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Branch and Data Herding: Reducing
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Abstract—Control and memory divergence between threads
within the same execution bundle, or warp, have been shown
to cause significant performance bottlenecks for GPU applica-
tions. In this paper, we exploit the observation that many GPU
applications exhibit error tolerance to propose branch and data
herding. Branch herding eliminates control divergence by forcing
all threads in a warp to take the same control path. Data herding
eliminates memory divergence by forcing each thread in a warp
to load from the same memory block. To safely and efficiently
support branch and data herding, we propose a static analysis
and compiler framework to prevent exceptions when control
and data errors are introduced, a profiling framework that aims
to maximize performance while maintaining acceptable output
quality, and hardware optimizations to improve the performance
benefits of exploiting error tolerance through branch and data
herding. Our software implementation of branch herding on
NVIDIA GeForce GTX 480 improves performance by up to 34%
(13%, on average) for a suite of NVIDIA CUDA SDK and Parboil
benchmarks. Our hardware implementation of branch herding
improves performance by up to 55% (30%, on average). Data
herding improves performance by up to 32% (25%, on average).
Observed output quality degradation is minimal for several
applications that exhibit error tolerance, especially for visual
computing applications.

Index Terms— Error tolerance, energy efficiency.

I. INTRODUCTION

G PUs and similar SIMD architectures are becoming
increasingly popular in the high performance desktop,

server, and scientific computing domains, especially as
single-thread performance languishes. With the emergence of
high-level programming models such as NVIDIA CUDA [14],
ATI Stream, OpenCL [7], and Microsoft DirectCompute [10],
and the corresponding general purpose GPUs (GPGPUs), focus
has shifted from exclusively graphics processing applications
to also supporting myriad data-parallel applications. Single
instruction multiple data (SIMD) architectures are area and
energy efficient for data-parallel applications, as instruction
sequencing logic is shared by multiple execution units, leaving
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more area and power for the execution units themselves.
However, the performance delivered by these architectures
continues to lag the performance demands of emerging ap-
plications, as performance is often limited by the number of
execution units that can fit within the area and power budget
of the chip. As such, performance optimizations for GPUs and
other SIMD architectures are an active area of research.
The nature of SIMD execution requires that groups of parallel

threads that execute together (warps) must execute the same in-
struction in lockstep. While the SIMD nature of execution al-
lows the processor design to be relatively simple, application
performance may suffer significantly whenever threads in the
same warp behave differently due to control or memory diver-
gence [12], [14]. Control divergence results in serialized execu-
tion of divergent control paths, leaving execution resources idle
and throttling parallelism. Similarly, memory divergence causes
a warp to stall until the longest memory request for a vector load
completes before executing any dependent instructions. Recent
work has shown that control and memory divergence between
threads within a warp cause significant performance bottlenecks
for many GPU applications [6], [9].
In this paper, we attempt to reduce the amount of control and

memory divergence in GPU applications to improve their per-
formance. We draw on the observation that many GPU appli-
cations produce acceptable outputs even if a small number of
threads in a SIMD execution unit are forced to go down the
wrong control path or are forced to load from an incorrect (albeit
spatially local) address. This is not surprising, considering that
many GPU applications are data-intensive—different threads in
a warp are often operating on similar, often spatially correlated,
data. Similarly, the fraction of branches that diverge tends to
be small (even though the corresponding performance degra-
dation is large). We exploit these observations to propose two
novel optimizations—branch herding and data herding. Branch
herding eliminates control divergence by forcing all threads in
a warp to take the same control path. This prevents serializa-
tion of branch paths that causes execution resources to remain
idle for threads on the inactive control path. Data herding elim-
inates memory divergence by forcing each thread in a warp to
load from the same memory block. This reduces the number of
memory stalls. This also reduces bandwidth pressure, as fewer
blocks need to be loaded from memory. With the aid of static
and profiling-based analyses, branch and data herding are ap-
plied discriminately to safely increase performance while main-
taining acceptable output quality.
This paper makes the following contributions:
• We demonstrate the potential for significant performance
benefits without a significant degradation in output quality
from carefully reducing control and memory divergence
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for several GPU applications that exhibit error tolerance.
We confirm that an indiscriminate elimination of diver-
gence can cause significant degradation in output quality.
Similarly, a naïve implementation of divergence reduction
can actually degrade performance in some scenarios.

• We propose two optimizations—branch herding and data
herding—that eliminate control and memory divergence,
respectively. Our software implementation of branch
herding involves using CUDA intrinsics to force di-
verging threads to take the same direction at a branch as
the majority of the threads. A hardware implementation
of branch herding uses majority logic to identify the
branch direction all threads should take. Data herding is
implemented in hardware by identifying the most popular
memory block (that the majority of loads map to) and
mapping all loads from different threads in the warp to
that block.

• While it is known that several data-parallel application can
tolerate errors [2], [18], [22], what is really needed is a way
to exploit available error tolerance safely and efficiently.
To support our branch and data herding implementations,
we also propose a static analysis and compiler framework
that guarantees that control and memory errors introduced
by herding will not cause exceptions, a profiling frame-
work that aims to improve performance while maintaining
acceptable output quality, and hardware optimizations to
improve the performance benefits of herding.

• We quantify the potential performance benefits from dif-
ferent implementations of branch and data herding. Our
software implementation of branch herding on NVIDIA
GeForce GTX 480 improves performance by up to 34%
(13%, on average) for a suite of NVIDIA CUDA SDK and
Parboil [16] benchmarks. Our hardware implementation of
branch herding improves performance by up to 55% (30%,
on average). Data herding improves performance by up to
32% (25%, on average).

• We also evaluate output quality degradation for different
GPU kernels and full applications utilizing our implemen-
tations of branch and data herding. We provide quantita-
tive evaluations for all applications and visual evaluations
when available. Our framework aims to maintain accept-
able output quality degradation for applications that can
tolerate errors.

Note that our evaluations in this paper assume a GPU ar-
chitecture that matches current-generation NVIDIA CUDA de-
vices [12]–[14], though we expect the ideas to be applicable to
other GPU/SIMD architectures as well.
The rest of the paper is organized as follows. Section II

provides background on control and memory divergence and
motivates data and branch herding. Section III describes branch
herding and its various implementations. Section IV describes
data herding and its implementation. Section V describes a
safety, performance, and output quality assurance framework
for branch and data herding. Section VI discusses the method-
ology of our study. Section VII presents results and analysis.
Section VIII discusses related work. Section IX summarizes
and concludes.

II. BACKGROUND AND MOTIVATION

Below we describe the control and the memory divergence
problem and discuss how carefully eliminating divergence may
lead to significant performance benefits.

Fig. 1. The main computation loop for Mandelbrot. The loop is unrolled 20
times in the actual application kernel.

A. Control Divergence

SIMD architectures bolster throughput by sacrificing
per-thread control flow logic in order to increase the number
of execution units on a chip. Since multiple threads (a warp)
execute the same instruction in lockstep on a SIMD multipro-
cessor (SM), only one block of instruction fetch, decode, and
issue logic is needed per SM, allowing a greater fraction of
the GPU’s power and area budget to be spent on execution
units. While such an architectural organization is beneficial for
most data-parallel applications, the requirement that all threads
in a warp must execute in lockstep can lead to inefficiencies
when different threads take different control paths at a branch
(control divergence).
Because instruction sequencing logic is shared by all execu-

tion lanes in a SM, the commonmechanism for resolving control
divergence in a GPU is to execute instructions from one control
path for a subset of threads until reaching a point where con-
trol reconverges, then beginning execution on the other control
path for the remaining threads until revisiting the reconvergence
point [4], [6], [14], [21]. Since divergent branches necessarily
throttle the parallelism and throughput of a SM, they can cause
significant performance degradation for GPU applications [6],
[9]. For a warp size of 32 (common in NVIDIA CUDA GPUs
[14]), execution could be slowed down by a factor of 32 if all
threads take divergent control paths through a section of code.
To understand this better, consider Mandelbrot [20]—an

application from the NVIDIA CUDA SDK that exhibits control
divergence. Mandelbrot generates the Mandelbrot and Julia
sets—complex fractal patterns that are characterized by simple
equations. Fig. 1 shows the main loop of the kernel used to
compute the Mandelbrot and Julia sets. In the actual kernel
code, the loop is unrolled 20 times. Each thread in the program
computes whether a particular point in the complex plane is
in the Mandelbrot (or Julia) set. The program outputs images
depicting the Mandelbrot and Julia sets (Fig. 2). The color
of a pixel corresponds to the number of main loop iterations
a thread executes to determine whether the point is in the

Mandelbrot (or Julia) set.
Control divergence arises in Mandelbrot because the number

of iterations required to determine whether a point is in theMan-
delbrot (or Julia) set varies based on the point’s location, es-
pecially in image regions near the set boundary, where some
threads execute many iterations while others finish quickly. Di-
vergence results in reduced parallelism, as some lanes in the
SMs go unused while threads that have finished their computa-
tions wait until all threads in the same warp reach a reconver-
gence point.
The effect of control divergence on performance can be

significant. Fig. 3 shows the potential performance increase
(runtime reduction) if control divergence can be eliminated for
a fraction of the static branches in Mandelbrot (from 0% to
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Fig. 2. Original Mandelbrot (left) and Julia (right) images. The color of each
pixel corresponds to the number of main loop iterations executed by a thread to
determine whether the point is in the Mandelbrot (or Julia) set.

Fig. 3. The performance of Mandelbrot can be increased by forcing uniformity
for more branches. However, if software overhead is added to ensure branch
uniformity, increasing the number of affected branches increases overhead and
can even result in degraded performance.

100% of branches). The branches are chosen uniformly ran-
domly when the fraction is less than 100%. Control divergence
is preempted by changing the source code to vote within a
warp on the condition of a branch and forcing all threads in the
warp to take the same (majority) direction at the branch (details
in Section III). Experiments were run natively on a NVIDIA
GeForce GTX 480 GPU (details in Section VI).
While only 10% of dynamic instructions in Mandelbrot are

branches, and less than 1% of branches diverge, performance
can potentially be increased by 31% by eliminating control
divergence. As the no software overhead performance series
in Fig. 3 demonstrates, performance increases for Mandelbrot
as control divergence is eliminated for more branches. Fig. 4
shows that the quality of the Mandelbrot output set degrades
by less than 2%, even when divergence has been eliminated
for all static branches. This shows that for certain error-tolerant
applications, it may be possible to get significant performance
benefits from eliminating control divergence for minimal output
quality degradation. A quick look at the Julia output set, how-
ever, also suggests that an indiscriminate selection of branches
for herding may result in significant output quality degradation
for several applications. Therefore, any implementation of
branch herding needs to carefully select the branches to target.
Fig. 5 shows visual representations of the Mandelbrot and
Julia output sets as the percentage of forced uniform branches
increases from 20% to 100% in increments of 40%.
The software overhead performance series of Fig. 3 demon-

strates another important consideration for any technique that
eliminates control divergence. Since the fraction of divergent
branches in a program may be small (in this case, less than 1%),
an indiscriminate application of a technique to all branches may
result in significant overhead that diminishes or even eliminates
performance gains that result from reduced divergence. This re-
sult reinforces the conclusion that care should be exercised in

Fig. 4. While eliminating control divergence can increase performance, blindly
forcing branch uniformity can result in degraded output quality.

Fig. 5. Progression of Mandelbrot (top) and Julia (bottom) images from 20%
to 100% forced branch uniformity in 40% intervals.

selecting the branches to target for elimination of control diver-
gence. Also, a low-overhead mechanism for eliminating control
divergence may enable significantly more benefits. The result
also confirms that naïve implementations of techniques to elim-
inate control divergence may actually decrease performance in
some scenarios.

B. Memory Divergence

Like control divergence, memory divergence occurs when
threads in the same warp exhibit different behavior. In the GPU,
a load operation for a warp is implemented as a collection of
scalar loads, where each thread potentially loads from a different
address. When a load is issued, the SM sets up destination reg-
isters and corresponding scoreboard entries for each thread in
the warp. The load then exits the pipeline, potentially before
any of the individual thread loads have finished. When all the
memory requests corresponding to the warp load have finished,
the destination vector register is marked as ready. Instructions
that depend on the load must stall if any lanes of the destination
vector register are not ready.
Memory divergence occurs when the memory requests for

some threads finish before those of other threads in the same
warp [9]. Individual threads that delay in finishing their loads
prevent the SM from issuing any dependent instructions from
that warp, even though other threads are ready to execute.
Memory divergence may occur for two reasons. (1) The time
to complete each memory request depends on several factors,
including which DRAM bank the target memory resides in,
contention in the interconnect network, and availability of
resources (such as MSHRs) in the memory controller. (2) Since
the target data for a collection of memory requests made by a
warp may reside in different levels of the memory hierarchy,
the individual memory operations may complete in different
lengths of time.
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Fig. 6. Eliminatingmemory divergence (forcingmore uniform loads) increases
performance but also degrades output quality.

Most GPU architectures do not implement out-of-order exe-
cution due to its relative complexity and hardware cost. Rather,
GPUs cover long latency stalls by multithreading instructions
from a pool of ready warps. Providing each SM with plenty
of ready warps ensures that long latency stalls will not be ex-
posed. Memory divergence delays the time when a warp may
execute the next dependent instruction, cutting into the pool of
ready warps and potentially exposing stalls that throttle perfor-
mance. Divergent memory accesses may also throttle perfor-
mance by consuming additional resources, such as MSHRs and
memory bandwidth. Therefore, eliminating memory divergence
can potentially increase performance, especially for data-inten-
sive GPU applications.
Another rarely discussed impact of memory divergence is

on memory utilization. If different loads fetch from different
memory blocks, more memory blocks need to be brought into
the chip. (A memory block is the unit of memory pulled in from
the memory system by a memory request.) More requests in-
crease the bandwidth pressure on the GPU, which is often al-
ready bandwidth-limited. So, if memory divergence is elimi-
nated (for example, when all loads fetch from the same memory
block), bandwidth pressure reduces.
To gauge the potential benefit of eliminating memory diver-

gence, we look at the SobelFilter application from the NVIDIA
CUDA SDK. SobelFilter applies an edge detection filter kernel
to an input image and produces an output image. Each thread
in SobelFilter loads a block of pixels from the input image and
processes them in different arrangements with the edge detec-
tion kernel. We eliminate load divergence for the three kernels
of SobelFilter bymodifying the application so that for each load,
all threads in a warp load data from the same address (that of the
first active thread in the warp). Thus, the individual thread loads
can be coalesced into a single memory request, making diver-
gence impossible.
While the actual loads for individual threads in a warp may

indeed diverge, the threads all load data from a localized region
of the input image. Since the image data exhibits spatial corre-
lation, eliminating divergence by loading from an address that
corresponds to a neighboring pixel may often return a similar or
even identical value. Fig. 6 shows the impact on performance
and output quality of increasing the fraction of warp loads that
are forced to load from the same address. The figure reveals
that eliminating memory divergence (forcing load uniformity)
increases performance by up to 15%. However, output quality
is also degraded, resulting in up to 40% mismatching bytes in
the output image. Thus, some intelligence may be required to
determine how and for which loads to eliminate memory diver-
gence such that acceptable output quality is maintained. Fig. 7
shows the Lena input image along with the pristine filter output

Fig. 7. Original Lena image and pristine Sobel filter output.

Fig. 8. Lena images processed by the Sobel edge detection kernel—progres-
sion from 20% to 100% forced load uniformity in 40% intervals.

Fig. 9. Software branch herding implementation and example uses.

(0% forces load uniformity), while Fig. 8 shows a progression
of output images produced by filtering the Lena input image
with an increasing fraction of forced uniform loads (from 20%
to 100% load uniformity).

III. BRANCH HERDING

The previous section demonstrated that for an application
with divergent branches, eliminating control divergence has the
potential to increase performance, possibly at the expense of
output quality. Due to the unique handling of divergent con-
trol flow instructions in GPUs and the forgiving nature of many
data-intensive GPU applications, we propose a SIMD-specific
technique for eliminating control divergence. We call our tech-
nique branch herding. Branch herding eliminates control diver-
gence by herding all the threads in a warp onto the control path
taken by the majority of threads. Thus, when the threads in a
warp each evaluate the boolean condition for a branch, the ma-
jority outcome is decided and all threads follow the majority
decision, precluding the possibility of control divergence. Be-
cause control divergence is eliminated, branch herding has the
potential to increase performance for applications with diver-
gent branches. Also, for GPU applications that can tolerate er-
rors, acceptable output quality can be maintained when branch
herding is used (see Sections V and VII), even though some mi-
nority of threads are allowed to perform inexact computations.
The implementation of branching in GPUs leads to benefits

for branch herding in addition to the elimination of branch path
serialization. The normal implementation of branching in the
GPU uses a reconvergence stack and a special reconvergence
instruction that is inserted before a potentially divergent branch
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Fig. 10. Branch statistics for applications that exhibit control divergence.

[4], [6], [21]. The reconvergence instruction passes to the hard-
ware the location (PC) of the reconvergence point of the branch
(the next instruction that will be executed by threads on both
control paths). The instruction at the reconvergence point is
also flagged using a special field in the instruction encoding
[4], [21]. Whenever a branch is reached, a 32-bit thread mask
is computed for the warp, indicating which active threads take
the branch. If the branch diverges, the mask is pushed onto the
reconvergence stack, along with the PC indicating the alter-
nate branch target and the reconvergence PC. A subset of the
threads (indicated by the mask) execute the taken branch path
[4], [21], while the other lanes in the SM are idle. When execu-
tion reaches the reconvergence point, the stack is popped, and
the remaining threads (indicated by the mask) begin executing
from the stored PC. The next time the reconvergence point is
reached, all threads that originally reached the branch begin exe-
cuting together again. Note that this mechanism can also handle
nested divergence.
Since branch herding eliminates control divergence, the re-

convergence stack is not needed for herded branches. In ad-
dition, by ensuring that all branches will be uniform branches
[12], branch herding obviates the need for the special recon-
vergence instruction. Thus, the compiler does not insert the re-
convergence instruction when the branch herding compiler flag
is set or when a kernel call or particular branch instruction is
marked for branch herding. It may also be possible to eliminate
the reconvergence instruction by identifying the reconvergence
point using a field of the branch instruction.

A. Software Branch Herding

Branch herding can be implemented relatively efficiently in
software, using the CUDA intrinsics ballot and pop-
ulation count [14]. The ballot intrinsic is a warp vote
function that combines predicates computed by each thread in a
warp and sets the bit in a 32-bit integer if the predicate eval-
uates to non-zero for the thread in the warp. In the context
of branch herding, the result is a 32-bit integer that specifies the
branch condition outcome for each thread in a warp. The ballot
result is broadcasted to a destination register for each thread
in the warp. We use the population count intrinsic to count the
number of set bits in the ballot result. In context, this means that
each thread knows how many threads in the warp should take
the branch. The branch herding function compares the popula-
tion count to 16 (half warp size) and returns true if the majority
of threads take the branch and false otherwise. Fig. 9 shows the
software implementation of branch herding, and provides exam-
ples of how software branch herding can be used in programs,

simply by passing the condition of a control statement (e.g., if,
while, for) to the branch herding procedure.

B. Hardware Branch Herding

Though our implementation of software branch herding only
adds 3 extra instructions per branch, even this overhead may
be intolerable in several scenarios, especially in tight loops
or for programs that have a large fraction of branches that di-
verge only infrequently. Profiling information for benchmarks
from the NVIDIA CUDA SDK and Parboil [16] suites that
exhibit control divergence (Fig. 10) reveals that the fraction of
dynamic branches that diverge is indeed often very low. This
is primarily because GPU programmers usually take pains to
reduce potential control divergence. Nevertheless, as demon-
strated in Section II, even a small fraction of divergent branches
can significantly reduce performance. Ideally, branch herding
should be implemented as a lightweight hardware mechanism
to maximize potential benefits.
For the normal implementation of branching in the SM, each

active thread evaluates the branch condition to identify whether
it should fetch the next instruction from the branch target or fall
through. After the branch condition has been evaluated for each
thread, the SM combines the condition bits from the threads to
form the 32-bit branch mask, then checks for uniformity of the
mask (all 0 s or all 1 s). If the branch is not uniform, the SM
updates the reconvergence stack, as explained above.
Hardware branch herding works the same way as the normal

branching implementation, but instead of evaluating the unifor-
mity of the mask and potentially updating the reconvergence
stack, the SM evaluates the majority value for the mask. The
majority condition determines the next instruction for all threads
in the warp. Evaluation of the majority logic can take place in
the timing slack apportioned for the uniformity logic and up-
dating the reconvergence stack (since divergence is impossible
with branch herding). Thus, hardware branch herding should not
affect cycle time and should not incur additional cycles of over-
head. Overhead will be in terms of area, since one block of ma-
jority logic is needed per SM. However, the area of one majority
block for a 32-bit word is insignificant compared with the area of
the SM. Branch herding logic can be activated at a coarse gran-
ularity by setting an enable bit in the hardware when the GPU
is initialized for a kernel call or at a fine granularity by using a
special field in the branch instruction to denote that the branch
should be herded. The branch instruction contains an optional
field (.uni) to identify a uniform branch (i.e., a branch for which
it is possible to statically determine that the branch will not di-
verge). For branch herding, we override the field with a different
code (.hrd) to indicate that the branch should be herded.
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IV. DATA HERDING

As discussed in Section II-B, memory divergence can
occur when a load instruction for a warp generates multiple
memory requests that access different regions of memory
or different levels of the memory hierarchy. The number of
memory requests generated by a load instruction is determined
by coalescing hardware in the SM [14]. Memory coalescing
is performed to determine the minimum number of unique
memory requests that can satisfy the individual scalar loads
that make up a vector load instruction. Each scalar load address
maps to a block of memory (32, 64, or 128 bytes depending
on the data type), and each memory request fetches one block
from memory. If multiple scalar loads map to the same block
of memory, they are coalesced into a single memory request.
The GPU hardware is designed such that if all scalar loads
in the same warp access consecutive addresses, they can be
coalesced into a single request. Besides generating memory
divergence, non-coalesced loads are inefficient because they
generate multiple memory requests and fetch data that is not
used, wasting precious memory bandwidth and consuming
additional memory controller resources such as MSHRs.
We propose a data herding implementation based on a modi-

fied coalescing policy. The modified coalescing hardware gen-
erates only one memory request for a collection of scalar loads.
Rather than forming a queue of unique memory requests re-
quired to satisfy the scalar loads, the modified hardware identi-
fies the most popular memory block (that the majority of loads
map to) and maps all loads to that block—some naturally and
some forcefully. This is done by comparing the number of loads
that coalesce into each potential memory request and discarding
requests for all but the most popular block. The upper

bits of an N-bit address identify the memory
block that an address maps to. For any address that does not
already map to the most popular memory block, the most sig-
nificant bits of the address are overwritten
with the bits that identify the most popular block. We propose
data herding only for loads to ensure that all expected loca-
tions are initialized in the case of a store and to avoid conflicts
that might result if stores were forcefully mapped to the same
memory block.
Since our implementation of data herding ensures a single

memory request for each load, and a single request is satisfied at
only one level of the memory hierarchy, we prevent both types
of memory divergence and also reduce memory traffic. Thus,
bandwidth-limited applications may benefit substantially from
data herding. Also, it is interesting to note that data herding, in
itself, will never generate a memory exception, due to the nature
of GPU memory design and allocation properties. In short, the
threads involved all belong to the same process, and the entire
memory block theywill map to also belongs to the same process.
An exception could, however, be generated, depending on how
herded data are used later in the program. We address safety
concerns associated with herding in Section V.

V. SAFETY, PERFORMANCE, AND OUTPUT QUALITY
ASSURANCE FOR BRANCH AND DATA HERDING

It is well-known that several data-parallel applications exhibit
error tolerance [2], [18], [22]. To efficiently exploit this error tol-
erance through branch or data herding, the challenges lie in (1)
guaranteeing that loading the wrong data or taking the wrong
branch path will not cause an exception, and (2) maximizing

performance improvement while maintaining acceptable output
quality. In this section, we describe a static analysis and com-
piler framework that guarantees (1) by identifying branches and
data that are safe for herding, and a profiling framework that tar-
gets (2) by identifying the subset of safe branches and data for
which herding increases performance while maintaining accept-
able output quality.
The first step in identifying safe branches and data for herding

is to identify vulnerable operations that, if affected by an error,
might cause exceptions. These are pointer dereference and array
reference (vulnerable to Segfault), integer division (vulnerable
to INT divide by zero), and branch condition check (vulnerable
to stack overflow if an error causes infinite looping or recur-
sion). We have written a clang [17] plugin that performs safety
analysis by first parsing a program into its abstract syntax tree
(AST) and searching through the AST to identify vulnerable
operations.
After identifying vulnerable operations, our tool generates the

control and data dependence graphs from the AST and traces
through them to identify the branches and data that the vulner-
able operations depend on. Then, to guarantee freedom from ex-
ceptions, the tool does not allow the compiler to insert herding
directives for the branches and data identified as unsafe during
static analysis. Note that control dependence-based static safety
analysis for branch herding is conservative. Even if vulnerable
operations are control-dependent on the outcome of a branch,
the branch may be herded safely if it can be determined from
the code that herding the branch will only result in skipping the
dependent vulnerable operations. However, in such cases, it can
be determined statically that the branch will diverge, and the
divergence could be eliminated in software (provided that the
resulting output quality degradation is acceptable). Preventing
herding of “unsafe” branches and data ensures that errors in-
duced by herding will only impact output quality.
After identifying which branches and data can be safely

herded, the next step is to identify which can be profitably
herded. As noted in Section II, one challenge of branch and
data herding is determining which branches and data to herd
so as to improve performance while maintaining acceptable
output quality. While this can be done by the programmer,
often with little effort (the programmer is often aware of
which branches may diverge and whether or not it would be
acceptable for some threads to perform inexact computations
based on the associated branches or data), we also present an
automated profiling-based framework for determining which
safe branches and data may be most profitable for herding.
We use the CUDA Compute Profiler [14] to determine which

safe branches/loads to safe data exhibit divergence. These are
candidates for branch/data herding. Our profiling framework
starts with no herded branches/loads, progressively marks a
larger fraction of the candidate branches/loads for herding,
and at each step profiles the program for a set of test inputs
to characterize the space of output quality degradation and
performance vs. number of herded branches/loads. From this
sampling we can determine an approximate upper bound on
output quality degradation corresponding to a given amount
of herding by selecting the worst case degradation observed
for a given amount of herded branches/loads. During run-
time, performance counters [14] track the number of herded
branches/loads and disable branch/data herding before the
specified approximate threshold has been exceeded. To en-
able profiling and quality monitoring, the programmer should
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Fig. 11. Pseudocode describing safety, performance, and output quality assur-
ance framework for branch and data herding.

mark the variable in the code that represents output quality
and specify the desired approximate bound on output quality
degradation. Fig. 11 presents pseudocode describing the control
flow of our safety, performance, and output quality assurance
framework for branch and data herding.
It should be noted that our profiling framework can only pro-

vide output quality guarantees for profiled inputs (or inputs sim-
ilar to the profiled inputs). For all other inputs, we only pro-
vide an approximate upper bound on output quality degradation.
However, we observed that the approximate bound is often ef-
fective in practice. Creating more rigorous techniques for per-
formance and output quality assurance is a subject of ongoing
work.
Note that while hardware-based herding implementations can

improve the performance benefit of herding (Section VII), soft-
ware-based herding can be implemented for off-the-shelf GPUs
and applications, and thus has the potential to demonstrate real,
immediate benefits of exposing control and data errors in appli-
cations. In fact, our software herding results (Section VII) show
speedups for applications running natively onNVIDIAGeForce
GTX 480. Typically, we use data herding for all loads to the
largest data structure of the application identified as safe for
herding. Section VII provides information on which branches
and data were identified as safe and profitable for herding by our
framework. Where possible, we aim for conservative results by
using input data not characterized during profiling when cap-
turing performance and output quality results.

VI. METHODOLOGY

We perform experiments using two different execution en-
vironments. We run branch herding experiments natively on a
CUDA system comprised of a NVIDIAGeForce GTX 480GPU
and a 2.27 GHz Intel Xeon E5520 CPU with 24 GB of memory.
The NVIDIA CUDA v3.2 Toolkit and SDK are installed on the
system.
Software branch herding performance and output quality are

measured directly at runtime. Thus, reported benefits are for
native execution on a state-of-art GPU architecture. To measure
the %performance of hardware branch herding, number of cy-
cles taken to execute a kernel that uses hardware branch herding

, we start with the number
of cycles taken to execute the same kernel when software
branch herding is used and
use CUDA Compute Profiler [14] profile counters to measure
the number of instructions added by software branch herding
function calls . We scale these
instruction counts by the CPI for the corresponding kernels

TABLE I
BENCHMARKS

and discount the total cycle count by
this amount.

Since evaluating data herding requires changing the behavior
of coalescing hardware and cannot be easily emulated in soft-
ware, we use the GPGPU-Sim [1] simulator for our experi-
ments. The simulator models the behavior of a NVIDIA Quadro
FX 5800 GPU and can run natively-compiled CUDA v2.1 bi-
naries.
Potentially error-tolerant benchmarks are selected from the

NVIDIA CUDA SDK and Parboil [16] benchmark suites.
For evaluation of branch herding, we use all benchmarks for
which more than 0.5% of the dynamic branches diverge. For
data herding, we select benchmarks only from the NVIDIA
CUDA SDK (v2.1) that are compatible with GPGPU-Sim v2.x,
which is designed around CUDA v2.1. In addition to compu-
tation kernels, we evaluate full, end-to-end benchmarks (e.g.,
volumeRender, particles, oceanFFT, lbm, etc.), that contain
multiple kernel calls, as a partial means of demonstrating that
outputs from kernels that use herding are still acceptable in
the context of the greater application. Table I provides short
descriptions of the benchmarks used in our evaluations.
Although we do not expect any performance overhead for

hardware branch herding (Section III), we collect results as-
suming different cycle overheads to provide both conservative
and expected performance results. While we also expect that
data herding based on modified coalescing can be performed in
the same timing slack used for normal coalescing, we assume a
cycle overhead for a more conservative estimate of the perfor-
mance benefits.

VII. RESULTS

A. Branch Herding

Branch herding increases the performance of GPU applica-
tions that normally exhibit control divergence by preventing
the serialization of branch paths and eliminating overheads
associated with divergent branch handling. Fig. 12 shows
potential performance gains for branch herding for applications
that normally exhibit control divergence. Hardware branch
herding increases performance by 30% on average and up
to 55% for individual applications. While we do not expect
any performance overhead for hardware branch herding (see
Section III), we also show conservative results that assume a
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Fig. 12. Potential performance improvement for software and hardware branch herding. Although we don’t expect any additional performance overhead for our
implementation of hardware branch herding, we also show a conservative performance measurement assuming a 1 cycle overhead. Overhead is at most 1 cycle,
since the additional logic (majority) is simpler than population count logic, which evaluates within a single cycle.

TABLE II
OUTPUT QUALITY DEGRADATION (%) FOR BRANCH HERDING COMPARED TO ORIGINAL

1 cycle overhead for hardware branch herding. Our software
branch herding implementation, which runs natively on com-
mercial GPU products, achieves 13% performance benefits,
on average. Recall that the software branch herding imple-
mentation targets only safe branches that exhibit divergence
AND show benefits from software branch herding. Therefore,
performance improvements are significantly higher than any
naïve software branch herding implementation that targets all
static branches (Fig. 3).
Since branch herding exploits error tolerance to eliminate di-

vergence, it may result in output quality degradation. Table II
compares output quality degradation for the benchmarks with
and without branch herding. Quantifying output quality degra-
dation is difficult, because really, the consumer of the data de-
termines whether or not it is acceptable, and acceptability is
often application-dependent. We provide output quality mea-
surements in terms of the quality metrics incorporated by the
original benchmark writers, however, our framework is mod-
ular and can easily use any other metrics (e.g., SNR) of interest
to the programmer or end user. Output quality degradation is
reported in terms of the fraction of mismatching bytes in the
program output, except where otherwise noted. Overall, branch
herding does not result in much additional output quality degra-
dation (and degradation can be approximately bounded by our
framework). Branch and data herding may be especially appli-
cable for visual computing applications (e.g., video rendering
or gaming), where performance and energy-efficiency may be
more critical than perfect output quality. We provide image out-
puts for several visual computing applications to demonstrate
that post-herding output quality may often be acceptable for
such applications.
Mandelbrot: In Mandelbrot, which is described in detail in

Section II, typically only a small fraction of dynamic branches
diverge, but divergence is spread over all of the static branches
in the program. Analysis identifies all branches as safe for
herding. While herding more divergent branches improves
performance, the amount of branch herding that can be al-
lowed depends on the desired output quality and the region of
interest in the image, since the amount of divergence depends
on the region of the Mandelbrot set being viewed. Regions
with intricate detail can result in substantial divergence, while

Fig. 13. Lena image processed by Sobel edge detection kernel with branch
herding. Compare to original result in Fig. 7.

monochrome regions generate no divergence. Although the
overall fraction of divergent branches is often small, they can
significantly impact performance. Hardware branch herding
achieves about 3.5 better performance improvement than the
software version, since software branch herding adds overhead
to many non-divergent branches in a relatively tight loop.
Output images resemble those in Section II. Note that because

branch herding may estimate whether a point is in the Man-
delbrot set before completely finishing the calculation for that
point, even though some output pixels are not colored correctly
by the application, the determination of the Mandelbrot set may
be correct for those points. Thus, whether or not branch herding
produces acceptable results may depend on whether the output
data will be used, e.g., for a visualization or as a mathematical
set.
SobelFilter: Divergence is targeted in the SobelFilter kernel

(described in Section II) in corner cases where the computed
output pixel value for one or more threads in a warp does not
lie in the valid output range. Ignoring these cases with branch
herding causes the affected pixel values to roll over on the op-
posite side of the output range, adding some noise to the output
image, which can be seen in Fig. 13. Our framework confirms
the safety of herding in this case, as it only affects pixel values.
Herding is not profitable for all branches, since herding branches
in tight loops that rarely diverge does not improve performance.
Despite noise added by herding, edges are still detected.
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Fig. 14. Comparison of histogram output with and without branch herding.

Fig. 15. Output comparison—original volume rendering (left) and branch
herding result (right).

histogram: Histogram has the highest fraction of divergent
branches of all the applications we tested and sees considerable
speedups for both software and hardware branch herding. All
the divergence is caused by one static branch in a frequently-
called function that adds data to the sub-histogram generated
by a warp. (Sub-histograms are later merged together to create
the final output.) This branch is safe for herding, as herding only
affects histogram data. Branch herding may cause a few values
not to be added to the bins, resulting in slightly undercounting
the bin values. On average, bin values are undercounted by 6%,
as seen in Fig. 14. Output quality is reported as the average abso-
lute difference between the bin values in the computed and ref-
erence outputs. It should be noted that quality degradation, and
thus acceptability, depends on the characteristics of the input
data.
volumeRender: VolumeRender renders a 3D texture. Al-

though we can safely use branch herding for all the branches,
most divergence is due to two static branches that cause threads
to finish their computations either when the object at that pixel
is opaque or too far away to be seen. Branch herding can result
in some threads exiting early when the majority of threads in
the same warp have finished their computations. Eliminating
divergence improves performance significantly, and only in-
creases output quality degradation by 1%. Fig. 15 compares
the original image produced by volumeRender to the image
produced with branch herding.
particles: The particles application performs a simulation of

physical interactions between a system of particles in an en-
closed volume. The output describes the positions and veloci-
ties of the particles after a certain number of time steps. Herding
branches identified by the framework only impacts these posi-
tions and velocities. A large fraction of the instructions in parti-
cles are branches that are part of collision checks between par-
ticles and with the surface of the enclosure. Even though the
fraction of divergent branches is less than 1%, the number of

divergent branches and the effect of divergence on performance
is significant. Eliminating divergence with branch herding does
not affect the output much because even if a collision is missed
in one time step, it will likely be observed in a subsequent time
step. This will result in a slightly different collision, but a sim-
ilar or identical net effect. Both software and hardware branch
herding improve performance significantly without producing
any noticeable degradation in the output. Whether or not results
are acceptable may depend on whether the simulation is for a
visualization or a scientific experiment. For example, degraded
output quality may be more acceptable in a physics simulation
performed for a video game.
oceanFFT: The oceanFFT benchmark computes a height-

field for a region of ocean using spectral methods. Divergence
in oceanFFT arises due to boundary checks at the edge of the
simulated region. Ignoring divergence with branch herding re-
sults in some slight deviations in the output around the edges
of the simulated region, but does not cause the reported output
quality to change by a noticeable amount. In cases where the ap-
plication would be used for a graphic visualization of the ocean,
the deviations caused by branch herding would most likely be
unnoticeable to the human eye.
sad: The sad benchmark performs sum of absolute differ-

ences-based motion estimation as part of the H.264 video en-
coder. Previous works have observed error tolerance for SAD-
based motion estimation [18] due to the approximate nature of
the block matching that it performs. We use branch herding for
all safe branches in the sad kernel, which results in less than
0.5% output quality degradation. For most branches identified
as unsafe, disallowing herding does not hurt much, since the
alternate branch path is empty. In most cases, inexactness im-
posed by branch herding does not impact sad values enough to
hinder block matching in the greater application. Thus, herding
is often acceptable.
lbm: The lbm benchmark performs a lid-driven cavity fluid

dynamics simulation involving a fluid that interacts with obsta-
cles in a simulated volume. We use branch herding to eliminate
divergence in the condition that tests for collisions between the
fluid and an obstacle in a particular cell of the volume. Since
the branch paths following the collision-detection branch con-
tain many instructions, throughput can be affected substantially
if the branch diverges. Though most cells in the volume remain
error-free, branch herding causes some perturbations in the fluid
simulation results. Thus, if the goal of the simulation is to sim-
ulate the fluid dynamics as accurately as possible (which may
very well be the case in a scientific simulation), branch herding
may be inappropriate for lbm.

B. Data Herding

Fig. 16 shows potential for performance improvements for
various benchmarks with data herding. Benefits can be substan-
tial or nonexistent, depending on the benchmark. For the three
benchmarks that do not see benefits for data herding, less than
0.2% of dynamic instructions are loads. Output quality degra-
dation associated with data herding is compared against original
output quality degradation in Table III.
Data herding achieves performance benefits for two reasons.

First, all non-coalesced loads to the herded data will be co-
alesced into a single memory request. This reduces memory
bandwidth usage and contention for resources. Reduced band-
width and contention can also reduce the latency of memory
requests. Second, since only one memory request is made for a
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Fig. 16. Data herding improves performance for error-tolerant benchmarks, except when the fraction of loads is very small, leaving little opportunity for
improvement.

TABLE III
OUTPUT QUALITY DEGRADATION (%) FOR DATA HERDING COMPARED TO ORIGINAL

Fig. 17. Data herding improves performance by reducing memory stalls and bandwidth usage due to divergent memory requests.

load, memory divergence is eliminated, and warps do not spend
cycles waiting for additional requests to finish after the first re-
quest returns. Fig. 17 shows results for data herding quantifying
the reduction in bandwidth usage and cycles that ready warps
spend stalled and waiting for outstanding memory requests.
Below we explain results for individual benchmarks.
histogram: In histogram, we target loads to the initial data

set to be binned in the histogram, as well as the data in the
sub-histograms computed by the warps. Static analysis iden-
tifies these data as safe for herding. The benchmark consists
of two kernels—one that adds values to sub-histograms and
one that merges sub-histograms. Most of the speedup from data
herding comes from the kernel that performs merging, since
it can generate many non-coalesced loads. While we observed
that data herding often has only a small effect on output quality,
output quality degradation depends on the characteristics of the
input data. For example, uniformly distributed random data can
be herded without affecting output quality substantially. On the
other hand, if individual sub-histograms contain very distinct
bin counts, data herding may be inappropriate for this bench-
mark. This brings up an important point to remember about pro-
filing-directed herding. Output quality could potentially change
undesirably for a pathological input data set. Thus, while our re-
sults do not guarantee acceptable output quality for the bench-
marks over all possible data sets, they do demonstrate the po-
tential for benefits for error tolerant applications, especially if
the target data set can be accurately characterized.
nbody: Nbody performs an all-pairs N-body simulation for

a collection of bodies. The application is considerably band-
width-limited, especially as the number of bodies increases,
since the data requirement scales approximately as ,

stemming from the forces that exist between N bodies.
The output of the N-body simulation describes the positions
of all the bodies after a specified number of timesteps. We use
data herding for the body data and observe less than 1% output
quality degradation, measured in terms of the average absolute
difference in body positions between the computed output and
a reference data set. While the deviations in the output set are
visually imperceptible, they do exist. Thus, herding may be
appropriate for a visualization, but may be inappropriate for a
high-precision scientific simulation.
SobelFilter: As in Section II, we herd image data for

SobelFilter. While the performance results are similar to the
maximum benefits achieved in the motivational experiment,
the output quality degradation is significantly less, since loads
that map to the most popular memory block receive their
actual data with our proposed implementation of data herding
(Section IV). Output quality is also better than in the branch
herding case, since data herding takes advantage of spatial
correlation in the image data, which contributes to the error
resilience of SobelFilter. Since the output image after herding
is visually indistinguishable from the original filtered image,
we omit the image here to save space and refer the reader to the
images in Section II.
recursiveGaussian: RecursiveGaussian performs Gaussian

blur filtering on an input image. As in the case of SobelFilter,
we herd the input image data. Error tolerance stems from the
spatially correlated image data and the nature of the Gaussian
filtering operation. Since the output value for a pixel is a
weighted sum of the neighboring pixels, based on a Gaussian
function, mixing in a few incorrect values is usually impercep-
tible, especially if the incorrect pixel values are close to the
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Fig. 18. Output comparison—Original Gaussian blur filtering (left) and data
herding result (right).

intended values due to spatial correlation. Because of the shape
of the Gaussian function, the farther a neighboring pixel is from
the pixel being computed, the less it affects the output. Thus,
ignoring memory divergence due to non-contiguous data that
cannot be coalesced usually has little effect on the output, since
the data tend to be further apart in the image. We often did not
observe any difference in output quality when data herding was
used. Of course, output quality degradation may be greater for
highly uncorrelated inputs. Fig. 18 compares the original filter
result to the post-herding result for a sample input image.
Mandelbrot, binomialOptions, and dxtc: For these three ap-

plications that do not see benefits from data herding, loads make
up only 0.2% of the instruction mix. Thus, there is almost no po-
tential for benefits with these applications to begin with.

VIII. RELATED WORK

Dynamic Warp Subdivision: The basic unit of SIMD execu-
tion is the warp. However, all threads in a warp must be ready in
order to issue the next instruction. When SIMD restrictions stall
execution, some threads in the warp may be ready while others
are stalled. Normally, GPUs use warp-level multi-threading to
hide latency, but this strategy requires a large, costly register
file. Instead of deep warp-level multi-threading, dynamic warp
subdivision [9] advocates using intra-warp latency hiding to
increase throughput, by allowing a divergent warp to occupy
multiple scheduler slots without increasing its register usage.
This allows threads on divergent branch paths to subdivide their
warp and execute independently. Similar to a previous work ad-
vocating “diverge on miss” [15], this also allows a subset of
threads in a warp to continue execution when the remaining
threads are still waiting on memory. The main drawback to dy-
namic warp subdivision is that it at least doubles the complexity
and hardware cost of scheduling logic for each SM [9].
Dynamic Warp Formation: The goal of dynamic warp for-

mation [6] is to increase hardware utilization by dynamically
combining threads from multiple divergent warps. When mul-
tiple warps diverge, threads that take the same branch direction
in one warp can be grouped with threads that take the same
branch direction in other warps. Thus, fuller warps are formed
dynamically, increasing throughput and partially mitigating the
inefficiency caused by control divergence. The scheduler forms
new warps out of ready threads by grouping threads that have
the same next PC. Thread block compaction [5] applies dy-
namic warp formation whenever a divergent branch is encoun-
tered by synchronizing warps and compacting them into new
warps, in which all threads take the same control path. A large
warp microarchitecture [11] performs a similar optimization by
exposing a larger warp of threads to the scheduler, which is able

to select SIMD width-sized sub-warps that have the same con-
trol behavior.
While dynamic warp formation has the potential to increase

throughput for some applications, it is not always possible to
find enough divergent threads that take the same branch direc-
tion to fill a warp within the scheduling window of available
warps. Thread block compaction may help in this regard, but in
some cases, warps must remain partially empty anyway, even
with the additional hardware overhead required for dynamic
warp formation. Nested divergence complicates the problem,
making it harder to find a full warp of threads with the same
next PC.
Dynamic warp formation also adds complexity in the register

file, which is typically heavily banked, such that each lane of
a SM can access one bank of the register file. Dynamically
grouping multiple threads from the same home lane into the
same warp requires adding a crossbar network so that each
thread can access its registers when mapped to a different lane
than its home lane. This also results in bank conflicts when
multiple threads from the same home lane are grouped into
the same warp, such that register file accesses are serialized
over multiple cycles. One possible solution to this problem
involves passing along the home lane that a thread belongs to
and using lane information during dynamic warp formation
so that threads are only grouped together if they belong to
different home lanes. This method reduces bank conflicts, but
it adds complexity to the dynamic warp formation hardware
and also makes it somewhat harder to find threads that can be
grouped into efficient, full warps, potentially diminishing the
effectiveness of dynamic warp formation. Furthermore, for
some divergence patterns, it is impossible to group threads in
this manner [6].
Divergence Avoidance Through Software Transformation:

Besides hardware-based techniques such as those discussed
above, software-based techniques for avoiding divergence have
also been proposed [3], [23]. These techniques aim to avoid
divergence by re-mapping memory or transforming memory
references to reorganize the layout of data, improve memory
coalescing, and reduce control and memory divergence. Like
software-based herding, these software-based techniques have
the benefit of being immediately deployable on real GPUs.
Best-effort Computing for Parallel Applications: Related

works on best effort computing for a GPU version of semantic
document search [2] and parallel implementations of recog-
nition and mining applications [8] also recognize and exploit
the forgiving nature of certain parallel algorithms to increase
performance by relaxing correctness. The authors observe
acceptable results for target applications after relaxing data
dependencies and dropping computations. They relax data
dependencies between iterations of a function call to give
the parallel processor or GPU more work to do in parallel.
They also monitor the usefulness of iteratively computed data
during runtime and drop computations between iterations when
the observed usefulness of the computed data falls below a
threshold. The idea of exploiting the forgiving nature of parallel
applications to improve performance is common to our work.
We, however, propose a different set of optimizations that
target GPU and SIMD-specific inefficiencies.
Reliability—Performance Tradeoffs for Data-Parallel

Workloads: A similar work demonstrates that reliability can
be traded for increased efficiency in certain data-parallel
workloads [22]. The authors argue that data-parallel physics
animations require perceptibility, rather than strict numerical
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correctness. As such, they propose reducing floating point
precision to improve energy efficiency. Exploiting error tol-
erance enables higher performance for the same cost, as they
can afford to put more, reduced-precision FPUs on a chip, as
opposed to fewer, high-precision FPUs.
Outcome Tolerant Branches: A work on Y-branches [19]

showed that taking the wrong direction for some branches may
still bring the processor to a correct architectural state. By tog-
gling the outcome of random branches in a program, the authors
observed that for 40% of dynamic branches, taking either branch
direction leads to a valid architectural state. The percentage was
higher (around 50%) when allowing a mispredicted branch to
continue executing on the wrong path. The authors note that
outcome tolerance (the property of a branch indicating that the
program output does not depend on the chosen branch direction)
is a result of redundancies inserted by the programmer or com-
piler, as well as partially dead code.
Branch herding may benefit from outcome-tolerance in

branches, but does not require it. In general, we rely on the
error resilient nature of applications to tolerate inexactness
in some thread computations. We also evaluate the effect on
program outputs of allowing some branches to take incorrect
control paths, observing acceptable outputs for many applica-
tions. In our experiments, we never observed a program crash
as a result of herding branches onto the same branch path.

IX. CONCLUSION

In this paper, we demonstrate that significant potential perfor-
mance benefits are possible from safely and efficiently reducing
control and memory divergence for GPU applications that can
tolerate errors. We propose two optimizations—branch herding
and data herding—that eliminate control and memory diver-
gence, respectively. To ensure safety when introducing con-
trol and memory errors, while targeting performance benefits
and acceptable output quality, we propose a static analysis and
compiler framework, a profiling framework, and hardware sup-
port for branch and data herding. Our software implementation
of branch herding uses CUDA intrinsics and forces diverging
threads to take the same direction at a branch as the majority
of the threads. Our hardware implementation of branch herding
uses majority logic to identify the branch direction all threads
should take. Data herding is implemented in coalescing hard-
ware by identifying the most popular memory block (that the
majority of loads map to) and mapping all loads from different
threads in the warp to that block. Our software implementation
of branch herding on NVIDIA GeForce GTX 480 improves per-
formance by up to 34% (13%, on average) for a suite of NVIDIA
CUDA SDK and Parboil [16] benchmarks. Our hardware im-
plementation of branch herding improves performance by up to
55% (30%, on average). Data herding improves performance by
up to 32% (25%, on average). For this level of performance ben-
efits, observed output quality degradation is minimal for several
applications that exhibit error tolerance.
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