
39

Exploiting Timing Error Resilience in Processor Architecture

JOHN SARTORI and RAKESH KUMAR, University of Illinois at Urbana-Champaign

Escalating variations in modern CMOS designs have become a threat to Moore’s law. In light of the increas-
ing costs of standard worst-case design practices, timing speculation has become a popular approach for
dealing with static and dynamic non-determinism and increasing yield. Timing speculative architectures
allow conservative guardbands to be relaxed, increasing efficiency at the expense of occasional errors, which
are corrected or tolerated by an error resilience mechanism. Previous work has proposed circuit or design-
level optimizations that manipulate the error rate behavior of a design to increase the efficiency of timing
speculation. In this paper, we investigate whether architectural optimizations can also manipulate error
rate behavior to significantly increase the effectiveness of timing speculation. To this end, we demonstrate
how error rate behavior indeed depends on processor architecture, and that architectural optimizations can
be used to manipulate the error rate behavior of a processor. Using timing speculation-aware architectural
optimizations, we demonstrate enhanced overscaling and up to 29% additional energy savings for processors
that employ Razor-based timing speculation.

Categories and Subject Descriptors: C.1.m [Computer Architectures]: Miscellaneous

General Terms: Design, Performance, Reliability

Additional Key Words and Phrases: error resilience, computer architecture, energy efficiency, timing specu-
lation

ACM Reference Format:

Sartori, J., and Kumar, R. 2011. Exploiting Timing Error Resilience in Processor Architecture. Submitted to
PEC Special Issue, ACM Trans. Embedd. Comput. Syst. 9, 4, Article 39 (March 2011), 26 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Traditionally, processors have been architected to operate correctly under worst case
operating conditions. Ensuring timing correctness under all possible circumstances re-
quires that conservative guardbands be imposed on operating frequency and voltage,
limiting the performance and energy efficiency of modern processor designs, especially
as device feature sizes continue to shrink and the impact of process and dynamic varia-
tions escalates. The growing costs of providing the illusion of perfect hardware on top of
increasingly stochastic and unreliable devices have become prohibitive. To counter the
rising costs of variability more efficiently, several timing speculative error resilient de-
sign techniques have been proposed [Ernst et al. 2003; Bowman et al. 2009; Greskamp
and Torrellas 2007; Kehl 1993; Dhar et al. 2002]. These techniques relax correctness
guards to gain efficiency in the average case at the expense of some errors. Errors are
corrected or tolerated by hardware or software error resilience mechanisms to main-
tain the level of output quality expected by the user.

Author’s addresses: J. Sartori and R. Kumar, Department of Electrical and Computer Engineering, Univer-
sity of Illinois at Urbana-Champaign.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1539-9087/2011/03-ART39 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:2 J. Sartori et al.

The magnitude of efficiency benefits available from timing speculation depends on
two factors – where and how often the processor produces errors when operating at an
overscaled voltage or frequency. If the frequency of errors can be reduced for a timing
speculative design, the range of overscaling can be extended, affording additional en-
ergy or performance gains. Previous works have demonstrated the potential to increase
the energy efficiency [Kahng et al. 2010a; 2010c; 2010b] or performance [Greskamp
et al. 2009; Sarangi et al. 2008] benefits of timing speculation by modifying the er-
ror distribution of a timing error resilient design. However, these work focused only
on circuit-level techniques. It remains to be shown whether architecture-level opti-
mizations can similarly affect the error distribution of a timing speculative design to
generate energy or performance gains.

In this work, we demonstrate that the error distribution indeed depends on archi-
tecture. We show that the error distribution of a design that has been architected for
error free operation may limit scalability and energy efficiency for better-than-worst-
case operation. Thus, optimizing architecture for correctness can result in significant
inefficiency when the actual intent is to perform timing speculation. In other words,
one would make different, sometimes counterintuitive, architectural design choices to
optimize the error distribution of a processor to exploit timing error resilience. Thus,
we make a case for timing error resilience-aware architectures and propose architec-
tural optimizations that improve the efficiency of timing speculation.

This work on timing error resilience-aware architecture makes the following contri-
butions.

— We show that the error distribution of a timing speculative processor strongly de-
pends on its architecture. As such, we demonstrate that architectural optimizations
can be used to significantly improve the efficiency of timing speculation.

— We confirm, with experimental results for different implementations of a 4-tap FIR
filter and Alpha, MIPS [Bertacco et al.], FabScalar [Choudhary et al. 2011], and
OpenSPARC [Sun] processor cores, that timing error resilience-aware architectural
design decisions can indeed significantly increase the efficiency of a timing specula-
tive architecture.

Note that we have used voltage overscaling as the proxy for all variation-induced
errors in this paper. Our analysis and conclusions should apply for other sources of
timing variation as well.

The rest of the paper is organized as follows. Section 2 describes our fault model
and explains how the slack and activity distributions of a processor determine the er-
ror rate, and consequently, the energy efficiency of a timing speculative architecture.
Section 3 describes the architectures that we evaluate and provides examples of how
architectural decisions can influence the slack and activity distributions of a design.
Section 4 describes our experimental methodology. Section 5 presents results and anal-
ysis showing that optimizing an architecture for timing speculation can significantly
improve energy efficiency. Section 6 discusses related work. Section 7 concludes the
paper.

2. BACKGROUND

Before exploring if and how architectural optimizations affect the efficiency of timing
speculation, we first provide details about our fault model and how slack and activity
determine the error rate. The extent of energy benefits gained from exploiting tim-
ing error resilience depends on the error rate of a processor. In the context of voltage
overscaling, for example, benefits depend on how the error rate changes as voltage de-
creases. If the error rate increases steeply, only meager benefits are possible [Kahng
et al. 2010a]. If the error rate increases gradually, greater benefits are possible.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Exploiting Timing Error Resilience in Processor Architecture 39:3

paths

timing slack

zero slack after
voltage scaling

voltage scaling

Fig. 1. Voltage scaling shifts the point of
critical slack. Paths in the shaded region
have negative slack and cause errors when
toggled.

Q

QSET

CLR

S

R

D

Q

QSET

CLR

S

R

D

P1 (cycle 2,4)

P2 (cycle 4,7)

P1 P2 ER
V1 0ns 3ns 0%
V2 -1ns 1ns 20%
V3 -2ns -1ns 30%

Total cycles = 10

Slack

Fig. 2. Slack and activity distributions determine the error rate.

The timing error rate of a processor in the context of voltage overscaling depends on
the timing slack and activity of the paths of the processor. Figure 1 shows an example
slack distribution. The slack distribution of a circuit shows the number of paths in a
design at each value of timing slack. As voltage scales down, path delay increases, and
path slack decreases. The slack distribution shows how many paths can potentially
cause errors because they have negative slack (shaded region). Negative slack means
that path delay is longer than the clock period.

From the slack distribution, it is clear which paths cause errors at a given voltage.
In order to determine the error rate of a processor, the activity of the negative slack
paths must be known. A negative slack path causes a timing error when it toggles.
Therefore, knowing the cycles in which any negative slack path toggles reveals the
number of cycles in which a timing error occurs.

For example, consider the circuit in Figure 2 consisting of two timing paths. P1 tog-
gles in cycles 2 and 4, and P2 toggles in cycles 4 and 7. At voltage V1, P1 is at critical
slack, and P2 has 3ns of timing slack. Scaling down the voltage to V2 causes P1 to have
negative slack. Since P1 toggles in 2 of 10 cycles, the error rate of the circuit is 20%. At
V3, the negative slack paths (now P1 and P2) toggle in 3 of 10 cycles, and the error rate
is 30%.

3. UNDERSTANDING AND MANIPULATING THE ERROR DISTRIBUTION OF TIMING
SPECULATIVE ARCHITECTURES

In this section, we argue that both the slack and activity distributions of processors
are strongly dependent on processor architecture. This implies that architectural fea-
tures can be chosen to optimize the slack and activity distributions, and by extension,
the error distribution and energy efficiency of a timing speculative processor. First, we
demonstrate how slack and activity distributions depend on processor architecture.
Then, we show how architectural optimizations can change the slack and activity dis-
tributions.

3.1. Architectural Dependence of Slack and Activity Distributions

In this section, we show that slack and activity distributions indeed depend on archi-
tecture. First, we present four functionally equivalent architectural variants of a 4-tap
FIR filter We describe how the architectural characteristics of each filter determine
the properties of its slack and activity distributions.

The baseline FIR filter, shown in Figure 3(a), is the simplest and most well-known
arrangement of the FIR filter architecture, containing four MAC units. A pipelined
version of the filter (Figure 3(b)) was created by creating a cutset across the outputs
of the multipliers and adding a latch to each arc. We also created a folded version of

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:4 J. Sartori et al.

x x x x

+ + +

D D D D

y[n]
(a)

x[n] x x x x

+ + +

D D D D

y[n]
D D D D

(b)

x[n]

x x

+

+

D D

y[n]

D

2x 2x

2x

(c)

x[n]
x x x x

+ + +

D

x[2k] y[2k+1]

D D

x[2k+1]
+ + +

y[2k]

x x x x

P
2
S

S
2
P

x[n]

y[n]

0.5x

0.5x0.5x

(d)

Fig. 3. 4-tap FIR filter designs: (a) Baseline, (b) Pipelined, (c) Folded, (d) Blocked.

the filter (Figure 3(c)), in which multiple operations are mapped to a single hardware
unit. Folding by a factor of two multiplexes the filter hardware so that half of the filter
coefficients are active in even cycles, the other half are active in odd cycles, and an out-
put sample is computed every two cycles. The blocked architecture of Figure 3(d) was
created by replicating the internal filter structure to compute two samples in parallel.

Figure 4 compares the path slack distributions of the different filter implementa-
tions, confirming our intuition that the slack distributions of the filter designs depend
strongly on the architecture. Table I presents more detailed information on how slack
and activity change for different architectures. The mean and standard deviation of
the slack distribution (µslack and σslack, respectively) tell how much initial slack ex-
ists, on average, and how regular the slack distribution is, i.e., how spread out the
values of path delay are. Designs with more regular (less spread) slack distributions
allow less overscaling past the critical point because a large number of paths fail at the
same time, potentially causing a steep increase in error rate. The average path activity
(αpath) shows how frequently paths toggle. Higher path activity can mean that error
rate increases more steeply, since negative slack paths generate more errors when they
toggle more frequently.

Table I and Figure 4 reveal that pipelined and folded architectures have more reg-
ular slack distributions. These architectures have shorter paths that have less capac-
itance, less delay sensitivity to voltage scaling, and less variation in absolute path
delay. This creates extra slack compared to other architectures, but limits scaling past
the critical point. The folded architecture has high path activity, since the internal
filter elements must operate at twice the frequency of the baseline design to achieve
the same sample rate. Likewise, the blocked architecture has reduced path activity,
since the same sample rate can be achieved at half the operating frequency. Although
it has reduced activity, the blocked architecture has increased complexity and longer
paths than the baseline. This results in more spread in the slack distribution, allowing
more overscaling when errors can be tolerated, although errors may start at a higher
voltage. Figure 5 shows how the power and error rate of each filter architecture vary
with voltage, confirming the expected effects of the slack and activity distributions on
the error rate of each architecture.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Exploiting Timing Error Resilience in Processor Architecture 39:5

0

200

400

600

800

1000

1200

1400

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0Slack(ns)

P
at

hs
 .

Baseline Pipelined Folded Block

Fig. 4. Slack distributions for the FIR filter architectures.

4-tap FIR Filter

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Voltage (V)

E
rr

o
r

R
at

e
 .

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04

ER Baseline ER Pipelined ER Folded ER Block

PWR Baseline PWR Pipelined PWR Folded PWR Block

P
o

w
er

 (W
)

Fig. 5. Power and error rate vs. voltage for the FIR filter architectures.

Table I. Mean and standard deviation of path slack, relative
to the sampling period, and average path activity normalized
against the baseline.

Baseline Pipelined Folded Blocked
µslack 0.183 0.496 0.449 0.154
σslack 0.185 0.159 0.145 0.124

Avg(αpath) 1.0 1.9 3.4 0.5

Our simple DSP filter examples show that the architecture of a design shapes the
properties of its slack and activity distributions. We now show that the same is true
for general purpose processors. As demonstrated in Section 2, error rate is a function
of the slack and activity distributions, and our primary goal is to use architectural
optimizations to manipulate the error rate behavior of a design. Thus, we use error
rate as a proxy for slack and activity. We begin by synthesizing four variants of the
FabScalar [Choudhary et al. 2011] processor with different microarchitectural charac-
teristics.

Figure 6 shows that the four different FabScalar microarchitectures have signifi-
cantly different error rate behavior, demonstrating that slack, activity, and error rate
indeed depend on microarchitecture. Differences in the error rate behavior of different
cores are due to several factors. First, changing the sizes of microarchitectural units
like queues and register files changes logic depth and delay regularity, which in turn

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:6 J. Sartori et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.750.800.850.900.951.00 Voltage
E

rr
o

r
R

at
e

 .

alu4_q32_reg128_lsq32

alu4_q32_reg64_lsq16

alu1_q16_reg128_lsq32

alu1_q16_reg64_lsq16

Fig. 6. Different microarchitectures exhibit different error rate behaviors, demonstrating the potential to
enhance the energy efficiency of a timing speculative architecture through microarchitectural techniques.
(Notations described in Section 5.3.)

L1 Cache
59%

Other
23%

Register
File 18%

Fig. 7. Typically, slack distributions of processors are dominated by regular structures. Caches and register
files account for a large fraction of the critical paths of a processor [Pan et al. 2009].

effects the slack of many timing paths. Secondly, varying some architectural param-
eters like superscalar width has a significant effect on complexity [Palacharla et al.
1997]. Changing complexity, fanout, and capacitance change path delay sensitivity to
voltage scaling and cause the shape of the slack distribution to change. Finally, chang-
ing the architecture alters the activity distribution of the processor, since some units
are stressed more heavily, depending on how the pipeline is balanced. High activity in
units with many critical paths can cause error rate to increase more steeply. Likewise,
an activity pattern that frequently exercises longer paths in the architecture limits
overscaling. E.g., long dependence chains lengthen the dynamically exercised critical
path of structures such as the issue queue and load store queues that perform depen-
dence checking. As these queues become full, they begin to generate errors at higher
voltages.

3.2. Architectural Optimizations that Manipulate Slack and Activity Distributions

Now that we understand the relationships between slack, activity, error rate, and ar-
chitecture, we consider what must be done to optimize processor architecture for im-
proved timing speculation efficiency. In this section, we propose specific architectural
optimizations for general purpose processors that manipulate their slack and activity
distributions. In Section 5, we show how these changes to the slack and activity distri-
butions translate into significant energy savings for timing speculative architectures.

Regular Structures Typical energy-efficient processors devote a large fraction of
die area to structures with very regular slack distributions, such as caches and reg-
ister files. These structures typically have high returns in terms of energy efficiency
(performance/watt) during correct operation. For example, 75-80% of the critical paths
in the Alpha EV7 reside in the L1 caches and register files (Figure 7) [Pan et al. 2009].

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Exploiting Timing Error Resilience in Processor Architecture 39:7

Alpha Core Path Slack Distribution

0

2000

4000

6000

8000

10000

12000

14000

16000

2 3 4 5 6
Slack (ns)

P
at

h
s

.

16reg 32reg 64reg

Fig. 8. Reducing the size of the register file (a regular structure) increases the spread of the slack distribu-
tion, resulting in fewer paths bunched around the point of critical slack.

While regular structures are architecturally attractive in terms of processor effi-
ciency for correct operation, such structures have slack distributions that allow little
room for overscaling. This is because all paths in a regular structure are similar in
length, and when one path has negative slack, many other paths also have negative
slack. For example, consider a cache. Any cache access includes the delay of access-
ing a cache line, all of which have nearly the same delay. So, no matter which cache
line is accessed, the delay of the access path will be nearly the same. Compare this to
performing an ALU operation, where the delay can depend on several factors includ-
ing the input operands and the operation being performed. When exploiting timing
speculation-based error resilience for energy reduction, the energy-optimal error rate
is found by balancing the marginal benefit of reducing the voltage with the marginal
cost of recovering from errors [Ernst et al. 2003]. When many paths fail together, error
rate and recovery overhead increase steeply upon overscaling, limiting the benefits of
timing speculation. Reducing the number or delay of paths in a regular structure can
reshape the slack distribution, enabling more overscaling and better timing specula-
tion efficiency.

For the Alpha core, the register file is the most regular critical structure. Figure 8
shows slack distributions for the Alpha core with different register file sizes. As the
size of the register file increases, the regularity of the slack distribution also increases,
as does the average path delay. Figure 8 confirms that the spread of the slack dis-
tribution decreases with a larger register file. Additionally, path slack values shift
toward zero (critical) slack due to the many critical paths in the register file. Table II
shows standard deviation and mean values for the slack distributions of the processors
with different register file sizes. The table confirms that regularity (represented by the
standard deviation of slack) increases, and average slack decreases with the size of
the register file. (Note that smaller σslack means a more regular slack distribution.)
We confirmed similar behavior when the cache size was changed. For example, σslack

reduced by 25% for the Alpha core and 23% for the MIPS core when the cache size was
increased from 2KB to 4KB.

Architectural design decisions that reshape the slack distribution by devoting less
area to regular structures or moving regular structures off the critical path can en-
able more overscaling and increase energy efficiency for timing speculative processors.
In other words, additional power scaling enabled by architectures with smaller regu-
lar structures can outweigh the energy benefits of regularity when designing a timing

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:8 J. Sartori et al.

Table II. Mean and standard deviation
of path slack, relative to the clock pe-
riod, for the Alpha processor with dif-
ferent register file sizes.

16reg 32reg 64reg
µslack 46% 41% 34%
σslack 10% 9% 6%

speculative architecture. Since regularity-based decisions may also impact power den-
sity, yield, and performance, the final architectural decision should consider these con-
straints in addition to the optimization metric. Section 5 presents examples showing
that reducing the regularity of the slack distribution can provide significant energy
benefits when employing Razor-based timing speculation.

Note that [Liang and Brooks 2006] also advocates several choices that may affect
the delay regularity of an architecture. However, unlike [Liang and Brooks 2006], our
goal is not necessarily to increase slack but rather to reshape the slack and activity
distributions of a processor. Decisions advocated in [Liang and Brooks 2006] increase
slack but also make the slack distribution more regular. For example, when choosing
the architecture for an arithmetic unit, we might advocate selection of a ripple-carry
adder for its irregular slack distribution and lower average case delay [Sartori and
Kumar 2010], despite its higher critical path delay. [Liang and Brooks 2006], on the
other hand, would choose a Kogge-Stone adder to decrease critical path delay, also
making the slack distribution more regular.

Logic Complexity Typically, processors are architected for energy efficiency dur-
ing error free operation at a single power/performance point and are not expected to
scale to other points. However, timing speculative architectures achieve benefits by
scaling beyond the typical operating point to eliminate conservative design margins.
The change in the shape of the slack distribution as voltage changes depends on the
delay scalability of the paths. Therefore, unlike conventional architectures, architec-
tures optimized for timing speculation should consider the delay scalability of different
microarchitectural structures.

There are several architectural characteristics that affect delay scalability that con-
ventional processors ignore to varying degrees. One factor that affects delay sensitivity
to voltage scaling is logic complexity. In a conventional processor, microarchitectural
components are optimized largely oblivious to complexity, as long as the optimiza-
tion improves processor efficiency at the nominal design point. However, more com-
plex structures with more internal connections, higher fanouts, deeper logic depth,
and larger capacitance are more sensitive to voltage scaling, potentially limiting over-
scaling for a timing speculative processor.

Figure 9 demonstrates how the critical path delay of the ALU of the OpenSPARC
T1 [Sun] processor changes with voltage scaling. Path P1 is the critical path at nom-
inal voltage. However, the delay of P2 is more sensitive to voltage scaling due to in-
creased fanout. The slack distribution of a processor with many complex logic struc-
tures becomes more critical more quickly as voltage is scaled, limiting overscaling.

To maximize the energy efficiency benefits of timing speculation, architectural deci-
sions should be scalability-aware. For example, complex architectural structures with
high degree of fanout should be optimized to reduce complexity, if possible. Similarly,
less complex implementations of architectural units can be chosen when performance
is not significantly impacted. Example optimizations include changing superscalar
width and queue sizes – factors that strongly influence logic complexity. The capaci-
tance of a logic structure also influences the rate at which delay increases with volt-
age reduction. If the impact on processor efficiency is acceptable, less area should be

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Exploiting Timing Error Resilience in Processor Architecture 39:9

Delay Sensitivity of Arithmetic Unit

0

1

2

3

4

5

6

7

8

0.50.60.70.80.91.0
Voltage (V)

D
el

ay
 (n

s)

.

P1: Critical Path V-Nominal P2: Critical Path V-Scaled

Fig. 9. Some paths are more sensitive to voltage scaling than others. Complex logic with many high fanout
paths like P2 can limit overscaling in a timing speculative architecture.

Alpha and MIPS Path Slack Distributions

0

2000

4000

6000

8000

10000

12000

14000

16000

2 3 4 5 6 7 8 9 10
Slack (ns)

P
at

h
s

.

Alpha MIPS

Fig. 10. The reduced regularity and complexity of the MIPS architecture, compared to the Alpha architec-
ture, results in a slack distribution with greater average slack and reduced regularity.

devoted to complex and centralized structures with high internal capacitance (e.g.,
rename logic, wakeup/select logic, bypass logic, etc.).

Comparing the Alpha and MIPS architectures reveals again how architectural
changes affect the slack distribution. Figure 10 compares the slack distributions of the
MIPS and Alpha processors. The MIPS slack distribution has both higher mean and
standard deviation than the distribution for the Alpha processor, indicating reduced
regularity and complexity. These factors can be attributed to reduced word length,
simpler ALU design, smaller area devoted to the register file, and a simpler, smaller
instruction set, which results in less complex control logic throughout the processor.

Utilization Modern processors consistently employ architectural techniques such
as pipelining, superscalar processing, caching, etc. to improve utilization by reducing
the number of control and data hazards and mitigating long latency memory delays.
In general, when designing for correctness, architectural design choices that increase
utilization are desirable, as higher utilization of a processor core often leads to better
performance. However, architectures with highly utilized critical paths are suscepti-
ble to high error rates, since increased activity on negative slack paths means more
frequent errors. Architectural optimizations that reduce the activity of critical paths
have the potential to reduce the error rate when timing speculation is performed.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:10 J. Sartori et al.

The filter architectures described in Section 3.1 demonstrate how changes to the
architecture affect the activity distribution. Table I shows that average path activity
can be varied over a range of 6.8x by changing the amount of parallelism used in the
filter architecture.

Superscalar Width As noted above, superscalar width has a stong impact on pro-
cessor complexity [Palacharla et al. 1997]. In addition, changing the superscalar width
can significantly impact the activity distribution of a processor. We evaluate the effect
of changing the superscalar width of the MIPS architecture. We observed that average
activity increases by up to 25% for the superscalar version of the processor, compared
to the scalar version. Section 5 provides results that show how architectural changes
that affect the activity distribution alter the energy efficiency of Razor-based timing
speculation.

Note that activity reduction has associated costs in terms of performance during
correct operation. We do not advocate reducing activity at all costs, but rather balanc-
ing the error rate reduction and energy efficiency benefits of activity reduction with
the throughput benefits of high utilization. Note also that a work such as [Liang and
Brooks 2006] is unconcerned with the activity distribution of a processor, since the goal
is to prevent errors, not to reshape the error distribution.

Pipeline Depth The relationship between pipeline depth and energy efficiency is
well understood in the context of error free architectural design [Hartstein and Puzak
2003]. The energy-optimal pipeline depth of an architecture is reached when the
marginal benefit of adding a pipeline stage equals the marginal cost, according to the
power/performance relationship defined by the energy metric. The benefit of increased
pipeline depth is additional timing slack, which translates into increased frequency
(performance) or reduced voltage (power). The cost of increased pipeline depth is in-
creased latch area and power, as well as reduced throughput (IPC).

While increasing the pipeline depth can result in increased energy efficiency for
the zero error rate case, increasing the pipeline depth may also increase the cost of
error recovery. This is because the cost of error recovery is proportional to the depth
of the pipeline for many error recovery mechanisms [Ernst et al. 2003]. Consequently,
the optimal pipeline depth for an error resilient architecture is less than the optimal
depth when designing for correctness. Ignoring the overhead of error recovery for an
error resilient architecture can result in selection of a suboptimal pipeline depth.

We formulate an expression for the optimal pipeline depth for an error resilient ar-
chitecture by modifying Hartstein and Puzak’s model for optimal pipeline depth [Hart-
stein and Puzak 2003]. The model combines expressions for performance and power to
produce an energy efficiency metric (performance/power). Optimal pipeline depth is
found by maximizing the metric. We modify the power and performance expressions
of the original model to account for the effects of error resilient design and operation
on the pipeline. As such, the power and delay expressions are modified to incorporate
the effects of voltage scaling, and the performance equation is modified to include the
penalty of stalling to correct errors, according to the operating voltage and resulting
error rate. Equation 1 gives the performance expression for the updated model, Equa-
tion 2 gives the power expression, and Equation 3 combines the expressions to form
the energy efficiency metric. Table III explains the meaning of each model parameter.

T

NI

=
1

fsa
+

γhNhp

fs

+
γeepTo

NI

(1)

PT = (fcgfsPdf
2

v + Plfv)NLpη (2)

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Exploiting Timing Error Resilience in Processor Architecture 39:11

Table III. Parameters for the pipeline energy efficiency model.

T Time
NI Number of instructions
fs Frequency (fs = 1/(t0 + tp/p))
t0 Latch delay
tp Logic delay of the pipeline
p Pipeline depth
a Average degree of superscalar processing
γh Hazard recovery time as a fraction of pipeline delay
Nh Number of hazards
γe Error recovery time as a fraction of pipeline delay
e Error rate (errors / cycle)
PT Total power
fcg Clock gating factor
Pd Dynamic power
Pl Leakage power
NL Number of latches
η Latch growth factor
fv Voltage scaling factor
vo Normalized critical voltage
k Regularity factor (relates path slack to pipeline depth)
w Criticality factor (relates error acceleration to voltage)

BIPSm/W = ((T/NI)
mPT)−1 (3)

The equation describing the performance of an error-resilient architecture (Equa-
tion 1) includes an additional term (γeepTo/NI) to model the relationship between
pipeline depth and error recovery overhead. To model the impact of voltage overscal-
ing on processor power and reliability, we introduce a voltage overscaling factor (fv).
Dynamic power scales quadratically with voltage, and leakage power scales linearly
with voltage. The voltage scaling factor also influences the error rate, since path de-
lays increase as voltage decreases. Equation 4 describes how the error rate increases
as voltage is scaled down. The error acceleration parameter (w) describes the rate at
which error rate increases after scaling past the critical voltage (vo).

e = min(1, ((1 − fv)/(1 − vo))
w) (4)

The critical voltage (vo) depends on pipeline depth as well. This is because adding
pipeline stages reduces not only the delay of each stage but also the timing slack of
each stage. Figure 11 illustrates this effect. Equation 5 models the dependence of vo on
the length of the pipeline. In the equation, vob denotes the normalized critical voltage
for the baseline pipeline, with depth pb. (We assume a traditional 5-stage pipeline as
the baseline.) The regularity factor (k) controls how quickly the number of negative
slack paths (and thus error rate) grows with the number of pipeline stages. As the
pipeline depth grows larger than the baseline pipeline depth, the amount of available
timing slack decreases proportionally. Note that the equation assumes that pipelining
divides all timing paths equally. All previous works on optimal pipeline depth make
the same assumption.

vo = 1 − (1 − vob) ∗ (pb/p)k (5)

The model described above was used to evaluate the energy efficiency of a pro-
cessor architecture at different error rates and pipeline depths, in order to find the
dependence of optimal pipeline depth on an error resilience mechanism. Each error
resilience mechanism has a different optimal error rate. This implies that each er-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:12 J. Sartori et al.

L L

L

Critical Path

P1

P2

Critical Path

P1

P2

Critical Path

P1

P2

L L

P2 Slack before

P2 Slack after

Fig. 11. Pipelining alters the slack distribution. The highlighted segments denote path slack. When pipeline
depth increases, the lengths of the timing paths, and also, the amount of timing slack per stage, is reduced.

ror resilience mechanism may also have a different optimal pipeline depth. Figure 12
shows how energy efficiency varies with pipeline depth for architectures operating at
different error rates. Each error rate represents a different magnitude of power sav-
ings and a different error recovery overhead. Notice that the optimal pipeline depth
and energy efficiency vary significantly depending on the error rate, demonstrating
that it is essential to take the error resilience mechanism into account when selecting
the pipeline depth of an error-resilient architecture. In practice, the actual number of
pipeline stages should be chosen not only based on the above considerations, but also
based on the desired performance/power target for nominal, error free operation.

Different error resilience mechanisms have different error recovery overheads. Fig-
ure 13 shows the energy efficiency (normalized to the error free baseline), as well as
the optimal pipeline depth and error rate for different values of error recovery over-
head (γe). As the recovery overhead increases, the optimal error rate decreases. Thus,
the optimal pipeline depth increases. The data demonstrate that the optimal pipeline
depth depends on the error recovery overhead for a given error recovery mechanism,
stressing the importance of taking the error recovery mechanism into account when
selecting the pipeline depth of an error resilient architecture.

4. METHODOLOGY

We have developed a design flow that takes an RTL design through synthesis, place-
ment, and routing, power estimation, timing analysis, area estimation, gate-level sim-
ulation, and error rate measurement. Designs are implemented with the TSMC 65GP
library (65nm), using Synopsys Design Compiler [Synopsys a] for synthesis and Ca-
dence SoC Encounter [Cadence c] for layout. In order to evaluate the power and per-
formance of designs at different voltages and to provide Vth sizing options for synthe-
sis, Cadence Library Characterizer [Cadence a] was used to generate low, nominal,
and high Vth libraries at each voltage (Vdd) between 1.0V and 0.5V at 0.01V intervals.
Power, area, and timing analyses are performed in Synopsys PrimeTime [Synopsys b].

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Exploiting Timing Error Resilience in Processor Architecture 39:13

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 5 10 15 20 25 30

B
IP

S
3 /W

Pipeline depth

Effect of voltage overscaling for γe = 0.11, k=1, w=4

e = 0.000
e = 0.001
e = 0.005
e = 0.025
e = 0.050

Fig. 12. Each curve shows how energy efficiency varies with pipeline depth for a given error rate. The
optimal pipeline depth varies significantly, depending on the error rate.

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

N
or

m
al

iz
ed

 B
IP

S
3 /W

 (
re

la
tiv

e
to

 b
as

el
in

e)

γe (proportional)

Effect of error recovery penalty at optimal design point (pipeline depth, error rate), k=1, w=8

(13,0.001)
(13,0.001)

(12,0.0025)

(5,0.05)

(5,0.05)

(5,0.1)

(5,0.1)

Optimal error resilient design point vs baseline at (17,0)

Fig. 13. The energy-optimal pipeline depth and error rate for an architecture depend on the error recovery
overhead (γe).

Gate-level simulation is performed with Cadence NC-Verilog [Cadence b] to gather
activity information for the design, which is subsequently used for dynamic power
estimation and error rate measurement. Switching information generated during the
gate-level simulation is dumped to a value change dump (VCD) file. To calculate the
error rate of a design at a particular voltage, toggled nets from the VCD file are traced
to find toggled paths in each cycle. The delays of toggled paths are measured, and any
cycle in which a negative slack path toggles is counted as an error cycle. The error rate

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:14 J. Sartori et al.

#0
0a
0b
0c [value,wire]
0d
#1 [time]
1a
1b
1c
#2
1d
0c
…

clock

a

b

c

d

a b c

d

a-b-c (@ cycle 1, 4)
d-c (@ cycle 2, 4)

NetlistWave form

#0 #1 #2 #3 #4

VCD file

Extracted paths

Fig. 14. VCD file format and path extraction from the VCD file.

of the design is equivalent to the cardinality of the set of error cycles divided by the
total number of simulation cycles (Xtot), as shown in Equation 6,

ER =
|
⋃

p∈Pn

χtoggle(p)|

Xtot

(6)

where Pn is the set of negative slack paths and χtoggle(p) is the set of cycles in which
path p toggles.

Figure 14 shows an example VCD file and illustrates the path extraction method.
The VCD file contains a list of toggled nets in each cycle, as well as their new values.
Toggled nets in each cycle are marked, and these nets are traversed to find toggled
paths. A toggled path is identified when toggled nets compose a connected path of tog-
gled cells from a primary input or flip-flop to a primary output or flip-flop. In Figure 14,
nets a, b, and c toggle in the first and fourth cycles (#1, #4), and nets d and c toggle in
the second and fourth cycles (#2, #4). Two toggled paths are extracted: a − b − c and
d−c. Paths a−b−c and d−c both have toggle rates of 0.4 (|χtoggle(p)| = 2 and Xtot = 5).
If both paths have negative slack, then timing errors will occur in cycles #1, #2, and
#4. Therefore, the error rate is 0.6 for this example.

In addition to inducing timing errors by increasing logic delays, voltage scaling may
prompt reliability concerns for SRAM structures, such as insufficient Static Noise Mar-
gin (SNM). Fortunately, the minimum energy voltage for our processors is around
750mV, while production-grade SRAMs have been reported to operate reliably at volt-
ages as low as 700mV [Fujimura et al. 2010]. Research prototypes have been reported
to work for even lower voltages. In any case, modern processors typically employ a
“split rail” design approach, with SRAMs operating at the lowest safe voltage for a
given frequency [Intel Corporation 2008].

In our evaluation of general purpose processor architectures, we run instruction
traces from a set of 8 SPEC benchmarks (ammp, art, equake, mcf, parser, swim, twolf,
wupwise) on the processors. The traces are captured after fast-forwarding the bench-
marks to their early Simpoints [Hamerly et al. 2005].

We model Razor-based error resilience in our evaluations (though our design prin-
ciples are generally applicable to any timing speculative architecture). Table IV sum-
marizes the average processor-wide static and dynamic overheads incurred by our de-
signs that use Razor for error detection and correction. In our design flow, we measure

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Exploiting Timing Error Resilience in Processor Architecture 39:15

Table IV. Average processor-wide Razor overheads for error-tolerant
architectures.

Hold buffering Razor FF Counterflow Error Recovery
2% energy 23% energy <1% energy P cycles

Table V. Design parameters and their possible values.

I/D$ kB ALU/FPU INT Q-FP Q INT/FP Regs Ld/St Q
4,8,16,32 1,2,4 32-16,64-32 64,128 32,64

the percentage of die area devoted to sequential elements as well as the timing slack
(with respect to the shadow latch clock skew of 1/2 cycle) of any short paths that need
hold buffering. When evaluating energy at the architecture level, we account for the
increased area and power of Razor flip-flops, hold buffering on short paths, and imple-
mentation of the recovery mechanism. Most of the static overhead is due to Razor FFs.
Buffering overhead is small, and the availability of cells with high and low Vth pro-
vides more control over path delay, eliminating the need for buffering on most paths.
We also add energy and throughput overheads proportional to the error rate to account
for the dynamic cost of correcting errors over multiple cycles. We model a counterflow
pipeline Razor implementation [Ernst et al. 2003] with correction overhead propor-
tional to the number of processor pipeline stages (P). We conservatively replace all
sequential cells with Razor FFs. This conservative accounting measure means we can
also claim greater immunity to aging-induced errors, e.g., due to NBTI, which can
cause paths to become critical over time.

To evaluate the effects of architectural optimizations on the energy efficiency of tim-
ing speculation, we perform an exploration of the processor design space defined by
the parameters found in Table V. All other parameters were chosen to be identical to
the OpenSPARC core. Because it would be unreasonable to write, synthesize, layout,
and test custom RTL for each of the hundreds of OpenSPARC processor configura-
tions that we study, we instead evaluate the power, performance, and error rate of the
architectures using a combination of gate and microarchitecture-level simulation.

To estimate the performance and power of each architecture, we use SMT-
SIM [Tullsen 1996] with Wattch [Brooks et al. 2000]. We also use Wattch to report
the activity factor for each microarchitectural structure in each configuration, for each
benchmark. We approximate the error rate of an architecture as the weighted sum of
error rates from each of the microarchitectural components that we vary in our explo-
ration. To obtain the component error rates, we used RTL from the OpenSPARC T1
processor [Sun]. We modified the existing OpenSPARC module descriptions to create
an RTL description for each component configuration in Table V and used our detailed
design flow, as described above, to measure error rate and power at different voltages.
Error rate at the architecture level is given by the sum of the component error rates,
where each component error rate is weighted by the activity factor captured during
architecture-level simulation. While this error rate estimation technique is not as ac-
curate as our design-level technique, it provides suitable accuracy to study the error
behavior of many architectures without requiring full gate-level evaluations of many
complex architectures.

5. RESULTS

In Section 2, we showed how the slack and activity distributions determine the er-
ror rate. In Section 3, we showed how architecture influences the slack and activity
distributions. In this section, we demonstrate that architectural optimizations can sig-
nificantly improve the energy efficiency of timing speculation, first for simple DSP

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:16 J. Sartori et al.

4-tap FIR Filter

3.0E-05

5.0E-05

7.0E-05

9.0E-05
1.1E-04

1.3E-04

1.5E-04

1.7E-04

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Error Rate

Baseline Folded Block Pipelined

P
o

w
er

*D
el

ay
 (W

*s
)

Fig. 15. Energy efficiency comparison showing crossovers between filter architectures for different voltage
overscaling-induced error rates.

filter architectures, and then for general purpose processor cores (Alpha, MIPS, and
OpenSPARC).

5.1. DSP Filter Architectures

First, we compare the filters with respect to different energy efficiency metrics over
a range of error rates to observe how the optimal architecture changes for error free
and error resilient operation. Figure 15 compares the filter architectures in terms of
power-delay product. The low capacitance, shorter paths, and highly regular slack dis-
tribution of the pipelined architecture allow it to achieve better energy efficiency for
error free operation. However, the clustering of path delays in the pipelined design
causes the error rate to increase rapidly once errors begin to occur. This causes power
savings to quickly level off for the pipelined architecture. Consequently, the blocked
architecture becomes more energy efficient at moderate error rates. While higher com-
plexity and deeper logic depth limit the amount of voltage scaling for correct operation
with the blocked architecture, low activity allows the error rate of the filter to stay
lower longer as voltage is reduced, enabling an extended range of power savings for
the blocked design. The baseline and folded architectures do not minimize energy over
any range of error rates, due to the high activity and regularity of the folded architec-
ture and the increased sensitivity to voltage scaling of the baseline (without the benefit
of reduced activity that the blocked architecture has).

The choice of the efficiency metric (which expresses the relative importance of power
and performance to the architect) influences which architecture is most efficient at dif-
ferent error rates. Figure 16 compares the filters in terms of power efficiency. Both the
pipelined and folded architectures are approximately the same in terms of sensitivity
to voltage scaling and regularity. The pipelined filter has the best power efficiency for
low error rates, due to extra slack afforded by the increased regularity of the slack dis-
tribution. This enables more scalability before the onset of errors. However, regularity
results in a steep increase in the error rate, allowing the folded architecture to gain the
power efficiency edge for mid-range error rates. The folded architecture has reduced
complexity, fewer paths, and less fanout, resulting in the best scalability of any archi-
tecture. It also has low power consumption due to simple logic and low area (Figure 5).
Nevertheless, though it has better scalability and low power, once it starts making
errors, its error rate increases dramatically, due to increased activity. This allows the
block filter, with reduced activity, to take the lead at high error rates.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Exploiting Timing Error Resilience in Processor Architecture 39:17

4-tap FIR Filter

1.0E-07

6.0E-07

1.1E-06

1.6E-06

2.1E-06

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Error Rate

Baseline Block Pipelined Folded

P
o

w
er

 (W
)

Fig. 16. Power efficiency comparison showing crossovers between filter architectures for different voltage
overscaling-induced error rates.

4-tap FIR Filter with Razor

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

0.50.60.70.80.91
Voltage (V)

E
n

er
g

y
(J

)
.

Baseline Pipelined Folded Block

Error Free M in Energy

Error Resilient M in Energy

Fig. 17. Minimum energy for correct operation (denoted by the dotted line) is achieved with the pipelined
architecture. When Razor is used to enable timing speculation, the blocked architecture minimizes energy,
demonstrating that the architecture that minimizes energy by exploiting error resilience is different than
the optimal architecture for error free operation.

Figure 17 compares the energy consumption of Razor implementations of the filter
architectures. While the pipelined architecture has the best energy efficiency for er-
ror free operation, the blocked architecture consumes the least energy for Razor-based
timing speculation (29% less energy than the error free pipelined filter). The reduced
activity of the blocked filter allows more voltage scaling before the energy-optimal er-
ror rate for Razor is reached. Furthermore, the blocked filter, having fewer flip-flops
and pipeline stages, has reduced implementation and recovery overheads for Razor,
making it a more efficient choice for exploiting error resilience. Note that other filter
architectures, including the optimal architecture for correct operation, do not achieve
energy reduction with Razor, either due to static overheads (Razor flip-flops and buffer-
ing of short paths) or dynamic overheads (power and energy costs of error recovery).
This result demonstrates the importance of timing speculation-aware architectural op-
timization techniques.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:18 J. Sartori et al.

Alpha Core Varying Register File Size

3.0E-01
4.0E-01

5.0E-01
6.0E-01

7.0E-01
8.0E-01

9.0E-01
1.0E+00

1.1E+00

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Error Rate

E
n

er
g

y*
D

el
ay

^2

.

32reg 16reg

Fig. 18. A larger register file increases performance, but also results in increased regularity and activity,
hindering voltage scaling and energy efficiency at larger error rates.

To summarize, our experiments with different DSP filter architectures validate our
claim that the optimal architecture for correctness may not be efficient for exploiting
timing error resilience. The results also confirm that architectural optimizations that
alter the slack and activity distributions have the potential to increase the energy
efficiency of timing speculation.

5.2. General Purpose Processor Architectures

In this section, we evaluate how changes to Alpha, MIPS, and FabScalar architectures
that affect their slack and activity distributions (as described in Section 3.2) influence
their energy efficiency for timing speculation. Figure 18 compares the energy efficiency
of the Alpha processor for varying register file sizes. The design with a larger register
file has higher throughput and better energy efficiency when both processors operate
error free. However, the higher average path delay and path delay regularity associ-
ated with the larger register file hinder voltage scaling and energy efficiency at non-
zero error rates. Furthermore, high performance corresponds to higher activity, which
causes error rate to increase more quickly for the processor with the larger register
file.

Because of the higher throughput of the 32-register design, there is a small range
of error rates over which the 32-register design regains the efficiency advantage when
the many regular paths in the 16-entry register file begin to have negative slack, and
error rate begins to increase more rapidly. However, the design with fewer registers
is able to scale to a much lower voltage for higher error rates because of its lower
activity, increased average slack, and more gradually increasing error rate resulting
from reduced regularity of the slack distribution.

Figure 19 shows energy consumption for the Alpha core with Razor-based timing
speculation, confirming that the architecture with a smaller register file exploits tim-
ing error resilience more efficiently. The 16-register architecture reduces energy by
21% with respect to the optimal architecture for correctness, while the optimal error
free architecture barely procures any energy savings (2%) when using Razor. Again,
we observe significantly improved benefits from optimizing the architecture to exploit
timing error resilience while the optimal error free architecture sees only a small en-
ergy reduction with timing speculation.

We evaluated the energy efficiency of the MIPS processor at different error rates
when the superscalar width (and number of ALUs) was increased. The main effect

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Exploiting Timing Error Resilience in Processor Architecture 39:19

Alpha Core with Razor

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.70.750.80.850.90.951
Voltage

E
n

er
g

y
(J

)
.

16reg 32reg Error Free Min Energy

Fig. 19. The 16-register design, having reduced regularity and activity, achieves significant energy savings
with Razor, while the 32-register design, which was optimal for correct operation, achieves almost no benefit.

MIPS Core Varying Number of ALUs

1.4E-03

1.5E-03

1.6E-03

1.7E-03
1.8E-03

1.9E-03

2.0E-03

2.1E-03

2.2E-03

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Error Rate

P
o

w
er

*d
el

ay

 .

1ALU 2ALU

Fig. 20. Increased throughput for the multiple-ALU architecture results in better energy efficiency for error
free operation, but increased activity results in worse efficiency at most non-zero error rates.

on the error rate from increasing the superscalar width of the processor is due to in-
creased activity. Not only does this architectural change increase the throughput (and
thus the activity factor) of the processor, increasing the superscalar width also in-
creases the number of paths that are active when the processor is able to exploit ILP
on multiple ALUs.

Figure 20 compares a single-ALU version of the MIPS architecture against one with
two ALUs. The multiple-ALU architecture has better energy efficiency for correct oper-
ation due to increased throughput (up to 21% throughput reduction for the scalar case,
13% on average). However, when operating at non-zero error rates, the increased activ-
ity and complexity of the multiple-ALU architecture causes the error rate to increase
more rapidly, limiting voltage scaling for higher error rates. More instructions per cy-
cle means more errors per cycle, and more active ALUs means more paths causing
errors when voltage is scaled down. The higher activity of the multiple-ALU architec-
ture makes the single-ALU architecture more energy-efficient for most non-zero error
rates.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:20 J. Sartori et al.

MIPS Core with Razor

1.5E-03

1.7E-03

1.9E-03

2.1E-03

2.3E-03

2.5E-03

2.7E-03

0.70.750.80.850.90.951
Voltage

E
n

er
g

y
(J

)
.

1ALU 2ALU Error Free Min Energy

Fig. 21. The more complex superscalar architecture has throughput and energy benefits for error free op-
eration but fails to achieve any energy savings with Razor-based timing speculation. The simpler, scalar
design achieves substantial energy savings with Razor.

Figure 21 confirms that the scalar design exploits timing error resilience more effi-
ciently. Whereas the superscalar pipeline achieves better energy efficiency for correct
operation, increased complexity and activity, along with increased implementation and
recovery overheads for Razor, prevent the multiple-ALU architecture from achieving
energy benefits with Razor. The single-ALU architecture has a more gradually increas-
ing error rate, allowing extended voltage scalability and an 18% energy reduction with
respect to the energy-optimal architecture for correctness.

To evaluate the potential benefits of manipulating the pipeline depth of an error re-
silient processor, we would like to explore optimal pipelining for an entire processor
core. However, writing RTL for an entire processor for different pipeline depths is a
challenging and time-consuming task. As far as we know, no open source processor
RTL exists in which the pipeline depth can be scaled arbitrarily. The closest approxi-
mation we found is FabScalar, in which certain pipeline stages can be subdivided into
multiple stages. We evaluate the effects of manipulating the pipeline depth in an error
resilient FabScalar processor by comparing versions of the pipeline with Issue depths
1 and 2. The Issue stage has by far the most critical paths in the FabScalar processor.

Figure 22 compares the energy efficiency of the pipelines with Issue depth (ID) 1
and 2 at different error rates. For correct operation, the ID 2 pipeline has 9% better
energy efficiency, because increasing the pipeline depth of the Issue stage allows the
pipeline to be optimized for a higher frequency (or lower voltage), and achieve higher
throughput (or lower power). As voltage is scaled down, however, the error rate of the
ID 2 pipeline increases more quickly. This is because dividing a path with a pipeline
latch not only partitions its logic between two stages, it also partitions the path’s tim-
ing slack between two stages. Thus, pipelining reduces the average amount of timing
slack in the pipelined stages, so that more paths fail sooner when voltage is scaled
down. Due to the steeper increase of error rate in the ID 2 pipeline, the ID 1 pipeline
has better energy efficiency at higher error rates.

Figure 23 compares the energy of the ID 1 and ID 2 pipelines with Razor. The ID 1
pipeline consumes 13% less energy with Razor than the ID 2 pipeline. This is due to
two factors. First, as discussed above, the error rate of the ID 2 pipeline increases faster
as voltage is scaled down, resulting in less voltage overscaling when Razor is used.
Second, the ID 2 pipeline has a higher average error recovery cost, due to the increased

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Exploiting Timing Error Resilience in Processor Architecture 39:21

FabScalar Core Varying Pipeline Depth

0.0035

0.0045

0.0055

0.0065

0.0075

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Error Rate

P
o

w
er

*d
el

ay

 .

Issue Depth 1 Issue Depth 2

Fig. 22. Increased pipeline depth enables the ID 2 pipeline to achieve higher energy efficiency for correct
operation. However, increased pipeline depth causes the error rate to increase more quickly, and the ID 1
pipeline has better energy efficiency for higher error rates.

FabScalar Core With Razor

0.004

0.005

0.006

0.007

0.008

0.700.750.800.850.900.951.00
Voltage (V)

E
n

er
g

y
(J

)
 .

Issue Depth 1 Issue Depth 2

Fig. 23. The shallower pipeline (ID 1) achieves better energy efficiency with Razor, due to lower error
recovery overhead and more gradual error rate increase, afforded by increased slack.

average cost of pipeline flushing during error correction. These results confirm that
ignoring the error resilience mechanism when selecting the pipeline depth of an error
resilient processor can lead to energy inefficiency. An error resilient processor should
use a shallower pipeline depth than a processor that does not exploit error resilience.
We expect the potential benefits of optimizing the pipeline depth to increase with more
flexibility in the available pipeline depth.

To summarize, our experimental results with Alpha, MIPS, and FabScalar cores fur-
ther confirm the benefits of architecting to exploit timing error resilience and demon-
strate that architectures that have been optimized for energy-efficient error free oper-
ation see little or no energy benefits when exploiting timing speculation. These results
re-confirm that changing the slack and activity distributions with architectural opti-
mizations can improve the energy efficiency of timing speculation.

5.3. Design Space Exploration for OpenSPARC

In the previous section, we performed analyses of various architectural optimiza-
tions to validate our insights on resilience-optimized architectures. In this section,
we present an exploration of the design space for resilience-optimized general pur-
pose processor architectures to further confirm that the benefits of exploiting error
resilience can be significantly enhanced by optimizing the architecture for timing spec-
ulation.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:22 J. Sartori et al.

In our exploration, we evaluated nearly 400 architectural configurations by varying
instruction and data cache sizes (ic,dc), the number of integer and floating point func-
tional units (alu), instruction queue size (q), the number of physical registers (reg),
and the size of the load/store queue (lsq). A tuple (ic,dc,alu,q,reg,lsq) denotes the pa-
rameters of a particular architecture of interest. For each architecture, we estimated
power, performance, and error rate as described in Section 4 and used these data to
characterize energy consumption of the architectures at different error rates.

Figure 24 compares the energy efficiency of three architectures that emerged as the
optimal design points for different ranges of error rates. The optimal architecture for
error free operation (ic8,dc16,alu1,q32,reg128,lsq64) has a moderate instruction cache
size, larger data cache, and maximum sizes for queues and register files. For error free
operation, this configuration achieves good performance and has low power, making it
the energy-optimal architecture. However, the large cache and register file sizes result
in a highly regular slack distribution, so that many paths fail in groups as voltage is
scaled. The increased complexity and deeper logic of large instruction and load/store
queues, while increasing performance, also makes the architecture fail sooner with
overscaling.

For low to mid-range error rates, a different energy-optimal architecture
(ic8,dc8,alu1,q32,reg128,lsq32) emerges. This architecture has a smaller data cache
and load/store queue, resulting in reduced regularity and complexity. The immediate
effect of increased spread and average slack in the slack distribution is that voltage
can be scaled further before the error rate begins to increase dramatically, resulting
in more power savings for timing speculation before reaching an energy-optimal error
rate. When operating at low to mid-range error rates, the resilience-optimized architec-
ture has 6% energy (W/IPC) benefits over the optimal error free architecture. Energy
reduction is mainly due to enhanced power scaling (15% power reduction, on average),
since throughput is reduced by 7% with respect to the optimal error free architecture.
Thus, energy benefits will increase for a metric that weights power more heavily.

Note that compared to the optimal error free architecture, the optimal for low to
mid-range error rates decreases the size of the load/store queue (LSQ), but not the
instruction queue. This is primarily because the LSQ becomes full more often than
the IQ, resulting in a longer dynamic critical path that limits voltage scaling. To a
second degree, the size of the instruction queue also has a more pronounced effect on
performance.

For higher error rates (around 6% and up), an architecture with minimum-sized data
cache and register file (ic8,dc4,alu1,q16,reg64,lsq32) consumes the least energy. In ad-
dition to the significantly reduced regularity of the slack distribution (reduced area
devoted to regular structures and reduced criticality of regular structures), this archi-
tecture also has small queue sizes with decreased complexity and better scalability.
The throughput of this architecture is an additional 27% lower than the correctness-
optimized baseline; however, the corresponding reduced activity actually has some
benefit in terms of energy, since it results in a more gradually increasing error rate
as voltage is reduced. The optimal architecture for higher error rates has the most
gradually increasing error rate, enabling significant voltage scaling and an average
of 38% energy reduction at higher error rates, with respect to the optimal error free
architecture.

Graceful failure in the presence of overscaling translates into a lower dynamic en-
ergy overhead when exploiting Razor-based timing speculation. Figure 25 echoes the
results of our previous experiments, showing that the optimal architecture for cor-
rectness achieves only minor (5%) energy benefits with Razor, while the resilience-
optimized architecture reduces energy by 25% with respect to the error free minimum
energy.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Exploiting Timing Error Resilience in Processor Architecture 39:23

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0 2 4 6 8 10 12 14 16
Error rate (%)

E
n

er
g

y
(W

/IP
C

)

.

ic8_dc16_alu1_q32_reg128_lsq64 ic8_dc8_alu1_q32_reg128_lsq32 ic8_dc4_alu1_q16_reg64_lsq32

MID HIGHLOW

Fig. 24. The energy-optimal architecture is different for different ranges of voltage overscaling-induced
error rates.

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0.700.750.800.850.900.951.00
Voltage (V)

E
n

er
g

y
(W

/IP
C

)

.

ic8_dc16_alu1_q32_reg128_lsq64 ic8_dc4_alu1_q16_reg64_lsq32 Error Free Min Energy

Fig. 25. The resilience-optimized architecture achieves significant energy savings with Razor, while the
optimal error free architecture sees only minor benefits.

Table VI. Throughput Reduction for Resilience-aware
Optimizations.

REG (32 → 16) ALU (2 → 1) OpenSPARC
6% 21% 27%

Since resilience-optimized architectures typically reduce the sizes of regular struc-
tures like caches and use simpler architectural features that, e.g., may throttle ILP,
they may sacrifice some throughput in order to reduce energy. Table VI shows through-
put reduction for the resilience-aware optimizations we evaluated in this section. Since
we employed voltage overscaling, we demonstrate power and energy savings at the ex-
pense of some throughput. Note, however, that we could also demonstrate performance
gains by overscaling frequency rather than voltage.

6. RELATED WORK

This work demonstrates that the slack and activity distributions of a processor influ-
ence the error rate and the efficiency of timing speculation. Furthermore, architectural

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:24 J. Sartori et al.

optimizations have the potential to alter the slack and activity distributions to increase
the energy efficiency of timing speculation.

The closest related work [Sartori and Kumar 2010; Narayanan et al. 2010] compares
the efficiency of different adder architectures at different error rates. Our work is at
the architecture level, and we provide guidance on how to optimize the architecture of
a processor to alter both the slack and activity distributions and increase the efficiency
of timing speculation. We also perform a full design space exploration for resilience-
aware general purpose processor architectures.

A related body of work exists at the level of design techniques that optimize circuit
modules for a target error rate [Kahng et al. 2010b] or to fail gracefully in response
to voltage overscaling [Kahng et al. 2010c; 2010a] through cell-based optimizations.
Whereas these design-level techniques reshape the slack distribution or reliability of
a circuit module, the architecture-level techniques presented in this paper target both
the slack and activity distributions of a processor. Also, architecture-level optimiza-
tions can have a greater impact on the slack distribution of a processor, since for a
design-level technique, the microarchitecture and synthesized netlist are fixed, and
the ability of cell sizing to reshape path slack may be limited. This work demonstrates
that architecture-level changes can improve the energy efficiency of a timing specu-
lative architecture. A promising direction of work is to investigate co-optimization at
the architecture and design levels to reshape the slack and activity distributions and
maximize the energy efficiency benefits provided at each level.

Another relevant related work [Liang and Brooks 2006] explores microarchitectural
parameter selection to optimize processor performance in the presence of process vari-
ations. The authors aim to reduce performance loss due to process variations by adding
slack to the critical paths of a processor where possible. However, unlike our work,
[Liang and Brooks 2006] attempts to prevent the onset of errors; they are not concerned
with the activity distribution of the processor or scalability after the point where er-
rors begin to occur. Our work, on the other hand, focuses on the error rate distribution.
Since they are only concerned with correct operation, they have no reason to consider
the activity distribution of a processor or the shape of the slack distribution. We con-
sider all these factors in our approach to architecture, since they determine the energy
benefits achievable through the exploitation of timing speculation

7. CONCLUSIONS

The energy inefficiencies of traditional, conservative design approaches have led to
the introduction of error resilient design techniques that relax correctness in order
to save power and energy. Until now, these design techniques have been applied to
architectures that have been optimized for correctness.

In this work, we have demonstrated that the energy-optimal error free architecture
may not be the optimal architecture for exploiting timing error resilience. In other
words, one would make different, sometimes counterintuitive, architectural design
choices when optimizing a processor to exploit timing speculation than when optimiz-
ing for correct operation. Consequently, the desired error rate and the error resilience
mechanism should be taken into account when choosing the architecture for a tim-
ing speculative design. In addition to characterizing the effects of architectural opti-
mizations on the slack and activity distributions, we have demonstrated that they can
change the error rate behavior. Furthermore, we have demonstrated with experimen-
tal results for several DSP filter and general purpose architectures that optimizing
architecture to exploit timing error resilience can significantly increase the energy ef-
ficiency of timing speculation. Energy efficiency benefits of up to 29% are achieved for
Razor-based timing speculation.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Exploiting Timing Error Resilience in Processor Architecture 39:25

ACKNOWLEDGMENTS

The authors would like to acknowledge the many collaborators, colleagues, and reviewers that helped in
the development, refinement, and exploration of the ideas presented in this paper. Our work on Stochastic
Computing has been generously supported by GRC, GSRC, NSF, Intel, and LLNL.

REFERENCES

BERTACCO, V., AUSTIN, T., AND WAGNER, I. Bug Underground. University of Michigan.

BOWMAN, K., TSCHANZ, J., WILKERSON, C., LU, S., KARNIK, T., DE, V., AND BORKAR, S. 2009. Circuit
techniques for dynamic variation tolerance. In DAC. 4–7.

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level power
analysis and optimizations. In ISCA.

Cadence. Cadence LC User’s Manual. Cadence.

Cadence. Cadence NC-Verilog User’s Manual. Cadence.

Cadence. Cadence SOCEncounter User’s Manual. Cadence.

CHOUDHARY, N., WADHAVKAR, S., SHAH, T., MAYUKH, H., GANDHI, J., DWIEL, B., NAVADA, S., NAJAF-
ABADI, H., AND ROTENBERG, E. 2011. Fabscalar: composing synthesizable rtl designs of arbitrary cores
within a canonical superscalar template. In ISCA. 11–22.

DHAR, S., MAKSIMOVIC, D., AND KRANZEN, B. 2002. Closed-loop adaptive voltage scaling controller for
standard-cell asics. ISLPED.

ERNST, D., KIM, N. S., DAS, S., PANT, S., RAO, R., PHAM, T., ZIESLER, C., BLAAUW, D., AUSTIN, T., FLAUT-
NER, K., AND MUDGE, T. 2003. Razor: A low-power pipeline based on circuit-level timing speculation.
In MICRO. 7.

FUJIMURA, Y., HIRABAYASHI, O., SASAKI, T., SUZUKI, A., KAWASUMI, A., TAKEYAMA, Y., KUSHIDA, K.,
FUKANO, G., KATAYAMA, A., NIKI, Y., AND YABE, T. 2010. A configurable sram with constant-negative-
level write buffer for low voltage operation with 0.149µm2 cell in 32nm high-k/metal gate cmos. In
ISSCC.

GRESKAMP, B. AND TORRELLAS, J. 2007. Paceline: Improving single-thread performance in nanoscale cmps
through core overclocking. PACT, 213–224.

GRESKAMP, B., WAN, L., KARPUZCU, W., COOK, J., TORRELLAS, J., CHEN, D., AND ZILLES, C. 2009.
Blueshift: Designing processors for timing speculation from the ground up. HPCA.

HAMERLY, G., PERELMAN, E., LAU, J., AND CALDER, B. 2005. Simpoint 3.0: Faster and more flexible pro-
gram analysis. In JILP.

HARTSTEIN, A. AND PUZAK, T. 2003. Optimum power/performance pipeline depth. In MICRO. 117.

Intel Corporation 2008. Intel Atom Processor Z5xx Series. Intel Corporation.

KAHNG, A., KANG, S., KUMAR, R., AND SARTORI, J. 2010a. Designing processors from the ground up to
allow voltage/reliability tradeoffs. In HPCA.

KAHNG, A., KANG, S., KUMAR, R., AND SARTORI, J. 2010b. Recovery-driven design: A methodology for
power minimization for error tolerant processor modules. In DAC.

KAHNG, A., KANG, S., KUMAR, R., AND SARTORI, J. 2010c. Slack redistribution for graceful degradation
under voltage overscaling. In ASPDAC.

KEHL, T. 1993. Hardware self-tuning and circuit performance monitoring. ICCD, 188–192.

LIANG, X. AND BROOKS, D. 2006. Microarchitecture parameter selection to optimize system performance
under process variation. In ICCAD. 429–436.

NARAYANAN, S., SARTORI, J., KUMAR, R., AND JONES, D. 2010. Scalable stochastic processors. In DATE.

PALACHARLA, S., JOUPPI, N., AND SMITH, J. 1997. Complexity-effective superscalar processors. ISCA.

PAN, Y., KONG, J., OZDEMIR, S., MEMIK, G., AND CHUNG, S. W. 2009. Selective wordline voltage boosting
for caches to manage yield under process variations. In DAC. 57–62.

SARANGI, S., GRESKAMP, B., TIWARI, A., AND TORRELLAS, J. 2008. Eval: Utilizing processors with
variation-induced timing errors. MICRO, 423–434.

SARTORI, J. AND KUMAR, R. 2010. Overscaling-friendly timing speculation architectures. In GLSVLSI.

Sun. Sun OpenSPARC Project. Sun.

Synopsys. Synopsys Design Compiler User’s Manual. Synopsys.

Synopsys. Synopsys PrimeTime User’s Manual. Synopsys.

TULLSEN, D. M. 1996. Simulation and modeling of a simultaneous multithreading processor. In 22nd An-
nual Computer Measurement Group Conference.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.

