
404 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 3, MARCH 2012

Recovery-Driven Design: Exploiting Error
Resilience in Design of Energy-Efficient Processors

Andrew B. Kahng, Fellow, IEEE, Seokhyeong Kang, Student Member, IEEE, Rakesh Kumar, Member, IEEE, and
John Sartori, Student Member, IEEE

Abstract—Conventional computer-aided design (CAD)
methodologies optimize a processor module for correct
operation and prohibit timing violations during nominal
operation. We propose recovery-driven design, a design approach
that optimizes a processor module for a target timing error
rate (ER) instead of correct operation. The target ER is chosen
based on how many errors can be gainfully tolerated by a
hardware or software error resilience mechanism. We show that
significant power benefits are possible from a recovery-driven
design approach that deliberately allows errors caused by
voltage overscaling to occur during nominal operation, while
relying on an error resilience technique to tolerate these errors.
We present a detailed evaluation and analysis of such a CAD
methodology that minimizes the power of a processor module
for a target ER. We show how this design-level methodology
can be extended to design recovery-driven processors—processors
that are optimized to take advantage of hardware or software
error resilience. We also discuss a gradual slack recovery-driven
design approach that optimizes for a range of ERs to create soft
processors—processors that have graceful failure characteristics
and the ability to trade throughput or output quality for
additional energy savings over a range of ERs. We demonstrate
significant power benefits over conventional design—11.8% on
average over all modules and ER targets, and up to 29.1%
for individual modules. Processor-level benefits were 19.0%,
on average. Benefits increase when recovery-driven design is
coupled with an error resilience mechanism or when the number
of available voltage domains increases.

Index Terms—Cell sizing, error resilience, power minimization,
recovery-driven design, slack redistribution.

I. Introduction

CONVENTIONAL hardware is designed and optimized
using techniques that aim to ensure correct operation of

the hardware under different conditions. Conservative design
techniques are aimed at ensuring correct hardware operation
under worst-case conditions. Better-than-worst-case design
techniques [1] save power by eliminating guardbands, but

Manuscript received February 25, 2011; revised July 16, 2011; accepted
September 14, 2011. Date of current version February 17, 2012. This paper
was recommended by Associate Editor D. Sylvester.

A. B. Kahng is with the Department of Computer Science and Engineering
and the Department of Electrical and Computer Engineering, University of
California at San Diego, La Jolla, CA 92093 USA (e-mail: abk@ucsd.edu).

S. Kang is with the Department of Electrical and Computer Engineering,
University of California at San Diego, La Jolla, CA 92093 USA (e-mail:
shkang@vlsicad.ucsd.edu).

R. Kumar and J. Sartori are with the Department of Electrical and Computer
Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
USA (e-mail: rakeshk@illinois.edu; sartori2@illinois.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2011.2172610

are still aimed at ensuring correct hardware operation under
nominal conditions.

In this paper, we ask the following question: should the
availability of an error resilience mechanism change the way
we approach hardware design and optimization? That is, given
that mechanisms exist to tolerate hardware errors, should hard-
ware continue to be designed for correct operation or should it
be optimized for a target error rate (ER) even during nominal
operation. To address this question, we propose and evaluate a
novel approach to hardware design, called recovery-driven de-
sign. Rather than optimizing for correct operation, a recovery-
driven design deliberately allows timing errors [7], [15] to
occur during nominal operation, while relying on an error
resilience mechanism to tolerate these errors. In other words,
a recovery-driven design optimizes a circuit for a nonzero
target ER that can be gainfully tolerated by hardware [7] or
software-based [15] error resilience. The expectation behind
recovery-driven design is that the “underdesigned” hardware
will have significantly lower power or higher performance
than hardware optimized for correct operation. Also, because
errors are now allowed, the design methodology can exploit
workload-specific information (e.g., activity of timing paths,
architecture-level criticality of timing errors) to further maxi-
mize the power/performance benefits of underdesign.

In this paper, we show that optimizing power for a tar-
get timing ER for voltage overscaling-induced errors indeed
results in significant power savings for similar levels of per-
formance. We show that this is true when errors are detected
and corrected by a hardware error tolerance mechanism [7]
or allowed to propagate to an error-tolerant application [3]
where the errors manifest themselves as reduced performance
or output quality [15]. Increasing the target ER for a processor
module increases the potential for power savings, since the
module can be operated at a lower voltage. In practice, the
target ER is chosen such that an error recovery mechanism can
correct the resulting errors and still reduce energy (after con-
sidering the error recovery overhead) for an acceptable degra-
dation in performance or output quality. The power benefits
of exploiting error resilience are maximized by redistributing
timing slack from paths that cause very few errors to frequently
exercised paths that have the potential to cause many errors.
This reduces the ER at a given voltage, and hence reduces the
minimum supply voltage and power for a target ER.

This paper presents a detailed evaluation and analysis of a
slack redistribution-based recovery-driven design methodology

0278-0070/$31.00 c© 2012 IEEE

KAHNG et al.: RECOVERY-DRIVEN DESIGN: EXPLOITING ERROR RESILIENCE 405

that minimizes the power of a processor module for a target
ER. Our cell sizing-based design-level methodology has
been extended to create recovery-driven processors that
are optimized for different target ERs or error-resilience
mechanisms. Since some error resilience mechanisms (e.g.,
error-tolerant applications) require adaptation to multiple
reliability targets, we have also extended our recovery-driven
design approach to create gradual slack designs—designs
that are optimized not for a single ER, but instead, for a
range of ERs. Such gradual slack designs (or soft processors)
have the ability to trade performance or output quality for
energy savings over a range of reliability targets. We make
the following contributions in this paper.

1) To the best of our knowledge, we present the first design
flow for power minimization that deliberately allows
errors under nominal conditions. We demonstrate that
such a design flow can result in power savings of 11.8%,
on average over all modules and ER targets, and up to
29.1% for individual modules.

2) We explore the heuristic choices and tradeoffs that
are fundamental to the optimization quality of slack
redistribution-based, recovery-driven designs. We eval-
uate choices for path priority and traversal during op-
timization, optimization radius, accuracy of path selec-
tion, error budget utilization, starting netlist, voltage step
size granularity, and iterative optimization in terms of
their effects on the optimization result, heuristic runtime,
and sensitivity to target ER.

3) To support the proposed recovery-driven design flow,
we present a fast and accurate technique for postlayout
activity and ER estimation. We use collected functional
information to redistribute slack efficiently in a circuit
and significantly extend the range of voltage scaling for
a target ER.

4) We extend our recovery-driven design methodology to
create recovery-driven processors (processors that are
optimized for different target ERs or error recovery
mechanisms) and soft processors (processors that are
optimized for efficiency over a range of target ERs).
We demonstrate the power and energy benefits of such
processor designs.

5) We demonstrate that the power benefits of recovery-
driven processors and soft processors increase when a
hardware or software-based error resilience mechanism
is used. We consider Razor [7] and application-level
noise tolerance [32] as examples and show additional
energy reductions of 19% and 20% with respect to the
best correctness-optimized processors that exploit the
same error resilience mechanisms.

II. Related Work

A. Design-Level Optimization

Previous design-level optimizations for error-tolerant de-
signs [9], [10] identify and optimize critical paths that are
frequently exercised during operation. BlueShift [10] identifies
the most frequently violated timing paths during gate-level
simulation, and optimizes the paths iteratively until the ER
is below the target. BlueShift uses two methods to add slack

to the frequently exercised paths—forward body biasing of
selected gates and application of tighter timing constraints to
the frequently exercised paths.

Our work differs from BlueShift in objective, approach,
and scope of optimization. Our objective is to minimize
power, while BlueShift’s objective is to improve performance.
Consequently, we use sensitivity functions that are voltage-
aware. Also, BlueShift requires iterative gate-level simulation
and re-layout, making the approach time-consuming and im-
practical for large system-on-chip (SoC) designs. Furthermore,
while BlueShift optimizes only the postsynthesis circuit over
many layout iterations, our recovery-driven design techniques
perform both activity-guided postsynthesis and postlayout op-
timizations in a single pass to enhance energy efficiency.

CRISTA [9] isolates critical paths with Shannon-expansion-
based partitioning. After partitioning, CRISTA downsizes cells
on the critical path and upsizes cells on the noncritical paths:
critical paths are made slower while noncritical paths are
made faster. When a critical path is excited, the corresponding
operation takes two cycles. CRISTA changes the structure of
the original circuit and also requires circuit-specific design
to isolate critical paths. Since we do not change the original
circuit structure, our techniques are more general in nature and
can be applied more easily to a wider range of circuits.

Like recovery-driven design, related work on better than
worst case (BTWC) logic synthesis [6] has also proposed to
use activity information to reduce the ER of an overscaled de-
sign. Whereas traditional synthesis tools attempt to minimize
delay for a logic block, the proposed BTWC synthesis tool
uses switching probability to break a tie when two equivalent
logic decompositions have the same delay. Reducing switching
activity can result in fewer errors for an overscaled design.

B. Sensitivity-Based Cell Sizing
Our methodology relies on cell sizing for slack distribution.

Sensitivity-based downsizing approaches have been proposed
in [8], [11]–[13], [28], and [29]. TILOS [8] proposes a heuris-
tic that sizes transistors iteratively, according to the sensitivity
of the critical path delay to the transistor sizes, in order to
find an optimum (with maximum delay reduction/transistor
width increase). Equation (1) shows the sensitivity function
of TILOS. �L and �D represent the change in leakage and
delay for a resized transistor. The techniques proposed in [29]
use the same sensitivity function as TILOS as follows:

Sensitivity = �L/�D. (1)
For the cell sizing in [12], all cells are sorted in decreasing
order of �L×S, where �L is the improvement in leakage after
a cell is replaced with its less leaky variant, and S is its timing
slack after the replacement has been made. The techniques
proposed in [11] and [13] use sensitivity-based downsizing
(i.e., begin with all nominal cell variants and replace cells on
noncritical paths with long channel-length variants) heuristics
for leakage optimization. In their heuristics, they defined the
sensitivity associated with cell instance as follows:

Sensitivity = �L/�S. (2)
In (2), �S represents the slack change of a given cell instance
after downsizing. �L indicates the leakage change of cell in-
stance after downsizing. The sensitivities are computed for all

406 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 3, MARCH 2012

Fig. 1. Our recovery-driven design optimization redistributes slack from
infrequently exercised paths to frequently exercised paths and performs cell
downsizing for average-case conditions. These optimizations reduce the power
consumption of a circuit and extend the range that voltage can be scaled before
a target ER is exceeded. The combination of these factors produces a design
with significantly reduced power consumption.

Fig. 2. Power minimization heuristic reshapes the path slack distribution
by redistributing slack from paths that rarely toggle to paths that toggle
frequently.

cell instances. The heuristics of [11] and [13] select a cell with
the largest sensitivity and perform downsizing with a logically
equivalent cell. If there is no timing violation in incremental
static timing analysis, this move is accepted and saved.

Our work uses cell sizing in a novel context—as a mecha-
nism to optimize hardware for nonzero ERs.

III. Heuristic Design

A. Motivation

The goal of recovery-driven design in context of voltage
overscaling can be stated formally as follows. Given an initial
netlist N0, a set of cell libraries characterized for allowable
operating voltages, toggle rates (TRs) for the toggled paths
in the netlist, and a target ER ERtarget, produce the optimized
netlist NVopt and operating voltage Vopt that minimize the
total power consumption WVopt of the circuit, such that the
ER of the optimized netlist does not exceed ERtarget. Fig. 1
demonstrates the goal.

In this paper, we present a cell sizing-based design method-
ology that relies on efficient redistribution of timing slack from
infrequently exercised critical paths to frequently exercised
paths to reduce the ER at a given voltage, allowing a reduction
in voltage for a given target ER.

B. Abstract Heuristic for Power Minimization

Our heuristic for slack redistribution-based power
minimization uses a two-pronged approach—extended
voltage scaling through cell upsizing on critical and frequently

Fig. 3. Algorithmic flow of a heuristic for minimizing power for a target
ER. Pa is the set of all paths toggled during simulation. Pp is the set of
all nonnegative slack paths. Pn is the set of all negative slack paths in Pa.
χtoggle(p) is the set of cycles in which path p is toggled.

exercised circuit paths (OptimizePaths), and leakage power
reduction achieved by downsizing cells in noncritical and
infrequently exercised paths (ReducePower). The heuristic
searches for the combination of the two techniques that
results in the lowest total power consumption for the circuit,
by performing path optimization and power reduction at each
voltage step and then choosing the operating power at which
minimum power is observed.

Fig. 2 illustrates the evolution of the circuit path slack
distribution throughout the stages of the power minimization
procedure. Each iteration begins as voltage is scaled down
by one step [Fig. 2(a)]. After partitioning the paths into sets
containing positive and negative slack paths, OptimizePaths
attempts to reduce the ER by increasing timing slack on
negative slack paths [Fig. 2(b)]. Next, the heuristic allocates
the ER budget by selecting paths to be added to the set
of negative slack paths, and downsizes cells to achieve
area/power reduction [Fig. 2(c)]. This cycle is repeated over
the range of voltages to find the minimum power netlist and
corresponding voltage [Fig. 2(d)]. In Fig. 2, P+ is a set of
paths that must have nonnegative slack after power reduction,
and P− is a set of paths that are allowed to have negative
slack. We ensure positive slack for P+ paths by characterizing
timing with worst case libraries.

Fig. 3 presents the algorithmic flow of our power minimiza-
tion heuristic, which couples path optimization to extend the
range of voltage scaling (OptimizePaths) with area minimiza-
tion to achieve power reduction (ReducePower).

C. Heuristic Procedures
1) Path Optimization: The goal of the path optimization

procedure (OptimizePaths) presented in Algorithm 1 is to
minimize the ER at a voltage level by transforming negative
slack paths into nonnegative slack paths. This is accomplished
by performing cell swaps within the negative slack paths to
increase path slack. Negative slack paths with maximum TRs

KAHNG et al.: RECOVERY-DRIVEN DESIGN: EXPLOITING ERROR RESILIENCE 407

Algorithm 1 Pseudocode (OptimizePaths, ReducePower).
Procedure OptimizePaths(P, NVi

, Vi)
1. Clear ’visited’ mark in all cells in the netlist NVi

;
2. while P �= ∅ do
3. Select path p from P with maximum TR;
4. for each cell c in path p do
5. if c.visited == true then continue;
6. c.visited ← true;
7. for each logically equivalent cell m for the cell instance c do
8. Resize cell c with logically equivalent cell m;
9. Q ← c ∪ visited fanin and fanout cells of c;

10. for each path q in P that contains a cell in Q do
11. if �slack(q, c, m, Vi) < 0 then restore cell change;
12. end for
13. end for
14. end for
15. P ← P − p;
16. end while

Procedure ReducePower(Pp, Pn, NVi
, Vi, ERtarget)

1. P+ ← Pp and P− ← Pn;
2. while P+ �= ∅ do
3. Select path p from P+ with minimum �ER(p);
4. ER ← ComputeErrorRate(P− + p);
5. if ER ≤ ERtarget then
6. P− ← P− + p; P+ ← P+ − p;
7. else
8. break;
9. end if

10. end while
11. Insert all downsizable cells into set C;
12. ComputeSensitivity(C, NVi

, Vi, −1);
13. while C �= ∅ do
14. Downsize cell c from C with minimum Sensitivity(c);
15. Q ← c ∪ fanin and fanout cells of c;
16. for each path p in P+ that contains a cell in Q do
17. if slack(p, Vi) < 0 then
18. Restore cell change;
19. C ← C − c;
20. continue while loop;
21. end if
22. end for
23. ComputeSensitivity(Q, NVi

, Vi, −1);
24. if cell c is not downsizable then
25. C ← C − c;
26. end if
27. end while

are selected first during optimization, since they have the
most potential to reduce the ER if converted into nonnegative
slack paths.

When a path is targeted for optimization, cell swaps are
attempted on all cells in the path to increase slack as much
as possible until nonnegative path slack is achieved.1 Once
a cell has been visited during optimization, it is marked to
prevent degradation of timing slack on any path that the cell
is on. Before accepting a cell swap, path slack is checked for
all paths that the cell or any visited fanin/fanout cell is on.
If the swap caused a decrease in slack for any such path, the
move is rejected, and the original cell is restored. Previously
optimized (visited) fanin and fanout cells are protected from
slack decrease because they belong to paths that have higher
TRs, and thus, higher priority of optimization. If cell swaps
on a path fail to shift the path back into the set of nonnegative
slack paths, then the path is ignored during subsequent
iterations of path optimization.

1We consider only setup timing slack, since hold violations can typically
be fixed by inserting hold buffers in a later step.

Any cell swap that increases the ER (by causing a path to
switch from the set of nonnegative slack paths to the set of
paths allowed to have negative slack) is rejected. Otherwise,
we recompute the sensitivity of the swapped cell and all
cells in its fanin/fanout network and select the next cell for
downsizing.

2) Power Reduction: After path optimization, the ER of
the circuit is minimized at the present voltage. From this state,
we proceed to minimize the power at the present voltage
by utilizing the available ER budget. Algorithm 1 (Reduce-
Power) describes our power reduction procedure. The goal
of the power reduction heuristic is to efficiently allocate the
remaining error budget to infrequently exercised paths in order
to maximize power reduction achieved by cell downsizing.
Typically, cells on P− paths can exploit additional downsizing,
because these paths are not bound by the normal timing
constraint of the circuit.

The first step in power reduction is to choose additional
paths to become negative slack paths until the target ER of
the circuit is matched. Paths are selected in order to minimize
the additional contribution to the ER of the circuit. After
defining the partition between negative and nonnegative slack
paths, cell downsizing is performed for all cells in the circuit
in order of minimum sensitivity. We define the sensitivity of
a cell in (3) as the change in cell slack (�sc) divided by the
change in cell power (�wc) when the cell c is downsized by
one size. The slack of cell c is defined as the minimum slack
on any timing arc containing c. The power of cell c is the
sum of static power (wstat(c)) and dynamic power (wdyn(c))
for the cell. This formulation of sensitivity is similar to
those proposed by previous works targeting leakage power
reduction [11], [13] as follows:

Sensitivity(c) =
sc − sc′

wc − wc′
(3)

where wc = wstat(c) + wdyn(c).

D. Path Extraction and ER Estimation

1) Path Extraction: Our heuristic has many path-
based procedures—OptimizePaths, ReducePower, and
ComputeErrorRate—and it is impractical to consider all of
the topological paths in these procedures. Therefore, we
reduce the number of paths that we consider by extracting
only paths toggled during functional simulation. The value
change dump (VCD) file can be used to extract toggled paths.
To produce a VCD file, we perform gate-level simulation
with Cadence NC-Verilog [35] at a frequency slow enough
to capture all possible signal transitions. Fig. 4 shows an
example VCD file and the path extraction method. The VCD
file contains a list of toggled nets at each time when a
transition occurs, as well as their new values. We can use this
information to extract toggled paths in each cycle. Nets that
glitched or toggled in each cycle are marked, and these nets
are traversed to find toggled paths. We detect a toggled path
when toggled nets compose a connected path of toggled cells
from a primary input or flip-flop input to a primary output
or flip-flop output. In Fig. 4, nets a, x, and y have toggled
in the first and third cycles (#1, #3), and nets b and y have
toggled in the second and fourth cycles (#2, #4). We extract
two paths: a − x − y and b − y.

408 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 3, MARCH 2012

Fig. 4. VCD file format and path extraction.

2) TR and ER Estimation: In order to accurately minimize
power for a target ER, we must be able to produce accurate
estimates for ER during our optimization flow. Thus, we
propose a novel approach to ER estimation that enables design
for a target ER.

We calculate the TR of an extracted path using the number
of cycles in which the path toggles. χtoggle(p) represents the set
of cycles in which path p has toggled during the simulation.
TR(p) represents the TR of path p and is defined as

TR(p) =
|χtoggle(p)|

Xtot
(4)

where |χtoggle(p)| is the number of cycles in which path p

has toggled, and Xtot is the total number of cycles in the
simulation. Using the toggled cycle information of negative
slack paths, we can calculate the ER precisely. The ER of the
design is calculated as

ER =
|⋃p∈Pn

χtoggle(p)|
Xtot

(5)

where Pn is the set of negative slack paths in the set of all
toggled paths. In Fig. 4, if paths a − x − y and b − y both
have a TR of 0.4 (number of toggled cycles is 2 and number
of total cycles is 5), and if path a − x − y has negative slack,
then timing errors will occur in cycles #1 and #3. Therefore,
the ER is 0.4 for this example.

Our novel technique for ER estimation has proven to be
much faster than functional simulation and more accurate
than previous estimation techniques. Results comparing our
VCD-based technique to functional simulation and previous
estimation approaches can be found in [19].

E. Heuristic Design Choices

In this section, we discuss heuristic design choices.
1) Experiment 1: Path Ordering During Optimization:

The order in which we select paths for optimization affects
the optimization result, since we prevent cells from being
visited multiple times during optimization. The order also
matters because we protect previously optimized paths from
slack degradation due to other attempted cell swaps, as previ-
ously optimized paths have a higher optimization priority. We
evaluate two prioritization functions for path selection during
optimization. The first ranks paths in order of decreasing TR
[TR(p)]. Paths with the highest TRs have the greatest potential
to decrease ER when optimized. We compare against a func-
tion that ranks paths in order of decreasing TR(p)/|slack(p)|.
In this alternative, we prefer paths with smaller negative slack,
since the least effort is required to convert these paths into
nonnegative slack paths.

2) Experiment 2: Optimization Radius: The goal of opti-
mization is to maximize the slack of a targeted path through
cell swaps. We evaluate two alternatives for the radius of
optimization. In one case, we only swap cells on the target
path. In the second case, we target both the cells on the path
as well as cells in their fanin/fanout networks, since swaps in
the fanin/fanout network can also affect cell slack.

3) Experiment 3: Path Traversal During Optimization:
When optimizing a path, the order in which cells are visited
can have an effect on the optimization result, since cell swaps
affect input slew and output load. We consider two options—
traversal from front to back and from back to front. We iterate
over the cells in a path and make swaps until there is no further
increase in the path slack.

4) Experiment 4: Accuracy of Path Selection During Power
Reduction: During power reduction, nonnegative slack paths
are selected to be added to the set of paths allowed to have
negative slack, thus utilizing the available ER budget. Paths
are prioritized in order of increasing incremental contribution
to ER, �ER(p). However, after moving a path from P+ to P−,
�ER(p) can change for paths that shared error cycles with the
moved path.

To obtain precise ordering in terms of ER contribution, we
can update �ER(p) after each path selection. However, this
introduces a runtime overhead, since we must continuously
update �ER(p) for all remaining P+ paths. We compare
such precise prioritization against the alternative case where
�ER(p) is calculated only once for all P+ paths before path
partitioning.

5) Experiment 5: ER Budget Utilization: During power
reduction, the final ER after cell downsizing could be less
than the target ER, ERtarget, since some paths in P− might
still have nonnegative slack, even after maximum downsizing
on the path cells. In this case, we might continue to reduce
the power of the design by selecting more paths to add to
P− and downsizing cells again. We evaluate two cases—one
where a single pass is performed for path selection and cell
downsizing, and one where the ReducePower procedure is
repeated until there is no further reduction in power (i.e., repeat
ReducePower whenever some paths added to P− still have
nonnegative slack after cell downsizing).

6) Experiment 6: Starting Netlist: Here, we evaluate
heuristic performance for different starting netlists correspond-
ing to loose (clock period increased by 10%) and tight
(reduced by 40%) timing constraints. This can significantly
affect the final voltage reached, the dependence on engineer-
ing change order (ECO), and the amount of power savings
afforded by the power minimization algorithm.

7) Experiment 7: Voltage Step Size: In each iteration of
the power minimization heuristic, we step down the voltage
by a value Vstep and run the OptimizePaths and ReducePower
procedures to produce a netlist for the present level of voltage
scaling. The size of Vstep can influence the optimization result
and runtime of the heuristic. Thus, we compare two values
of Vstep, 0.01 V and 0.05 V, and compare the characteristics of
the final netlist as well as the heuristic runtime.

8) Experiment 8: Iterative Optimization: In each iteration
of the heuristic, we perform optimization of negative slack

KAHNG et al.: RECOVERY-DRIVEN DESIGN: EXPLOITING ERROR RESILIENCE 409

Fig. 5. Goal of the “gradual slope” slack optimization is to transform a
slack distribution having a critical “wall” into one with a more gradual failure
characteristic. This allows performance/power tradeoffs over a range of ERs.

paths at that voltage level. During the next iteration, we have a
choice between starting from the previously optimized netlist,
(NVi−1) or the original netlist (N0). We compare the netlists
produced in each case and see if they have similar power and
runtime characteristics.

F. Gradual Slack Design

We extend our design methodology to implement another
form of recovery-driven design called gradual slack de-
sign [17], which reshapes the slack distribution of a processor
to create a gradual failure characteristic, rather than the typical
critical wall. While ER-optimized, recovery-driven designs
achieve better energy efficiency at a single target ER, gradual
slack designs have the ability to trade reliability, throughput,
or output quality for energy savings over a range of ERs. Fig. 5
describes the optimization approach for gradual slack design.
To achieve a gradual slack distribution with our recovery-
driven design flow, we do not optimize for a single target
ER by selecting P− paths. Instead, we select the maximum
target ER corresponding to the desired range of scalability,
and optimize only the negative slack paths in the scaling
range with the highest switching activity, in order to maximize
the range of voltage scalability for target range of ERs. We
downsize only cells that have negligible activity so that the
slack distribution for the active paths and the ER of the
processor are not affected. In this way, we maintain the desired
gradual sloping slack distribution rather than creating a critical
wall distribution with a cluster of active paths in the permanent
negative slack region.

G. Processor Power Reduction

Algorithm 2 shows a heuristic for minimizing the power
of a processor core for a target ER. The first step of the
above power-minimization heuristic involves characterizing
the modules of the processor core in terms of their power
consumption at different ER and voltage targets. These data
are provided by PowerOptimizer and are used to select the
optimal operating voltage(s) for the processor core, as well as
the ER targets to assign to the processor modules.

The next step in the processor-level heuristic is to use the
data from PowerOptimizer to solve an optimization problem.
The optimization objective is to minimize the power of the
processor core subject to the constraint that the processor ER
must be less than the chosen target rate. Using the data from
PowerOptimizer, we can formulate expressions for the power
and ER of the processor core in terms of the module ERs

Algorithm 2 Processor-level design heuristic

Procedure OptimizeProcessor(ERtarget, MODULES, DOMAINS)
1. for each module m in the optimization list of MODULES do
2. for each error rate ER < ERtarget do
3. PowerOptimizer(N(m), ER);
4. end for
5. Use the results from PowerOptimizer to characterize Pm(V, ER)
6. end for
7. for each voltage V ∈ Vrange do
8. Minimize Pcore(V) = �(Pm(V, ER)) s.t.

ERcore(ERmodule1 , . . . , ERmoduleM) ≤ ERtarget
9. Record minimum power Pmin

core(V) and module ER assignment S(V) =
[ERmodule1 , . . . , ERmoduleM]

10. end for
11. Select the voltage Vopt at which power Pmin

core is minimized
12. Let V ∗(S(V)[m]) be the voltage that minimizes power for module m at

ER = S(V)[m]
13. Locate the DOMAINS neighbors {V1, . . . , VDOMAINS} nearest to the set

of voltages V ∗(S(Vopt))
14. Assign each module m to the voltage domain VD[m] ∈

{V1, . . . , VDOMAINS} that minimizes power Pm(VD[m], S(Vopt)[m])
15. Layout the processor, selecting for each module m ∈ MODULES the

netlist N(m, VD[m], S(Vopt)[m]);

and the operating voltage. Thus, the goal of the optimization
problem for a particular voltage is to find the assignment of
ER targets to modules that satisfies the optimization objective.
In this paper, we use a disjunctively constrained knapsack-
based [33] approach to solve the optimization problem. The
knapsack solver selects the voltage and ER assignment for
which the power of the processor core is minimized and uses
the selected ER-optimized netlist of each module to lay out
the processor.

For multiple voltage domain designs (DOMAINS > 1),
the heuristic selects the voltage level of each domain and
the partitioning of modules to voltage domains to minimize
core power. This involves first selecting the ER targets for
the modules based on a minimum-power global assignment,
then selecting the levels for the voltage domains and module-
to-level assignments such that the power of the modules
is minimized. The latter step is performed using a nearest
neighbor search to identify the neighbors nearest to the set
of optimal module voltages corresponding to the module ER
assignments in the space of voltages.

IV. Recovery-Driven Processors

The proposed design methodology enables recovery-driven
processors—processors that are optimized to deliberately pro-
duce timing errors at a rate that can be gainfully tolerated
by an error recovery mechanism. Below, we describe two
recovery-driven processor designs—one targeting hardware-
based error resilience and another targeting software-based
error resilience.

A. Case Study: Circuit-Level Timing Speculation

One popular hardware-based scheme for error detection and
correction is circuit-level timing speculation [7], [30]. Circuit-
level timing speculation-based techniques detect errors by
sampling the same computation twice—once using the regular
clock and again using a delayed clock. The two outputs are
compared. When the outputs do not match, an error is signaled.
Correction involves treating the delayed clock output as the

410 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 3, MARCH 2012

correct output. Razor [7] and error-detection sequential [30]
provide good examples of circuit-level timing speculation.

A recovery-driven processor design targeted for Razor takes
into account the frequency of errors that can be gainfully
tolerated by Razor (determined by the dynamic error recovery
overhead) as well as the number of latches in which an error
may occur (which determines the cost of making the circuit
robust to errors). For the design-level heuristic, this means that
when we define the partition between paths that are allowed
have errors (P−) and paths that are error-free (P+), we must
consider the ER contribution of each path, which adds to the
dynamic recovery overhead of Razor. We must also account
for the cost of using a Razor flip-flop (FF) at the endpoint
of any path that may potentially cause a timing error, and
buffering for any short paths terminating at that endpoint.
If downsizing a path during ReducePower requires that we
must replace a regular FF with a Razor FF, then we should
ensure that the energy benefit (in terms of power reduction for
additional cell downsizing) outweighs the additional cost of
the Razor FF and any short-path hold buffering. Since Razor
assumes a maximum delay constraint on all paths [25], in
addition to checking P+ paths for negative slack (line 16 of
ReducePower) we must also ensure that all P− paths respect
the delay constraint after a downsizing move.

B. Case Study: Application Noise Tolerance

Error-tolerant applications [32] represent an opportunity to
save power and increase performance by allowing errors to
propagate to the application level rather than expending power
to detect and correct them at the hardware level. For several
such applications, data errors simply result in reduced output
quality, instead of program failure.

Designing a recovery-driven processor for error-tolerant
applications requires several considerations. First, the set
of processor modules is partitioned into two subsets—one
containing modules that produce errors that the applications
can tolerate and another containing modules that should not
allow errors to propagate to the application level. For the
class of error-tolerant applications that we consider in this
paper, errors in the arithmetic units (i.e., arithmetic logic unit
and floating-point unit) can be tolerated. For this class of
applications (which relies heavily on numerical computation),
the arithmetic units account for approximately 35% of the
dynamic power consumption of the processor.

In addition to the list of modules to optimize, the
OptimizeProcessor procedure requires a target ER. The ER is
chosen such that all applications in the class have acceptable
quality for the target ER.

For the modules that produce errors that the application
cannot tolerate, one of two approaches can be followed. One
option is to operate those modules on the same voltage rail as
the modules in which faults are allowed (single rail design). In
this case, we feed these modules to the optimization heuristic
targeting some hardware recovery mechanism that guarantees
correctness, such as Razor. The two groups must agree on a
common voltage that minimizes power consumption for the
entire processor, and the optimal voltage reported by the opti-
mization heuristic can be used as a constraint for the second

Fig. 6. Computer-aided design flow incorporating the power optimization
heuristic to minimize the power of a design for a given error tolerance
technique.

optimization. Alternatively, the two groups can operate in
separate voltage domains (dual rail design), in which case each
optimization can select a different optimal voltage.

Soft processor design can also be used to adapt the relia-
bility of the processor for reliability diverse workloads, with
more power savings available as the ER target decreases. To
create a soft processor design, the gradual slack module-level
heuristic is used, and the optimal voltage and ER targets of
the modules are chosen based on the range of ER targets that
the processor should support.

V. Methodology

Our methodology for demonstrating the benefits of
recovery-driven design has two parts—a design-level method-
ology to characterize the power and reliability of circuit
modules optimized for different voltage and ER targets, and
an architecture-level methodology to estimate processor power
and performance when the proposed design-level techniques
are applied at the processor-level.

A. Design-Level Methodology

We use the OpenSPARC T1 processor [38] to test our
optimization framework. Table I describes the selected mod-
ules and provides characterization in terms of cell count
and area. Module designs are implemented in TSMC 65GP
technology using a standard flow of synthesis with Synopsys
Design Compiler vY-2006.06-SP5 [39] and place-and-route
with Cadence SoC Encounter v8.1 [37]. Runtime is reduced
by adopting a restricted library of 66 commonly used cells2

(62 combinational and 4 sequential). Conventionally con-
strained designs are synthesized for the target operating fre-
quency (0.8 GHz), and tightly constrained designs are synthe-
sized for a 40% smaller clock period to increase timing slack.

Fig. 6 illustrates our recovery-driven design flow. We per-
form gate-level simulation to produce a VCD file3 using
Cadence NC-Verilog v6.1 [35]. To find timing slack and
power values at specific voltages, we prepare Synopsys Liberty
(.lib) files for each voltage from 1.00 V to 0.50 V in 0.01 V
increments, using Cadence Library Characterizer v9.1 [36].

2Heuristic efficiency depends on the number of available logically equivalent
cells. Since we use all available cell sizes for different drive strengths, our
heuristic will also be effective with a full set of library cells.

3Gate-level simulation is performed for one million cycles, and the size of
the VCD file is about 500 MB for our test cases. To implement larger designs,
a compressed VCD file could be used—e.g., Synopsys VCD Plus format.

KAHNG et al.: RECOVERY-DRIVEN DESIGN: EXPLOITING ERROR RESILIENCE 411

Fig. 7. Energy and area overheads for Razor-based design.

TABLE I

Target Modules for Experiments

Module Stage Description Cell # Area (μm2)
lsu−dctl MEM L1 Dcache control 4537 13 850

lsu−qctl1 MEM LDST queue control 2485 7964
lsu−stb−ctl MEM ST buffer control 854 2453

sparc−exu−ecl EX Execution unit control 2302 7089
sparc−ifu−dec FD Instruction decode 802 1737

sparc−ifu−errdp FD Error datapath 4184 12 972
sparc−ifu−fcl FD L1 Icache and PC control 2431 6457

spu−ctl SPU Stream processing control 3341 9853
tlu−mmu−ctl MEM MMU control 1701 5113

Complete characterization for 51 voltage points takes a couple
of days, but this is a one-time cost.

Timing information is continually available from Synopsys
PrimeTime c2009.06 [40] static timing tool through the Tcl
socket interface, during the optimization process. After our
optimization, all netlist changes are realized using Cadence
SoC Encounter in ECO mode.

Gate-level simulation is performed using test vectors ob-
tained from full-system register-transfer level (RTL) simula-
tion of a benchmark suite consisting of integer and floating-
point SPEC benchmarks. These benchmarks are each fast-
forwarded to their early SimPoints using the OpenSPARC T1
system simulator, Simics [22] Niagara. After fast-forwarding
in Simics, the architectural state is transferred to the
OpenSPARC RTL using Carnegie Mellon University Trans-
plant [5].

Our recovery-driven design techniques optimize for average
activity. To ensure that the activity profiles used during opti-
mization (training) are representative and adequate, we use
mutually exclusive training and test workloads. We optimize
based on the average activity of half of our benchmarks and
test using the other half. Training and test sets are chosen
randomly and contain half integer and half floating-point
benchmarks. Table II shows the benchmarks in the training
and test sets.

When characterizing Razor-based designs, we use worst
case timing libraries to determine any path that might have
negative slack under worst case process, voltage, temperature
variations. We assign a Razor FF to the endpoint of any such
path, add a maximum delay constraint of 1.5 cycles to the
path, and add a minimum delay constraint of 0.5 cycle to all
paths ending at that FF. We add buffers to any path that does
not meet the minimum delay constraint. Razor FFs have higher
power, delay, and area than normal FFs [7]. An error triggers a
recovery period during which the pipeline recovers to a correct
state. During this time, we assume that no progress is made,

TABLE II

Benchmarks

Benchmarks for Design Optimization (Training Set)
ART Image recognition/neural nets
BZIP2 Compression
MCF Combinatorial optimization
MESA 3-D Graphics library

Benchmarks for Design Evaluation (Test Set)
equake Seismic wave propagation
gzip Compression
twolf Place and route simulator
sort Sorting

Additional Benchmarks for Processor-Level Evaluation
AMMP, APPLU, MGRID, PARSER, SWIM, CRAFTY,
EON, WUPWISE
VPR, VORTEX-2, FACEDETECT†, CG†, LSQ†

†Error-tolerant application.
TABLE III

Processor Specifications

Property Value Property Value
L1 cache 16 kB, 4 way, 1 cyc RegFile 72 (int), 72 (FP)
L2 cache 2 MB, 8 way, 8 cyc Branch predict gshare (8K entries)
Execution 2-way OO Mem Access 315 cycle

but we do account for the power and time consumed during
recovery when reporting processor throughput and energy. We
assume a counterflow pipeline-based Razor implementation [7]
with a recovery penalty proportional to the depth of the
pipeline (nine cycles for our nine-stage pipeline). We use the
ER, in conjunction with the rates of power consumption during
normal operation and error recovery, as well as the recovery
time overhead of Razor to calculate the energy overhead
of error recovery [7]. Fig. 7 compares the energy and area
overheads of Razor for each design style that we evaluate.
The fraction of Razor FFs ranges from 2.6% for a tightly
constrained design to 5% for a Razor-optimized recovery-
driven design.4 Our Razor-optimized recovery-driven design
heuristic directly accounts for the overheads of adding a Razor
FF to ensure increased energy savings, even if additional Razor
FFs are required.

B. Architecture-Level Methodology

We use SMTSIM [31] integrated with Wattch [2] to simulate
processors whose single-core parameters are in Table III.
The simulator reports performance and power numbers at
different voltages. Our evaluations are done using benchmarks
in Table II. These benchmarks were chosen to maximize
diversity in terms of performance and reliability requirements.
We base our out-of-order processor microarchitecture model
on the MIPS R10000 [34].

To get a processor-wide ER at a given frequency and volt-
age, we first sum the ERs from all the sampled OpenSPARC
modules and then scale up the sum based on area, such that
it includes all modules that we target for optimization. The
ER of a module that has not been characterized is assumed
to be proportional to area. We target only logic modules with
our recovery-driven design methodology. On-chip memories
are assumed to operate on a separate voltage rail [16] at the
lowest error-free voltage for a given operating frequency. At
45 nm and below, such “split rail” designs are common. While
we provision for error-free static random-access memories

4In our previous work [17], [18], all flip-flops were Razor flip-flops, leading
to different absolute power and area numbers.

412 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 3, MARCH 2012

(SRAMs), logic interfacing with SRAM structures, such as
register read and writeback logic, may still produce errors.
For designs that rely on error-tolerant applications, we scale
the ERs of each module group separately, according to an ER
characterization of sampled modules in the group. Once the
processor core-wide ER is calculated, we can use performance
and power numbers reported by our simulators to estimate
the throughput and power impact of errors for a given error
recovery overhead.

We use a similar methodology to get processor-wide power
numbers. To get a dynamic power estimate, we scale the
dynamic power numbers reported by Wattch for the opti-
mizable components by the ratio of total module power for
an optimization technique over total module power for the
baseline design, as reported by Synopsys PrimeTime. For
designs that exploit application-based error resilience, we
scale the power of the module groups independently, as we
did for ER. For the nonoptimizable components, the Wattch
numbers are scaled based on the minimum voltage that these
components can run at without producing timing errors. For
static power estimation, we use the ratio of dynamic and static
module power for an optimization technique, as reported by
PrimeTime, to calculate static power for a dynamic power
value reported using the above methodology.

When a processor designed for application-level reliability
runs an application that requires correctness, we scale down
the frequency of the processor so that no timing violations
occur. The safe clock frequency of the design is determined
by the worst case negative slack timing path in the processor
plus a safety margin. All of our application simulations are
executed for one billion cycles after fast-forwarding to the
early SimPoints [27].

VI. Experimental Results

We now evaluate our recovery-driven design implementa-
tions, which redistribute timing slack to reduce the ER at a
given voltage, allowing a reduction in voltage and energy for
a given target ER and operating frequency.

A. Evaluation of Heuristic Design Choices

Fig. 8 shows power and runtime of the various heuristic
design alternatives that we evaluated, as described in Sec-
tion III-E. For path ordering during optimization, considering
the slack in the prioritization function results in higher power
than the case where only TR is used. Runtime is somewhat
smaller, but since our optimization iterates over a path multiple
times until no slack increase is observed, both results perform
similarly. For the same reason, path traversal order has little
effect on the optimization result. We choose the TR priority
function for its simplicity and lower power.

The results for optimization radius show that swapping
cells in the fanin/fanout networks not only increases power
at some ERs, but also greatly increases runtime due to the
large amount of swaps that are performed. Thus, we choose
to swap cells only on the optimized path. In the experiments
on accuracy of path selection and ER budget utilization,
we observe no difference in power. Both updating the ER
contribution continuously during path selection and ensuring

Fig. 8. Evaluation of different heuristic design choices. The choices are
evaluated in terms of power of the resulting design as well as runtime.

full utilization of the ER budget increase runtime significantly
without providing power benefits, and these techniques are not
used in the final heuristic implementation.

The choices of starting netlist and voltage step size have a
significant effect on power. Our recovery-driven design heuris-
tic employs two main procedures: OptimizePaths (cell upsizing
to reduce the ER) and ReducePower (cell downsizing to reduce
area and power). When starting the optimization flow from
a loosely constrained design, path optimization provides the
most substantial contribution to power reduction by reducing
the ER and extending voltage scaling. However, when starting
from a tightly constrained design, much optimization has
already been performed, and the power reduction stage of our
heuristic is essential for power minimization. Although run-
time increases due to evaluation of more downsizing moves,
a tightly constrained netlist provides a better starting point,
since it permits more voltage scaling. Voltage scaling has
a stronger effect on power reduction and scales the power
of all cells, while area reduction only affects the downsized
cells. Also, starting from a tightly constrained design reduces
the dependence on ECO, which improves the optimization
efficiency. Using a coarser-granularity voltage step reduces
runtime significantly, but comes at the cost of power, since
the heuristic cannot hone in on the optimal voltage as easily.
For higher ERs, a large step size can provide a near-optimal
power result and a large reduction in runtime. Thus, ER-aware
adaptive step sizing can be beneficial.

KAHNG et al.: RECOVERY-DRIVEN DESIGN: EXPLOITING ERROR RESILIENCE 413

Fig. 9. Power consumption of each design technique at various target ERs
for target modules in Table I. (Additional results are available at [41].)

TABLE IV

Power Savings (%) for ER-Optimized Recovery-Driven Designs

Compared to Traditional P&R

Target ER (ERtarget)
MODULE 0.125% 0.25% 0.5% 1.0% 2.0% 4.0% 8.0%
lsu−dctl 29.1 16.8 16.8 16.8 16.8 16.8 21.6

lsu−qctl1 8.8 6.7 5.8 8.1 11.0 9.0 8.6
lsu−stb−ctl 17.9 17.9 18.1 15.4 9.6 19.2 2.9

sparc−exu−ecl 6.0 6.0 18.3 18.3 22.7 23.3 17.4
sparc−ifu−dec 13.7 10.1 8.6 14.3 15.9 18.5 15.1

sparc−ifu−errdp 2.2 2.8 5.7 5.7 5.7 9.3 9.3
sparc−ifu−fcl 14.5 15.4 16.5 19.2 19.2 19.2 19.2

spu−ctl 13.1 13.1 13.1 13.2 8.8 1.6 8.9
tlu−mmu−ctl 0.8 0.8 0.8 0.8 0.8 0.8 0.8

In terms of iterative optimization, we observe that our
heuristic is able to achieve the same result independent of
the starting netlist. Thus, we choose the option that minimizes
runtime.

B. Comparison Against Alternative Flows

To demonstrate the benefits of our recovery-driven design
flow, we compare five alternative design flows: traditional
P&R implementations with conventional and tight timing
constraints, a BlueShift-like path constraint tuning (PCT)
approach, gradual slack design [17], [18], and our heuristic
for ER-optimized recovery-driven design. Fig. 9 compares
the power consumptions of the various design techniques at
several target ERs.

Recovery-driven designs reduce power by enabling
extended voltage scaling and keeping area overhead low
with respect to other optimization techniques. Compared to
a conventionally optimized design, a recovery-driven design
operates at a much lower voltage for a given target ER, due to
the functionally aware optimization approach that optimizes
the paths that cause the most errors. Compared against a
highly optimized design that uses tightly constrained P&R,
a recovery-driven design reduces power by minimizing the
amount of area spent on path optimization. Traditional tightly
constrained designs are functionally agnostic and optimize all
paths heavily, incurring a large area overhead. Recovery-driven
designs, on the other hand, use functional information to target
only the paths that cause the most errors, thereby minimizing
the area cost of additional voltage scaling. In scenarios where
the cost of area is high, such as for technologies with higher
leakage like those forecasted in future technology generations,
the cost of functionally agnostic optimizations will increase,
and the benefits of recovery-driven design will increase.
Table IV shows power savings for recovery-driven design
for each module with respect to traditional P&R at different
target ERs.

TABLE V

Average Area Overhead with Respect to the Baseline

Tight P&R PCT SlackOpt PwrOpt 0.125% PwrOpt 0.25%
19.1% 5.0% 11.9% 3.9% 4.3%
PwrOpt 0.5% PwrOpt 1% PwrOpt 2% PwrOpt 4% PwrOpt 8%
4.8% 5.4% 5.8% 6.0% 5.3%

Fig. 10. Recovery-driven design for a target ER (PowerOpt) minimizes
power at the target ER. Gradual slack design (SlackOpt) optimizes a design
for a range of ERs to provide adaptability and smooth performance/power
tradeoffs.

In our power minimization heuristic, after deciding how
to allocate the ER budget, the ReducePower stage performs
aggressive cell downsizing to reduce circuit area and power.
Table V compares recovery-driven design against other design
flows in terms of area overhead with respect to the baseline
design. Design for a target ER has similar area overhead
to PCT but still produces a design with lower power. The
reason is that designing for a target ER allows more aggressive
voltage scaling before the target ER is exceeded. At lower
voltages, there are more negative slack paths to be optimized
during OptimizePaths, which increases area overhead. How-
ever, aggressive downsizing keeps area overhead low, and
since the paths targeted by PowerOptimizer are the paths
that cause the most errors in the design, the area is well
spent, and the additional voltage scaling contributes to a net
benefit in terms of power savings. PCT, on the other hand,
adds tighter timing constraints to the registers where the most
errors are captured and optimizes all paths with endpoints at
those registers. Since our heuristic targets paths individually,
we can target the error-causing paths more efficiently, reduce
overhead, and increase voltage scaling and power savings.

Compared to tightly constrained P&R and gradual slack
design, design for a target ER incurs significantly less area
overhead and reduces power. On one hand, tightly constrained
P&R is functionally agnostic and fails to identify the set
of paths that maximizes voltage overscaling per unit area
overhead. Gradual slack design, on the other hand, optimizes
the design to make tradeoffs between power, throughput, and
reliability over a range of ERs. Thus, a gradual slack design
is over-optimized for any single target ER.

Fig. 10 compares recovery-driven design for a target ER
against gradual slack design. The results show that designing
for a target ER minimizes power at the target ER. However,
since a recovery-driven design can have a nonzero ER even
under nominal conditions, power efficiency at ERs lower than
the target may drop off steeply. Likewise, since design for a
target ER creates a slack wall at the error-optimal voltage,
additional benefits for ERs higher than the target are limited.
A gradual slack design, on the other hand, is optimized for
a range of ERs. Although this means that it is less efficient
than an ER-optimal design for any single ER, it also means

414 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 3, MARCH 2012

Fig. 11. Total power reduction over tightly constrained design for the
training (optimization) and test benchmark sets. Power reductions for the
training set are slightly higher, since the design has been optimized specifically
for the activity profile of this set.

Fig. 12. (a) Recovery-driven design reshapes the slack distribution by adding
slack to frequently exercised paths and removing slack from infrequently
exercised paths. (b) Activity-weighted slack distribution shows the sum of
TRs for all paths with a particular slack value, confirming that frequently
exercised paths have more slack in the optimized netlist.

that performance or output quality can be efficiently traded for
power savings over the entire range of ERs. Thus, whenever
more errors can be tolerated, a gradual slack design can
reduce power consumption. This may not be possible for
an ER-optimal design, since it forgoes scalability to achieve
additional power savings at the target ER.

Recovery-driven design optimizes for errors in the average
operating behavior of a design. If the frequently exercised
paths during operation are significantly different than those
targeted during optimization, then too many errors may be
produced, and voltage scaling may be limited for a target ER.
To evaluate the robustness of recovery-driven design when the
workload changes, we compared the power reduction achieved
when running the training (optimization) benchmarks against
power reduction for the test benchmarks. Fig. 11 shows that
power reduction is slightly higher for the benchmark set that
the processor was optimized for, but the difference is only
about 1% on average.

C. Variation-Aware Analysis

Recovery-driven design increases energy efficiency by re-
shaping the slack distribution of a design, such that ER is re-
duced at a particular voltage. Fig. 12 shows activity-weighted
slack distributions (sum of path TR versus timing slack) from
before and after optimization, confirming that the optimization
increases slack for frequently exercised paths, which enables

TABLE VI

Variation-Aware Analysis

Target ER (ERtarget)
0.125% 0.25% 0.5% 1.0% 2.0% 4.0% 8.0%

Power Consumption (W) in Baseline Design
Min. 0.0126 0.0126 0.0122 0.0113 0.0108 0.0106 0.0095
Max. 0.0202 0.0201 0.0199 0.0196 0.0191 0.0186 0.0167
Avg. 0.0162 0.0160 0.0156 0.0153 0.0149 0.0141 0.0127

Power Consumption (W) in Recovery-Driven Design
Min. 0.0111 0.0106 0.0105 0.0096 0.0092 0.0088 0.0080
Max. 0.0187 0.0183 0.0175 0.0172 0.0165 0.0161 0.0151
Avg. 0.0148 0.0144 0.0141 0.0134 0.0128 0.0123 0.0113

Power Reduction (%)
Avg. 8.28 9.71 9.43 12.61 13.80 13.03 11.18

extended voltage scaling for a target ER. However, due to ran-
dom variations introduced in the physical circuit by sources of
static and dynamic nondeterminism, the actual slack distribu-
tion may be somewhat different than the designed distribution.

To test the benefits of recovery-driven design in the presence
of variations, we have implemented a model for interdie and
spatially correlated within-die variations based on the models
in [4] and [14]. We use an exponential model for correla-
tion between different die locations, in which the correlation
function decays exponentially as a function of distance, with
parameters supplied by the authors of [14]. We extract standard
deviations (σ) of cell delay at each operating voltage from
SPICE simulations, and use our variation model to assign
a random delay variation to each die and each gate within
the die, based on its location. We then repeat ER and power
estimation with 100 different random variation maps. From the
Monte Carlo simulations, we report total power consumption
of the target modules at each ER in Table VI. Table VI
shows that even when variations are accounted for, recovery-
driven design still achieves significant power savings over a
conventional design. Furthermore, the average benefits do not
noticeably change when variations are accounted for. (Power
reduction in Table VI is somewhat lower for ERs below 1%
because the test design was optimized for a target ER of 1%.)
Random variations cause perturbations within a design but
do not shift the average case behavior. Since recovery-driven
designs are optimized for and operate at the average case
operating point, they are naturally robust to random variations.

D. Recovery-Driven Processors

In this section, we demonstrate the benefit of designing
processors for specific hardware and software error resilience
mechanisms, as described in Section IV.

1) Circuit-Level Timing Speculation: Fig. 13 compares
the energy consumption of a recovery-driven processor that
has been designed and optimized for Razor against the power
consumption of processors designed for other objectives, such
as gradual slack or PCT, and against processors that have
been designed for correctness but use the traditional Razor
methodology to save energy. We assume a recovery overhead
of nine cycles, proportional to the pipeline depth of the
processor.

Fig. 13 demonstrates that the minimum energy is indeed
achieved by a processor that is designed to produce errors that
can be gainfully tolerated by Razor. Designing the processor
for the ER target at which Razor operates most efficiently
allowed us to extend the range of voltage scaling from 0.84 V

KAHNG et al.: RECOVERY-DRIVEN DESIGN: EXPLOITING ERROR RESILIENCE 415

Fig. 13. Benefit of designing a processor to produce errors then correcting
them with an error tolerance mechanism over designing for correctness and
then relaxing the correctness guarantee can be significant. Results are shown
for processors that employ Razor.

Fig. 14. Throughput reduction at different voltages for an error recovery
overhead of five cycles. This recovery overhead is appropriate for a simple
pipeline or lightweight recovery technique.

for the best “designed for correct operation” processor to
0.71 V for the processor designed for an ER of 1%, affording
an additional 19% energy reduction.

Error recovery with a circuit-level approach like Razor
imposes a throughput penalty, since error recovery requires
feeding correct values back into the pipeline. Fig. 14 shows the
throughput reduction caused by error recovery for a correction
overhead of five cycles. As can be seen, a recovery-driven
processor even minimizes the recovery overhead at the target
operating voltage.

2) Application Noise Tolerance: To demonstrate the ben-
efits of recovery-driven design targeted at application-level
noise tolerance, we use a face detection algorithm [32] as
the example application. Face detection is naturally robust
to errors in several processor modules and does not require
strict computational correctness. Rather than causing program
failure, errors may result in reduced output quality (false
positive or negative detections) [24].

Face detection, as well as the other error-tolerant applica-
tions we consider, tolerates errors in the arithmetic units of the
processor. For this class of applications (which relies heavily
on numerical computation), the arithmetic units account for
approximately 35% of the dynamic power consumption of the
processor.

Figs. 15 and 16 compare the power consumption of proces-
sors designed for application-level error tolerance of arithmetic
errors using single and dual voltage rail designs, as described
in Section IV. In these figures, all processors achieve the same
output quality at a given ER, but processors designed to allow
errors consume less power, and power is minimized for these
designs at their respective ER targets. For example, at an ER
of 1%, where output quality is still maximized for the face
detection application, the processor designed for an ER target
of 1% consumes 19% less power for dual-rail design and 15%
less power for single-rail design than the baseline correctness-

Fig. 15. Power benefit of a processor that is designed to allow errors in the
arithmetic units over a processor that is designed for correctness. All modules
in the processor operate at the same voltage. Razor is used to correct errors
in nonarithmetic units.

Fig. 16. This figure demonstrates the power benefit of a processor that is
designed to allow errors in the arithmetic units over a processor that is
designed for correctness. The processor uses a dual voltage rail design with
the arithmetic units on a separate rail.

TABLE VII

Optimal Module Voltages at Different Target ERs

Target ER (ERtarget)
MODULE 0.0% 0.125% 0.25% 0.5% 1.0% 2.0% 4.0%
lsu−dctl 0.75 0.72 0.71 0.75 0.74 0.73 0.72

lsu−qctl1 0.88 0.87 0.86 0.85 0.84 0.83 0.80
lsu−stb−ctl 0.77 0.76 0.75 0.75 0.70 0.68 0.66

sparc−exu−ecl 0.75 0.74 0.73 0.70 0.70 0.69 0.70
sparc−ifu−dec 0.68 0.67 0.66 0.63 0.70 0.58 0.57

sparc−ifu−errdp 0.77 0.58 0.57 0.56 0.55 0.54 0.53
sparc−ifu−fcl 0.79 0.77 0.76 0.75 0.74 0.73 0.72

spu−ctl 0.78 0.65 0.64 0.63 0.62 0.63 0.58
tlu−mmu−ctl 0.85 0.52 0.51 0.51 0.51 0.51 0.51

RANGE 0.20 0.35 0.35 0.34 0.33 0.32 0.29

optimized processor. Benefits are even higher for larger ERs
if some application output degradation is permissible.

Note that we can always perform error-free computation
on a core designed for application-level noise tolerance by
scaling down the frequency to the point where all paths have
nonnegative slack. However, this may represent a performance
penalty when compared to relaxed-correctness operation.

Also note that trends in processor-level results may dif-
fer somewhat from trends in averaged module-level results.
Whereas the power reduction of a recovery-driven design is
limited by a module’s critical paths, the power reduction of
a recovery-driven processor is biased by the critical modules
that begin causing errors first when voltage is scaled down.
As we will show in the next section, results can be improved
by utilizing multiple voltage domains.

E. Supporting Multiple Voltage Domains

Given a target ER, the module-level power minimization
heuristic in [19] selects an optimal operating voltage for a
processor module. However, the proposed processor core-
level methodology (Algorithm 1, DOMAINS = 1) selects a
common voltage for all modules of a processor core. Table VII
shows that different modules vary (sometimes substantially)
in their optimal voltage operating points due to a number of

416 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 3, MARCH 2012

Fig. 17. Benefit of a multiple voltage domain design over a single voltage
domain design can be significant when designing for an ER target. Substantial
power savings can be achieved when each module is optimized for a locally
optimal voltage rather than the globally optimal voltage of the module group.
The stacked bars show the additional power savings afforded as the number
of voltage domains increases.

Fig. 18. Recovery-driven design is robust to application diversity. On aver-
age, processor modules that have been optimized for the average case only
consume 1% more power than modules that have been customized specifically
for the activity profile of the test workload. (a) Target error rate: 0.125%.
(b) Target error rate: 0.25%.

factors, including module area (number of paths/cells), slack
distribution (fraction of paths that are critical), and activity
factor (how often paths toggle). In addition, the table shows
that the range of optimal module voltages increases when
designing for a nonzero ER target.

Because of the above module-level variations, there can be a
substantial difference in terms of power consumption between
the locally and globally optimized module implementations.
Fig. 17 quantifies the difference between single and multiple
voltage domain design for processor cores tolerating different
ERs. We compare designs with different numbers of voltage
domains, targeting different processor ERs in terms of their
power consumption relative to a processor optimized for a
common operating voltage. The results show that the power
efficiency of recovery-driven processors will improve signifi-
cantly with the number of voltage domains that are supported.
In practice, the number of voltage domains should be chosen
by carefully balancing the voltage overscaling benefits with the
area and complexity overheads of supporting multiple power
rails. The results of Fig. 17 do not consider the overhead of
level shifter circuitry.

F. Robustness to Application Diversity

Different workloads exercise the timing paths of a processor
core differently. Thus, the sets of frequently exercised and
infrequently exercised paths may change, depending on the
workload. Since recovery-driven designs are optimized accord-
ing to an average case activity profile, it is important to ensure
that power efficiency is not degraded significantly when the
activity profile of a workload is not the same as the activity
profile for which the processor was optimized.

To gauge the robustness of recovery-driven design to work-
load diversity, we create several recovery-driven designs, op-

timized for the activity profiles of each benchmark in the
test set—equake, gzip, sort, and twolf. Then, we compare the
power consumption of each benchmark in the test set, running
on the design that was optimized for the average case, against
the design that was optimized specifically for that benchmark.
Fig. 18 compares the power consumption of average case de-
sign against workload-specific designs for different target ERs.

On average, the difference is small—only 1.5% difference
in power at an ER of 0.125% and 0.9% difference at 0.25%—
demonstrating the robustness of recovery-driven design to
application diversity. The difference will decrease as the target
ER increases. The reason for this robustness is that since some
paths are allowed to cause errors, there is some “forgiveness”
when the priority of path optimization deviates somewhat from
the optimal. Our recovery-driven design heuristic bins paths
into P− paths that are allowed to cause errors and P+ paths that
should remain error free. As long as the difference in activity
for a path is not so much as to make the path switch bins,
the path dichotomy is preserved and power efficiency is not
degraded. In the worst case, we only observe 3% degradation
in power efficiency.

VII. Conclusion

In this paper, we have proposed recovery-driven design,
a design-level approach that optimized a processor module
for a target timing ER instead of correct operation. We have
presented a detailed evaluation and analysis of a recovery-
driven design methodology that minimized power for a target
ER. We extend our recovery-driven design flow to design
recovery-driven processors—processors that are designed and
optimized for a target ER. We also present an extension of our
recovery-driven design flow that creates a gradual slack design
optimized for a range of ERs rather than a single target. The
gradual slack technique can be used to design soft processors
that trade throughput or output quality for energy savings over
a range of reliability targets. While we have chosen to focus
on improving the energy efficiency of error-resilient designs,
recovery-driven design can also be used to optimize other
design characteristics, such as yield. We intend to evaluate
such adaptations of recovery-driven design in future work.

References

[1] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Oppotunities and challenges
for better than worst-case design,” in Proc. Asia South Pacific Des. Automat. Conf.,
2005, pp. 2–7.

[2] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for architectural-
level power analysis and optimizations,” in Proc. Int. Symp. Comput. Architect.,
2000, pp. 83–94.

[3] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz, K. V. Palem,
and B. Seshasayee, “Ultra-efficient (embedded) SoC architectures based on prob-
abilistic CMOS (PCMOS) technology,” in Proc. Des., Automat. Test. Eur., 2006,
pp. 1110–1115.

[4] L. Cheng, P. Gupta, C. Spanos, K. Qian, and L. He, “Physically justifiable die-
level modeling of spatial variation in view of systematic across wafer variability,”
in Proc. ACM/IEEE Des. Automat. Conf., Jul. 2009, pp. 104–109.

[5] E. Chung and J. Smolens. (2007). OpenSPARC T1: Architectural Transplants
[Online]. Available: http://transplant.sunsource.net

[6] J. Cong and K. Minkovich, “Logic synthesis for better than worst-case designs,”
in Proc. Int. Symp. VLSI Des., Automat. Test, 2009, pp. 166–169.

[7] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,
T. Austin, K. Flautner, and T. Mudge, “Razor: A low-power pipeline based on
circuit-level timing speculation,” in Proc. IEEE/ACM Int. Symp. Microarchitect.,
Dec. 2003, pp. 7–18.

[8] J. P. Fishburn and A. E. Dunlop, “Tilos: A polynomial programming approach to
transistor sizing,” in Proc. ACM/IEEE Int. Conf. Comput.-Aided Des., Nov. 1985,
pp. 326–328.

[9] S. Ghosh and K. Roy, “CRISTA: A new paradigm for low-power and robust circuit
synthesis under parameter variations using critical path isolation,” IEEE Trans.
Comput.-Aided Des., vol. 26, no. 11, pp. 1947–1956, Nov. 2007.

KAHNG et al.: RECOVERY-DRIVEN DESIGN: EXPLOITING ERROR RESILIENCE 417

[10] B. Greskamp, L. Wan, W. R. Karpuzcu, J. J. Cook, J. Torrellas, D. Chen, and C.
Zilles, “BlueShift: Designing processors for timing speculation from the ground
up,” in Proc. Int. Symp. High-Performance Comput. Architect., 2009, pp. 213–224.

[11] P. Gupta, A. B. Kahng, and P. Sharma, “A practical transistor-level dual threshold
voltage assignment methodology,” in Proc. Int. Symp. Qual. Electron. Des., 2005,
pp. 421–426.

[12] P. Gupta, A. B. Kahng, P. Sharma, and D. Sylvester, “Selective gate-length biasing
for cost-effective runtime leakage control,” in Proc. ACM/IEEE Des. Automat.
Conf., Jul. 2004, pp. 327–330.

[13] P. Gupta, A. B. Kahng, P. Sharma, and D. Sylvester, “Gate-length biasing for
runtime-leakage control,” IEEE Trans. Comput.-Aided Des., vol. 25, no. 8, pp.
1475–1485, Aug. 2006.

[14] B. Hargreaves, H. Hult, and S. Reda, “Within-die process variations: How
accurately can they be statistically modeled?,” in Proc. Asia South Pacific Des.
Automat. Conf., 2008, pp. 524–530.

[15] R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via algorithmic
noise-tolerance,” in Proc. Int. Symp. Low Power Electron. Des., 1999, pp. 30–35.

[16] Intel Atom Processor z5xx Series, Intel Corporation, Santa Clara, CA, 2008.
[17] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistribution for graceful

degradation under voltage overscaling,” in Proc. Asia South Pacific Des. Automat.
Conf., 2010, pp. 825–831.

[18] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Designing a processor from
the ground up to allow voltage/reliability tradeoffs,” in Proc. Int. Symp. High-
Performance Comput. Architect., 2010, pp. 119–129.

[19] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Recovery-driven design: A
methodology for power minimization for error tolerant processor modules,” in
Proc. ACM/IEEE Des. Automat. Conf., Jun. 2010, pp. 825–830.

[20] R. Kumar, “Stochastic processors,” in Proc. NSF Workshop Sci. Power Manag.,
Mar. 2009.

[21] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen, “Single-
ISA heterogeneous multi-core architectures: The potential for processor power
reduction,” in Proc. IEEE/ACM Int. Symp. Microarchitect., Dec. 2003, pp. 81–92.

[22] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system simulation
platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[23] S. Narayanan, J. Sartori, R. Kumar, and D. Jones, “Scalable stochastic processors,”
in Proc. Des., Automat. Test. Eur., 2010, pp. 335–338.

[24] J. Sartori, J. Sloan, and R. Kumar, “Fluid NMR: Performing power/reliability
tradeoffs for applications with error tolerance,” in Proc. Workshop Power Aware
Comput. Syst., 2009.

[25] J. Sartori and R. Kumar, “Overscaling-friendly timing speculation architectures,”
in Proc. GLSVLSI, 2010, pp. 209–214.

[26] N. Shanbhag, R. Abdallah, R. Kumar, and D. Jones, “Stochastic computation,” in
Proc. ACM/IEEE Des. Automat. Conf., Jun. 2010, pp. 859–864

[27] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically characteriz-
ing large scale program behavior,” in Proc. Int. Conf. Architect. Support Program.
Languages Oper. Syst., 2002, pp. 45–57.

[28] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda, and D. Blaauw, “Duet: An accurate
leakage estimation and optimization tool for dual-Vt circuits,” IEEE Trans. Very
Large-Scale Integr. Syst., vol. 10, no. 2, pp. 79–90, Apr. 2002.

[29] A. Sultania, D. Sylvester, and S. S. Sapatnekar, “Tradeoffs between gate oxide
leakage and delay for dual Tox circuits,” in Proc. ACM/IEEE Des. Automat. Conf.,
Jul. 2004, pp. 761–766.

[30] J. W. Tschanz, K. Bowman, S.-L. Lu, P. Aseron, M. Khellah, A. Raychowdhury,
B. Geuskens, C. Tokunaga, C. Wilkerson, T. Karnik, and V. De, “A 45 nm resilient
and adaptive microprocessor core for dynamic variation tolerance,” in Proc. Int.
Solid-State Circuits Conf., 2010, pp. 282–283.

[31] D. M. Tullsen, “Simulation and modeling of a simultaneous multithreading
processor,” in Proc. Annu. Comput. Measure. Group Conf., 2006, pp. 819–828.

[32] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput. Vision,
vol. 52, no. 2, pp. 137–154, 2004.

[33] T. Yamada, S. Kataoka, and K. Watanabe, “Heuristic and exact algorithms for the
disjunctively constrained knapsack problem,” Inform. Process. Soc. Japan J., vol.
43, no. 9, pp. 2864–2870, 2002.

[34] K. Yeager, “The MIPS R10000 superscalar microprocessor,” in Proc. IEEE/ACM
Int. Symp. Microarchitect., Apr. 1996, pp. 28–40.

[35] Cadence NC-Verilog User’s Manual [Online]. Available: http://www.cadence.com
[36] Cadence LC User’s Manual [Online]. Available: http://www.cadence.com
[37] Cadence SOCEncounter User’s Manual [Online]. Available: http://www.cadence.

com
[38] Sun OpenSPARC Project [Online]. Available: http://www.sun.com/processors/

opensparc
[39] Synopsys Design Compiler User’s Manual [Online]. Available: http://www.

synopsys.com
[40] Synopsys PrimeTime User’s Manual [Online]. Available: http://www.synopsys.com
[41] Experimental Results for All Testcases (Full Version) [Online]. Available: http:

//vlsicad.ucsd.edu/RecoveryDriven/DATA.pdf

Andrew B. Kahng (F’10) received the A.B. de-
gree in applied mathematics (physics) from Harvard
College, Cambridge, MA, and the M.S. and Ph.D.
degrees in computer science from the University of
California at San Diego (UCSD), La Jolla.

In 1989 he joined the Department of Computer
Science, University of California at Los Angeles, as
an Assistant Professor, and became a Full Professor
in 1998. In 2001, he joined UCSD as a Professor
in the Department of Computer Science and En-
gineering (CSE) and the Department of Electrical

and Computer Engineering (ECE); he served as Associate Chair of the
CSE Department from 2003 to 2004. He has published over 350 journal
and conference papers and three books, and holds 18 issued U.S. patents.
Since 1997, his research in IC design for manufacturability has pioneered
methods for automated phase-shift mask layout, variability-aware analysis and
optimizations, chemical-mechanical polishing fill synthesis, and parametric
yield-driven, cost-driven methodologies for chip implementation.

Prof. Kahng has received the NSF Research Initiation and Young Investiga-
tor Awards, and six Best Paper Awards. He was the founding General Chair
of the 1997 ACM/IEEE International Symposium on Physical Design and a
Co-Founder of the ACM Workshop on System-Level Interconnect Prediction.
He defined the physical design roadmap as a member of the Design Tools
and Test Technology Working Group (TWG) for the 1997, 1998, and 1999
renewals of the International Technology Roadmap for Semiconductors. From
2000 through 2003, he chaired the U.S. and International Design Technology
Working Groups for the ITRS, and continues to serve as the Co-Chair of the
Design ITWG. He has been an Executive Committee Member of the MARCO
Gigascale Systems Research Center since its inception in 1998. In October
2004, he co-founded Blaze DFM, Inc., Sunnyvale, CA, and served as the
Chief Technical Officer of the company until resuming his duties at UCSD
in September 2006.

Seokhyeong Kang (S’11) received the B.S. and
M.S. degrees in electrical engineering from the Po-
hang University of Science and Technology, Pohang,
Korea, in 1999 and 2001, respectively.

From 2001 to 2008, he was with the System-on-
Chip (SoC) Development Team, Samsung Electron-
ics, Suwon, Korea. During his work at Samsung
Electronics, he contributed to the development and
commercialization of optical disk drive SoC. He
joined VLSI CAD Laboratory, University of Cali-
fornia at San Diego, San Diego, as a Ph.D. student

in September 2008. His current research interests include low power design
optimization and cost-driven methodology for chip implementation.

Rakesh Kumar (M’07) received the B.Tech. degree
in computer science and engineering from the In-
dian Institute of Technology Kharagpur, Kharagpur,
India, in 2001, and the Ph.D. degree in computer
engineering from the University of California at San
Diego (UCSD), San Diego, in Sep. 2006.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana.
Prior to moving to Champaign in 2007, he was a
Visiting Researcher with Microsoft Research, Red-

mond, WA. His current research interests include reliable and low power
computing. He enjoys studying interactions between technology, policy, and
society, when not involved in computing research.

Dr. Kumar has been recognized by several awards, including the Arnold
O. Beckman Research Award, the FAA Creative Research Award, the UCSD
CSE Best Dissertation Award, and an IBM Ph.D. Fellowship, for his research.
Other recognitions include one Best Paper Award, several keynote invitations
(WDSN 2011, LPonTR 2011, etc.), and invited lectures at conferences and
workshops (CASES 2011, ISLPED 2010, IOLTS, 2010, etc.). He was an
invited Guest Editor of the IEEE Transactions on Multimedia, the IEEE
Embedded Systems Letters, etc. He has served as the Chair of two
workshops in the areas of robust computing and multicore computing (SELSE
2011 and dasCMP, from 2005 to 2008).

John Sartori (S’03) received the B.S. degree in
electrical engineering, computer science, and mathe-
matics from the University of North Dakota, Grand
Forks, and the M.S. degree in electrical and com-
puter engineering from the University of Illinois at
Urbana-Champaign (UIUC), Urbana. He is currently
pursuing the Ph.D. degree in electrical and computer
engineering at UIUC. His thesis research explores
design, architecture, and compiler techniques for
stochastic processors.

