueled by emerging area- and power-constrained applications, such as the IoT, 
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wearables, implantables, and sensor networks. The microprocessors and microcontrollers used in 
these applications are designed to include a wide variety of functionalities to support many di-
verse applications with different requirements. On the other hand, the embedded systems de-
signed for these applications typically consist of one application or a small number of 
applications, running over and over on a general-purpose processor for the lifetime of the sys-
tem.10 Given that a particular application might only use a small subset of the functionalities pro-
vided by a general-purpose processor, there might be a considerable amount of logic in a 
general-purpose processor that is not used by an application. Figure 2 illustrates this point, show-
ing the fraction of gates in an openMSP43011 processor that are not toggled when a variety of 
applications are executed on the processor with many different input sets. The bars in the figure 
show the intersection of all gates that were not exercised (toggled) by the application for any in-
put, and the intervals show the range in fraction of unexercised gates across different inputs. For 
each application, a significant fraction (around 30-60 percent) of the processor’s gates were not 
toggled during any execution of the application. These results indicate that there might be an op-
portunity to reduce area and power significantly by removing logic from the processor that can-
not be exercised by the software running on the processor, if it can be guaranteed that removed 
logic will never be needed for any possible execution of the software.  

 
Figure 2. A significant fraction of gates in an openMSP430 processor are not toggled when an 
application executes. Each bar represents gates not toggled by any input for an application; the 
interval shows the range of unexercised gates for different inputs.  

Identifying all the logic that is guaranteed to never be used by an application is not straightfor-
ward, however. One possible approach is profiling, wherein an application is executed for many 
inputs, and the set of gates that were never exercised is recorded, as in Figure 2. However, profil-
ing cannot guarantee that the set of gates used by an application will not be different for a differ-
ent input set. Indeed, profiling results in Figure 2 show considerable variations in exercised gates 
(up to 13 percent) for different executions of the same application with different inputs. Thus, an 
application might require different gates and execute incorrectly for an unprofiled input. Another 
possible approach is performing a static analysis of the instructions that are used in an applica-
tion and the corresponding software-visible modules those instructions use. Unfortunately, dif-
ferent applications use different portions of logic at a fine granularity (for example, two 
applications might use a different set of gates within one module). Additionally, which logic is 
used also depends on the ordering of instructions within an application. 

Because different applications can exercise substantially different parts of a processor at a fine 
granularity, and simply profiling or statically analyzing an application cannot guarantee which 
parts of the processor can and cannot be used by an application, tailoring a processor to an appli-
cation requires a technique that can identify all the logic in a processor that is guaranteed to 
never be used by the application and remove unusable logic in a way that leaves the functionality 
of the processor unchanged for the application. The next section provides our approach to safely 
producing general-purpose processors that have been tailored to an individual application. We 
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call the resulting designs bespoke processors, reminiscent of bespoke clothing, in which a ge-
neric clothing item is tailored for an individual person.  

TAILORING A BESPOKE PROCESSOR  
A bespoke processor, tailored to a target application, must be functionally equivalent to the origi-
nal processor when executing the application. As such, the bespoke implementation of a proces-
sor design should retain all the gates from the original processor design that might be needed to 
execute the application. Any gate that could be toggled by the application and propagate its tog-
gle to a state element or output port performs a necessary function and must be retained to main-
tain functional equivalence. Conversely, any gate that can never be toggled by the application 
can safely be removed, as long as each fanout location for the gate is fed with the gate’s constant 
output value for the application. Removing constant (untoggled) gates for an application could 
result in significant area and power savings and, unlike conventional energy-saving techniques, 
will introduce no performance degradation (indeed, no change at all in application behavior).  
Figure 3 shows our process for tailoring a bespoke processor to a target application. The first 
step—input-independent gate activity analysis—performs a type of symbolic simulation,12 where 
unknown input values are represented as Xs and gate-level activity of the processor is character-
ized for all possible executions of the application and for any possible inputs to the application. 
The second phase of our bespoke processor design technique—gate cutting and stitching—uses 
gate-level activity information gathered during gate activity analysis to prune away unnecessary 
gates and reconnect the cut connections between gates to maintain functional equivalence to the 
original design for the target application. (See the “Bespoke Processor Tool Flow Example” 
sidebar for an example of this tool flow.) 

 
Figure 3. Bespoke processor tool flow. Our technique performs input-independent gate activity 
analysis to determine which gates of a processor cannot be toggled in any execution of the 
application. These gates are then cut from the design to form a custom, bespoke processor with 
reduced area and power. 

Input-Independent Gate Activity Analysis  
The set of gates that an application toggles during execution can vary depending on application 
inputs. This is because inputs can change the control flow of execution through the code, as well 
as the data paths exercised by the instructions. Because exhaustive profiling for all possible in-
puts is infeasible, and limited profiling might not identify all exercisable gates in a processor, we 
have implemented an analysis technique based on symbolic simulation that is able to character-
ize the gate-level activity of a processor executing an application for all possible inputs with a 
single gate-level simulation. During this simulation, inputs are represented as unknown logic val-
ues (Xs), which are treated as both 1s and 0s when recording possible toggled gates.  
During input-independent gate activity analysis, the values of all memory cells and gates are ini-
tialized to Xs. The application binary is loaded into program memory, providing the values that 
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effectively constrain which gates can be toggled during execution. During simulation, our simu-
lator sets all inputs to Xs, which propagate through the gate-level netlist during simulation. After 
each cycle is simulated, the toggled gates are removed from the list of unexercisable gates. Gates 
where an X propagated are considered toggled, because some input assignment could cause the 
gates to toggle. If an X propagates to the PC, indicating input-dependent control flow, our simu-
lator branches the execution tree and simulates execution for all possible branch paths, following 
a depth-first ordering of the control flow graph.

Cutting and Stitching  
Once gates that the target application cannot toggle have been identified, they are cut from the 
processor netlist for the bespoke design. After cutting out a gate, the netlist must be stitched back 
together to generate the final netlist and laid-out design for the bespoke processor. Figure 4 
shows our method for cutting and stitching a bespoke processor. First, each gate on the list of 
unusable (untoggled) gates is removed from the gate-level netlist. After removing a gate, all fan-
out locations that were connected to the output net of the removed gate are tied to a static voltage 
(1 or 0) corresponding to the constant value of the gate observed during simulation. Because the 
logical structure of the netlist has changed, the netlist is re-synthesized after cutting all unusable 
gates to allow additional optimizations that reduce area and power. Because some gates have 
constant inputs after cutting and stitching, they can be replaced by simpler gates. Also, toggled 
gates left with floating outputs after cutting can be removed, because their outputs can never 
propagate to a state element or output port. Cutting can reduce the depth of logic paths, so some 
paths might have extra timing slack after cutting, allowing faster, higher-power cells to be re-
placed with smaller, lower-power versions of the cells. Finally, the re-synthesized netlist is 
placed and routed to produce the bespoke processor layout, as well as a final gate-level netlist 
with necessary buffers, introduced to meet timing constraints.  

 
Figure 4. Tool flow for cutting and stitching. 

RESULTS  
Bespoke processors have fewer gates, lower area, and lower power than their general-purpose 
counterparts. Figure 5 shows the reduction in gates, area, and power afforded by bespoke proces-
sors tailored to several applications. Area savings are up to 92 percent, and power savings are up 
to 74 percent, relative to the baseline design. Even the application with the smallest gate count 
reduction (44 percent) reduces area by 47 percent and power by 37 percent. In this way, tailoring 
bespoke processors out of general-purpose processors provides power- and area-efficient designs 
with a low design cost.  

CONCLUSION 
Ultra-low-power (ULP) processors are already the most abundant type of processor manufac-
tured and used today. Due to emerging trends like the IoT, computing systems built around these 
low-power processors are projected to be even more ubiquitous in the future. Considering the 
sheer number of low-power processors being produced, their importance for future technologies, 
and the stringent power and cost constraints of these systems, techniques to automatically reduce 
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the power and cost of such systems can have a significant enabling impact on the future of com-
puting systems. This article focuses on an effective and automated tool to reduce the power and 
cost for such systems. We envision our work having several impacts. 

 
Figure 5. Percent reduction in gate count, area, and power for a bespoke design, compared to the 
baseline processor.  

First, bespoke processors represent a new design point on the programmability and efficiency 
continuum. Emerging trends such as the IoT rely on the ability to generate millions of applica-
tion-specific systems that are resource-constrained, because they are powered by energy harvest-
ers or implemented in new, less-dense substrates that target IoT applications, such as printable 
thin-film processors. These opposing forces require customization to meet resource constraints, 
yet easy development to support the massive number of unique applications. To meet these chal-
lenges, the bespoke process presented here can effectively support efforts to make hardware de-
sign as approachable and popular as software development. At first glance, bespoke processors 
lower the design effort to produce a custom chip by providing pushbutton customization that an 
application developer can use without relying on a hardware designer. Digging deeper, the appli-
cation developer gets all the benefits of having a mature general-purpose processor infrastruc-
ture. This includes having mature compilation and debug tool-chains, as well as extensive 
libraries available for rapid development. On top of the added tool-chain support, a developer 
can prototype the whole system using a full, non-custom version of the baseline processor rather 
than spending more time debugging system-level issues concurrently with any silicon-level bugs. 

Second, the underlying approach of the bespoke processor tool flow establishes the foundations 
for the automatic editing of processors. Example uses of automatic editing of processors include 
the removal of instructions or components within a processor that are deprecated, contain bugs, 
or have security vulnerabilities. Another use occurs when processors are used to debug immature 
technology processes and limited, yet known functionality is required (such as being able to run 
a small number of code segments that perform certain I/O tasks on the new technology node).

Third, this work represents a new type of analysis: hardware-software co-analysis. The gate-level 
hardware-software co-analysis framework that forms the critical backbone of the bespoke pro-
cessor approach can be leveraged in many other use cases. For example, the analysis can be used 
for the control of novel module-oblivious power-gating domains, for determining stricter peak 
power and energy constraints for ULP processors and for verifying software-based information-
flow security on commodity ULP processors. These applications of the co-analysis provide sev-
eral launch points from which further software and hardware techniques can be built.

In the coming IoT era, where extreme power and area efficiency must be balanced with design 
costs, bespoke processor design provides a balanced approach that allows designers to easily 
generate efficient hardware for a specific use case. 
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SIDEBAR: BESPOKE PROCESSOR TOOL FLOW 
EXAMPLE 
Bespoke processor design is a fully automated process. Here, we illustrate how bespoke proces-
sor design tailors a processor design to a particular application. Figure 6 illustrates the bespoke 
design tool flow. The left part of Figure 6 shows input-independent gate activity analysis for a 
simple example circuit (top right). During symbolic simulation of the target application, logical 
1s, 0s, and unknown symbols (Xs) are propagated throughout the netlist. Because tmp2 is never 
toggled during any of the possible executions of the application, Gate c is marked for cutting, 
and its constant output value (1) is stored for stitching. Although Gate d is never toggled in Cy-
cles 0-2 nor down the left execution path, it does toggle in the right execution path and thus can-
not be marked for cutting. Gates a and b also toggle and thus are not marked for cutting.  

 
Figure 6. An end-to-end example of the bespoke processor tool flow. 

Once gate activity analysis has generated a list of unexercisable (cuttable) gates and their con-
stant values, cutting and stitching begins. Because Gate c was marked for cutting, it is removed 
from the netlist, leaving the input to its fanout (d) unconnected. During stitching, d’s floating in-
put is connected to c’s known constant output value for the application (1). After stitching, the 
gate-level netlist is re-synthesized. Synthesis removes gates that are not driving any other gates 
(Gates a and b), even though they toggled during symbolic simulation, because their work does 
not affect the state or output function of the processor for the application. Synthesis also per-
forms optimizations, such as constant propagation, which replaces Gate d with an inverter, be-
cause the constant controlling input of 1 to the XOR gate makes it function as an inverter. 
Finally, place and route produces a fully laid-out bespoke design.  
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