
Low-power, Low-storage-overhead Chipkill Correct via
Multi-line Error Correction

Xun Jian
University of Illinois

at Urbana-Champaign
xunjian1@illinois.edu

Henry Duwe
University of Illinois

at Urbana-Champaign
duweiii2@illinois.edu

John Sartori
University of Minnesota
jsartori@umn.edu

Vilas Sridharan
AMD Research

Advanced Micro Devices, Inc.
vilas.sridharan@amd.com

Rakesh Kumar
University of Illinois

at Urbana-Champaign
rakeshk@illinois.edu

ABSTRACT
Due to their large memory capacities, many modern servers
require chipkill correct, an advanced type of memory error
detection and correction, to meet their reliability require-
ments. However, existing chipkill-correct solutions incur
high power or storage overheads, or both because they use
dedicated error-correction resources per codeword to per-
form error correction. This requires high overhead for cor-
rection and results in high overhead for error detection. We
propose a novel chipkill-correct solution, multi-line error cor-
rection, that uses resources shared across multiple lines in
memory for error correction to reduce the overhead of both
error detection and correction. Our evaluations show that
the proposed solution reduces memory power by a mean of
27%, and up to 38% with respect to commercial solutions,
at a cost of 0.4% increase in storage overhead and minimal
impact on reliability.

Categories and Subject Descriptors
B.7.3 [Reliability and Testing]: Error-checking; B.3.2
[Memory Structures]: Primary Memory

1. INTRODUCTION
As the memory capacity of servers increases, memory power

consumption and reliability are becoming increasingly se-
rious concerns. For example, memory power already con-
sumes 25% to 40% of total server power [25]. With in-
creasingly large memory systems, memory errors such as
detectable uncorrectable errors (DUEs) and silent data cor-
ruption (SDC) will grow increasingly frequent if strong er-
ror detection and correction are not deployed in memory.
Memory errors not only incur high cost in terms of server
downtime (e.g., a DUE often causes a system crash [21]), but
can also result in unrecoverable failures (e.g., failures due to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

SDCs) that can be even more costly. However, implement-
ing strong error detection and correction in memory to help
modern servers meet their reliability requirements typically
requires overheads that further increase memory power con-
sumption. Providing strong error detection and correction
at low memory power consumption, therefore, becomes an
important goal to achieve.

Currently, many servers employ chipkill correct to meet
the desired reliability [1, 11]. Chipkill correct is an advanced
type of memory-error correction that significantly improves
memory reliability compared to the well-known single-error
correction/double-error detection (SECDED) by providing
correct memory accesses even when a DRAM device has
failed completely [23]. Existing large-scale systems that use
chipkill correct include Google server farms [21] and numer-
ous supercomputers [23, 10].

In a typical chipkill-correct memory system, each word
in memory is stored in the form of a codeword, which is
the data word plus redundant check bits. Each codeword
is typically broken down into groups of bits, called sym-
bols, which are evenly striped across multiple DRAM de-
vices. This group of DRAM devices form a rank. Exist-
ing chipkill-correct solutions correct one bad symbol per
codeword and detect two bad symbols per codeword; this
is achieved by using a single-symbol correct/double-symbol
detect (SSCDSD) linear block code [26, 4, 1, 11].

Unfortunately, SSCDSD codes incur high overhead be-
cause they require a minimum of three check symbols per
codeword [26, 4]. Because check symbols are redundant sym-
bols that do not hold actual data values, such symbols result
in a storage overhead. To keep the overall storage overhead
low, commercial chipkill-correct solutions amortize the over-
head of the check symbols over a large number of data sym-
bols per codeword. They use 32 data symbols and four check
symbols per codeword, which results in ranks with 32 data
devices and four redundant devices with a storage overhead
of 4/32 = 12.5% [26, 4]. Having 36 devices per rank leads to
high memory power consumption because every device in a
rank must be accessed per memory request [26, 4]. In com-
parison, SECDED typically employs only nine devices per
rank, consisting of eight data devices and one redundant de-
vice, which is only one-fourth the number of devices required
by commercial chipkill-correct solutions. A memory system
with only nine devices per rank has been reported to reduce

power by up to 45% compared to a memory system with 36
devices per rank [24].

Unlike the commercial chipkill-correct solution just de-
scribed which optimizes for low storage overhead, recent
work on chipkill correct proposes reducing memory power
consumption at the expense of increased storage overhead by
reducing the number of data symbols per codeword [4, 26].
However, increasing storage overhead increases the cost of
the memory system as well as background power consump-
tion because more physical memory is required to provide
the same amount of usable memory.

Instead of simply reducing the number of data symbols per
codeword, we explore reducing the number of check symbols
per codeword (e.g., down to one) while maintaining similar
DUE and SDC rates. This allows the rank size to be reduced
without having to increase storage overhead.

First, we observe that the high overheads in existing chip-
kill correct solutions are due to using a dedicated correction-
check symbol per codeword to provide error correction. Us-
ing a dedicated correction-check symbol for error correction
unfortunately reduces the effectiveness of error detection, so
more check symbols for detection are needed to meet a de-
sired error-detection strength. Second, we observe that us-
ing dedicated check symbols for error correction also results
in unnecessarily high overhead for error correction. Recent
field studies of DRAM faults show that the vast majority
of errors in memory are caused by device-level faults, which
are correlated faults within a single device [23, 10]. As such,
errors in physically adjacent codewords in a chipkill-correct
memory system typically lie in the same symbol position.
Therefore, each codeword does not need to have its own
dedicated correction-check symbol because a primary func-
tion of the correction-check symbol is to locate the symbol
in the codeword that contains error. Instead, it suffices to
let multiple adjacent codewords share a common set of er-
ror localization resources with only minimal impact on DUE
rate.

Based on these observations, we propose avoiding the high
overhead of error detection by replacing the error-correction
method used in prior chipkill-correct solutions (i.e., error
correction via a dedicated correction-check symbol per code-
word) with erasure correction. Erasure correction is a method
to perform error correction in linear block codes when bad
symbols have been localized using some other means (e.g.,
using checksums). Using erasure correction for error cor-
rection reduces the number of check symbols required per
codeword to one. However, providing erasure correction
on the conventional codeword-by-codeword basis may incur
unacceptably high storage overhead because this requires
each symbol position in a codeword have its own error-
localization checksums. Therefore, we also propose provid-
ing error correction at a coarse granularity (i.e., over groups
of lines in memory) to reduce storage overhead. Our evalu-
ations using SPEC and PARSEC workloads show that com-
pared to commercial chipkill-correct solutions, our proposed
chipkill-correct solution, multi-line error correction (Multi-
ECC), reduces memory power by a mean of 27% and up to
38% with only 0.4% higher storage overhead while providing
similar DUE and SDC rates.

2. RELATED WORK
Commercial chipkill-correct solutions correct a single bad

symbol and detect up to two bad symbols in each codeword

[4, 26, 24, 4]. A symbol is simply a group of adjacent bits;
a symbol is referred to as a data symbol, if it holds appli-
cation data, or as a check symbol, if it holds the redundant
information for error detection or correction. A group of
data symbols and the check symbols protecting that group
of data symbols together form a codeword. Figure 1 shows a
memory rank protected by a commercial chipkill-correct so-
lution. In the figure, every symbol of a codeword is stored in
a different device in the rank. As a result, even in the event
of a complete device failure, only a single symbol in each
codeword is lost as long as other devices are fault-free; the
corrupted symbol can be detected and then reconstructed
using the remaining good symbols in the codeword.

Commercial chipkill-correct solutions require a minimum
of three check symbols per codeword to provide SSCDSD
[26, 4]. In practice, however, commercial chipkill-correct
solutions use four check symbols per codeword to abide by
established ECC memory-processor interfaces.

To keep the storage overhead low despite the overhead
of four check symbols per codeword, commercial chipkill-
correct solutions assign 32 data symbols per codeword; this
results in a storage overhead of 4/32 = 12.5%, which is the
same as SECDED. Because each codeword is striped across
32 data devices and four redundant devices, as shown in
Figure 1, all 36 devices must be accessed for each memory
request, which leads to high memory power consumption.

Several recent proposals aim to reduce the power con-
sumption of commercial chipkill-correct memory systems.
Ahn et al. [4] propose trading storage overhead for mem-
ory power consumption by reducing the number of data
devices per rank. However, this requires design of custom
DIMMs and memory-processor interfaces, which is expen-
sive. VECC [26] avoids custom DIMMs by remapping er-
ror correction check symbols to data devices via virtualiza-
tion. VECC uses 16 data devices and two redundant de-
vices per rank to store the 16 data symbols and two check
symbols per codeword, and remaps the third check sym-
bol, used for error correction, to the data region of mem-
ory in a different rank. Because two out of the 18 devices
per rank are used to store the detection symbols, and be-
cause there is one correction-check symbol for every 16 data
symbols in the data region of memory, the fraction of total
memory that can be used by an application to store data
is dataFrac = (16/18) · (15/16). The storage overhead is,
therefore, (1 − dataFrac)/(dataFrac) = 21.9%, instead of
the conventional 12.5%.

Another recent proposal to reduce the overhead of chipkill
correct is LOT-ECC, which moves away from linear block
codes to avoid the high overhead of multiple check symbols
per codeword [24]. By moving away from linear block codes,

Figure 1: Data layout of commercial chipkill-correct
solutions. D stands for data device, DS stands for
data symbol, R stands for redundant device, and CS
stands for check symbol.

Figure 2: Error manifestation of a device-level fault
that affects a group of codewords in adjacent rows
that share the same column address. D stands for
device, CW for a codeword, and X for a faulty sym-
bol in a codeword.

LOT-ECC reduces the number of devices per rank to nine.
However, LOT-ECC suffers from increased storage overhead
(e.g., 26.5% instead of 12.5% [24]). Also, LOT-ECC suffers
from significantly lower error-detection coverage than prior
chipkill-correct solutions due to moving away from linear
block code. To perform error detection, LOT-ECC com-
putes error-detection bits independently for each device and
stores them in the same location in the same device as the
data they protect. As such, a fault in the address decoder
of a device may lead to both data and error-detection bits
being accessed from a wrong location in the device, result-
ing in undetectable error even if all other devices in the rank
are completely fault-free. In comparison, three devices have
to develop faults in the same memory location to result in
undetectable error in commercial chipkill-correct solutions.
Note that address-decoder faults may be a common DRAM
fault mode in the field [22].

3. MOTIVATION
Existing linear block code-based chipkill-correct solutions

use a dedicated check symbol per codeword for error cor-
rection. The benefit of using a dedicated error correction-
check symbol per codeword for error correction is allowing a
bad symbol in each codeword to be corrected, independent
of bad symbols in other codewords. This error-correction
capability is desirable for scenarios when errors tend to ap-
pear in different symbols in different codewords. However,
we observe that errors tend to appear in the same symbol
in different codewords in a chipkill-correct memory system.
Because each device always contributes the same symbol to
every codeword in a chipkill-correct memory system, a single
faulty device always causes the same symbol – not different
symbols – in the codewords to become erroneous. Figure 2
illustrates how a device-level fault affecting a single device
per rank, such as the column, bank, device, or lane fault
(which have been reported to cause the vast majority of
errors in memory [23, 10]), affects a group of codewords in
adjacent rows that share the same column address. Based on
the preceding observation, letting multiple codewords share
the same set of error-correction resources – and thereby re-
laxing the error correction capability of chipkill correct such
that errors in a group of codewords can be corrected only if
every error is located in the same symbol position – one can
reduce the storage overhead of error correction with only
minimal impact on correction coverage.

Meanwhile, relying on dedicated check symbol(s) per code-
word to perform error correction also increases the over-

Figure 3: Received codewords that result in SDC
in the presence of (left) and absence of (right) of
maximum-likelihood decoding. The hollow dots rep-
resent intended codewords. The solid dots repre-
sent other valid codewords. The crosses represent
received codewords that result in SDCs.

head of error detection. This is because error correction
via dedicated correction-check symbols is performed through
maximum-likelihood decoding, whereby a received codeword
is decoded as the valid codeword that is closest to the re-
ceived codeword in terms of the Hamming distance [9]. The
Hamming distance between two codewords is defined as the
number of symbols that are different between the codewords;
for example, with r check symbols per codeword, the Ham-
ming distance between two neighboring valid codewords (i.e.,
codewords that differ in only one data symbol) is 1 + r.
Due to maximum-likelihood decoding, undetectable errors
occur whenever the received codeword is closer to another
valid codeword than the intended codeword (i.e., the correct
codeword that was originally written to memory).

On the other hand, in the absence of maximum-likelihood
decoding (i.e., the codewords do not contain dedicated check
symbols for error correction), undetectable errors occur only
when the received codeword is the same as a valid codeword
that is different from the intended codeword. Figure 3 il-
lustrates the effect of maximum-likelihood decoding on er-
ror detection. The left half of the figure shows that when
maximum-likelihood decoding is used, any received code-
word (represented by a cross) that is closer to a neighboring
valid codeword (represented by a solid dot) than the in-
tended codeword (represented by the hollow dot) leads to
undetectable error. On the other hand, in the absence of
maximum-likelihood decoding, undetected error occurs only
when the received codeword exactly matches a valid code-
word that is different from the intended codeword; this is
illustrated in the right half of Figure 3 by the crosses lying
on top of the solid dots.

To illustrate how the fundamental difference in error de-
tection capabilities of these two scenarios affect the over-
head of error detection, consider the following examples.
When there is only a single check symbol per codeword, the
check symbol can detect all single-symbol errors and provide
high detection coverage for double-symbol errors. When a
correction-check symbol is added to the codeword for error
correction, the first check symbol can no longer detect any
double-symbol errors. This is because when double-symbol
error occurs, maximum-likelihood decoding estimates that
the intended codeword should be only a Hamming distance
of two away from the received codeword, when the received

codeword with double-symbol error is actually a Hamming
distance of 1+2 = 3 away from the intended codeword. This
results in wrong correction and, therefore, SDC. To detect
double-symbol errors, a third check symbol must be added
to the codeword. Thus, prior chipkill-correct solutions that
use a dedicated correction check-symbol for error correction
require a minimum of three check symbols per codeword.
Conversely, the overhead of error detection can be greatly
reduced if correction of a codeword can be provided by some
other correction mechanism (e.g., erasure correction) that
does not involve the the use of dedicated correction-check
symbols.

4. MULTI-ECC
Unlike prior chipkill-correct solutions that use a dedicated

correction-check symbol per codeword for error correction,
Multi-ECC uses erasure correction. This allows Multi-ECC
to avoid maximum-likelihood correction and, thereby, sig-
nificantly reduce error-detection overhead compared to prior
solutions. Under Multi-ECC, each codeword needs a single
check symbol for both error detection and erasure correc-
tion. As a result, only a single redundant device is required
per rank.

To implement the error localization step required for era-
sure correction, Multi-ECC uses checksums stored in each
device in the rank, including the data devices. However, be-
cause the checksums would incur unacceptably high storage
overhead if they were to be allocated to every codeword (e.g.,
50% because erasure correction requires a checksum corre-
sponding to each symbol position in a codeword), Multi-
ECC shares a common set of checksums across a group of
codewords. Erasure correction allows Multi-ECC to cor-
rect single-symbol errors and detect double-symbol errors
while using only nine devices per rank (eight data devices
+ one redundant device) to reduce dynamic memory power
consumption significantly compared to prior chipkill-correct
solutions. Section 4.1 and 4.3 describe error detection and
correction in detail.

4.1 Error Detection
Multi-ECC uses a linear block code with a single check

symbol for error detection but does not use any dedicated
check symbols per codeword for error correction to avoid
maximum-likelihood correction. As such, the one check sym-
bol guarantees detection of all single-symbol errors and pro-
vides high detection coverage of multi-symbol errors. Be-
cause Multi-ECC uses only a single check symbol per code-
word, it requires only nine devices per rank compared to 36
in commercial chipkill-correct solutions and 18 in VECC.

The specific type of linear block code used by Multi-ECC
is the Reed-Solomon (RS) code, which is also used by VECC
and many existing chipkill-correct solutions [26, 4]. How-
ever, unlike previous solutions that use 8-bit and 4-bit RS
codes (e.g., each symbol consists of eight or four bits) [26,
4], Multi-ECC uses a 16-bit RS code to provide high detec-
tion coverage of double-symbol errors while requiring only a
single check symbol per codeword.

To understand this choice of symbol width, let us first de-
fine the syndrome as the difference between the check sym-
bol computed when one of the symbols is bad and the check
symbol computed when all the symbols are error-free. Be-
cause a syndrome can take any value between 0 and 2n − 1,
where n is the number of bits per symbol, we observe that

when there are two bad symbols in a codeword, there should
be only one chance in 2n that the syndrome introduced by
one of the two bad symbols exactly cancels out the syn-
drome introduced by the other bad symbol, which results in
an undetectable error. Therefore, we choose a large value
of n (i.e., n = 16) to provide high detection coverage of
double-symbol errors.

To confirm that a 16-bit RS code can indeed detect 1 −
2−16 ≈ 99.9985% of double-symbol errors, we performed
Monte Carlo experiments1 to simulate double-symbol errors
in randomly generated codewords. We injected errors into
two randomly selected symbols in the codeword, including
the check symbol. To confirm that the RS check symbol
provides high error-detection coverage for both single- and
multi-bit errors, which are reported to be roughly equally
common [23], our experiments include two sets of Monte
Carlo simulations in which one set injects only single bit-
flips per bad symbol and the other injects a random number
of bit-flips per bad symbol. The simulation results show that
the probability of undetectable single-symbol error is 0 and
the probability of undetectable double-symbol error is less
than 2−16.

If one wishes to reduce further the probability of unde-
tectable double-symbol errors, one can increase the number
of bits per symbol. However, increasing the number of bits
per symbol to 32 may result in unacceptably high decoder
overhead (refer to Section 5.1 on decoder overhead). A sec-
ond method is to double the number of symbols per code-
word so that each device stores two 16-bit symbols from each
codeword. This increases the number of check symbols per
codeword to two without increasing the storage overhead.
When there are two check symbols per codeword, both syn-
dromes of both check symbols must be zero for an error to go
undetected. Therefore, the probability that an error span-
ning across multiple devices goes undetected is reduced down
to (2−16)2 ≈ 2·10−10. Because two check symbols guarantee
detection of two bad symbols, and because each device stores
only two symbols from each codeword, any error affecting a
single device is still guaranteed to be detected.

4.2 Impact on SDC Rate
As described in the previous section, by using a RS code

with a single check symbol and 16 bits per codeword, Multi-
ECC guarantees detection of single-symbol errors and de-
tects more than 1 − 2−16 = 99.9985% of double-symbol
errors. What does having a double-symbol error-detection
coverage of more than 99.9985% mean in terms of the more
standard metric of SDC rate? It implies that if double-
symbol errors in a system were to occur at a rate of once
per x years, then the rate of undetectable double-symbol
errors is once per x/(1 − 99.9985%) years.

Unfortunately, the incidence rates of double-symbol er-
rors in memory, which are DUEs for memory systems with
chipkill correct, are not available in literature. To calcu-
late the rate of undetectable double-symbol errors in Multi-
ECC, we instead rely on a commercial target DUE rate for
servers of once per 10 years per server [7]. By pessimisti-
cally equating the incidence rate of double-symbol errors
in the memory subsystem with the target DUE rate of the
entire system, we calculate that in the worst case the rate
of undetectable double-symbol errors is at most once per

1We used a RS code with a primitive polynomial of X16 +
X12 +X3 +X + 1 and a generator polynomial of X+60000.

Figure 4: Example checksum. + represents the com-
putation of checksums from data symbols, S is short
for symbol, and CS stands for a RS check symbol.

10/(1− 99.9985%) ≈ 650000 years per server. Compared to
a commercial target SDC rate of one SDC per 1000 years per
server [7], one undetectable double-symbol error per 650000
years per server represents only (1/650000)/(1/1000) ≈ 0.15%
of the target SDC rate. One can also optionally use the sec-
ond technique described in Section 4.1 to achieve an unde-
tectable double-symbol error rate of once per 10/2 · 10−10 ≈
50 billion years per server. If the smaller 8-bit symbols were
used instead, the rate of undetectable double-symbol errors
is as high as 39% of the target SDC rate.

4.3 Error Correction
An excellent property of RS codes is that the same check

symbol used for error detection can be re-used to provide
erasure correction; that is, the bad symbol detected by a
check symbol also can be corrected via the same check sym-
bol if the exact location of the bad symbol is known [9].
To localize the bad symbol in a codeword for the purpose of
erasure correction, we use intra-device checksums, which are
checksums stored in each device (including the data devices),
to localize the faulty device, and thereby localize the bad
symbol. Multi-ECC employs one’s complement checksums,
used for error detection in LOT-ECC, for error localization.
As explained in LOT-ECC, one’s complement checksums
guarantee the detection of stuck-at-1 and stuck-at-0 faults,
which are common fault modes in DRAMs. Note that LOT-
ECC uses the checksums for error detection, while Multi-
ECC uses the checksums strictly for the error-localization
step required for erasure correction.

However, being able to perform erasure correction at the
granularity of every word will require unacceptably high
storage overhead, because each symbol position requires a
corresponding checksum to provide error localization. In
Section 3, we observe that faults affecting multiple adjacent
lines tend to affect the same symbol position in each affected
codeword in the line. Thus, Multi-ECC lets multiple lines
with the same column address in adjacent rows share the
same set of checksums to reduce checksum overhead.

To share checksums across multiple lines, we let every
codeword belong to a column checksum group. A column
checksum group is comprised of a set of codewords in the
same column as well as a set of checksums computed from
these codewords. Figure 4 illustrates a column checksum
group; the figure shows only two codewords per checksum
group for clarity of illustration. In practice, we assign 256
codewords per checksum group to reduce the storage over-
head of the checksums to 1/256 ≈ 0.4%. Figure 4 shows that
each checksum is computed using the same data symbol in

Figure 5: The data and checksum regions in a bank;
in the example, five adjacent codewords in the same
column belong to the same column checksum group,
with the fifth being the checksum of the column
checksum group.

different codewords and that each checksum and the data
it protects are stored in the same device. When a fault oc-
curs in a device, the checksum stored in the faulty device no
longer equals the checksum newly computed from the data
symbols; the device that stores the mismatching checksum
is thereby identified as the faulty device.

To store checksums in memory, we use fixed/reserved phys-
ical pages in memory. Specifically, Multi-ECC stores the
checksums in memory rows adjacent to the checksum groups
they protect. Figure 5 shows the codewords in a bank and
their checksums. In the figure, each grid represents a code-
word. All the grids in the same column with the same color
belong to the same column checksum group. The figure
shows an example scenario in which there are only four code-
words (instead of 256) per checksum group.

The following steps are needed to use the checksums to
correct errors. During memory operations, when errors are
detected in the received codeword by the RS check symbols,
all codewords in the corresponding column checksum group
are read out. This allows nine new checksums, one corre-
sponding to each device in the rank, to be computed for
the checksum group, which are to be compared against the
corresponding nine checksums stored in memory. If there is
exactly one newly computed checksum that does not match
its counterpart in memory, the bad symbol is successfully lo-
calized; the localized bad symbol then can be corrected via
erasure correction using the RS check symbol. Otherwise,
the OS is alerted that a DUE has occurred.

4.4 Impact on DUE Rate
When the checksums are shared across a checksum group,

the checksums can correct all errors that are due to a single
faulty device in a rank of devices. Correcting all errors due
to a single faulty device is one of the primary reliability
targets of chipkill correct (the other is to detect all errors
due to two faulty devices in a rank). However, because many
prior chipkill-correct solutions can guarantee correction of
all single-symbol errors, they can also correct errors due to
some combinations of faults in two different devices in a
rank if the faults in those two devices do not affect any

common codeword. The downside of sharing the checksums
across a checksum group is that it reduces the correction
coverage of this type of errors; when checksums are shared,
errors due to two faults in two different devices in a rank can
be corrected only if the two faults do not affect a common
checksum group, instead of only a common codeword. This
is because two faults in two different devices affecting the
same checksum groups will cause two error locations to be
reported, which cannot be corrected by Multi-ECC because
each codeword contains only one RS check symbol.

The occurrence of single-symbol errors that are correctable
by prior chipkill-correct solutions but not by Multi-ECC is
rare, however. This requires two devices develop a row fault
or symbol fault within 257 rows of each other (because each
checksum group spans 256 rows in memory storing data plus
one row in memory storing checksums). If two faults in two
different devices affecting a common checksum group were
larger DRAM faults – such as column, bank, or device faults
that span orders of magnitude more codewords than there
are codewords in a single checksum group – these two faults
most likely also will affect a common codeword to result in
a double-symbol error, which is also uncorrectable by prior
chipkill-correct solutions.

The probability of developing these fault combinations is
small, however. We estimate this probability to be roughly
equal to the probability of a 9-device rank developing two
or more symbol faults and/or row faults in two or more
devices that are within 257 rows of each other by the end
of the typical server lifespan of 7 years [20]. Note that this
is a conservative estimate; this estimate regards two symbol
faults in two adjacent rows as uncorrectable, while in reality
these two symbol faults have to be located within the same
column of words as well. For our calculation, we used the
symbol fault and row fault incidence rates reported in [23],
and the same DIMM size that was studied in [23] (i.e., 18
devices per DIMM). The calculation shows that the rate of
uncorrectable single-symbol error is less than 3.17 ·10−7 per
10 years per DIMM. To put this in perspective, a commercial
DUE rate target for servers is once per 10 years per server
[7]. Even if a server were to consist of 1000 DIMMs, the
incidence rate of uncorrectable single-symbol error in Multi-
ECC is still only 0.03% of the DUE rate target.

4.5 Extending Multi-ECC for Double Chipkill
Correct

Some commercial chipkill-correct solutions, such as Dou-
ble Chip Sparing [11, 3], provide double-chipkill correct,
which can correct double-symbol errors. Extending Multi-
ECC to provide double-chipkill correct is straightforward.
Having two check symbol per codeword, instead of one, pro-
vides error correction of up to two bad symbols per code-
word. In addition to providing error correction for double-
symbol errors, having two check symbols per codeword al-
lows double-chipkill correct Multi-ECC to guarantee detec-
tion of all double-symbol errors and to provide high detec-
tion coverage of triple-symbol errors.

To implement double-chipkill correct Multi-ECC at the
same storage overhead as our primary Multi-ECC imple-
mentation with nine devices per rank, one needs to also
double the number of data symbols per codeword, and there-
fore, double the total number of devices per rank. As such,
double-chipkill correct Multi-ECC requires 16 data devices
and two redundant devices per rank, which results in an

overall rank size of 18 devices.

5. IMPLEMENTATION DETAILS
This section describes the important details necessary for

the physical implementation of Multi-ECC. First, we de-
scribe the changes necessary to implement RS codes with
16-bit symbols because commercial chipkill-correct solutions
use only RS codes with 4- and 8-bit symbols [26, 4]. Sec-
ond, we describe checksum operation in Multi-ECC because
commercial solutions do not use any checksums. Finally,
because the error localization required for error correction
in Multi-ECC requires accessing every line in a checksum
group, error correction in Multi-ECC can be slower than
that of commercial chipkill-correct solutions; we present op-
timizations to allow Multi-ECC to perform error correction
as fast as commercial chipkill-correct solutions for perma-
nent/recurring faults. None of these modifications requires
changing the memory processor interface, DRAM devices,
or memory modules.

5.1 Encoding and Decoding 16-Bit RS Codes
Multi-ECC uses a 16-bit RS code to provide high error-

detection coverage of double-symbol errors with a single
check symbol per codeword (see Section 4.1). This subsec-
tion evaluates the area and latency overheads of the encoder
and decoder circuits when using a 16-bit RS code.

The area overhead of RS encoders is m2 · k · r, where m
is the symbol width in bits and k and r are the number of
data and redundant symbols per codeword [18]. As such, de-
spite its larger symbol width, Multi-ECC requires a smaller
or same-sized RS encoder compared to commercial chipkill
correct due to the smaller number of data and redundant
symbols per codeword. Meanwhile, the latency overhead of
RS encoders is log2(m · k) [18]. Again, the RS encoder of
Multi-ECC has lower or similar latency than that of com-
mercial chipkill correct due to the smaller number of data
symbols per codeword.

Because Multi-ECC uses the RS check symbols for error
detection and erasure correction, the decoder consists of two
parts: the error-detection circuit and the erasure-correction
circuit. Error detection can be performed by recomputing
the check symbol of the received data symbols to see if it
matches the received check symbol stored in memory. As
such, the error-detection circuit is the same as the encoder
plus a comparator.

The primary overhead of having 16-bit symbols is in the
erasure-correction circuit. This is because error correction
requires performing finite field multiplications and division,
which can be implemented via a precomputed log and an
anti-log table, each containing 2n fields with n bits per field,
where n is the number of bits per symbol [9]. For RS codes
with 16 symbols, this translates to two tables with 128KB
per table. Because these tables hold precomputed constants,
they can be implemented in the memory controller as a
ROM. Because each ROM cell consists of one transistor, in-
stead of six transistors in a cache cell, we estimate that the
area of each ROM table is one-sixth that of an equivalent
direct-mapped cache with 16-bit output size. Using Cacti
[2] to calculate cache area, we estimate that the combined
area of the two ROM tables is only 0.7% that of a 16-way
set associative 2MB SRAM cache.

5.2 Updating the Checksums

Unlike the RS check symbols which are stored in redun-
dant devices, checksums are stored in reserved physical pages
in memory. As a result, updating the checksums requires ad-
ditional memory accesses. The appropriate checksums need
to be updated whenever the value of a line in memory is
modified during writeback to memory. Note that proposals
such as VECC and LOT-ECC also require additional mem-
ory accesses to update their error-correction bits.

To reduce the number of additional memory accesses to
update the checksums, we use a similar optimization tech-
nique as used in VECC, which is to cache the checksums
in the processor. We propose providing the memory con-
troller with a private cache to store the checksums, which
we will refer to as the checksum cache. To avoid increasing
the overall area of the processor, we propose subtracting one
way from the last-level cache and using its area to implement
a cache for the checksums in the memory controller.

Updating a cacheline of checksums in the checksum cache
when a dirty cacheline has to be written back to memory is
a two-step procedure. Step 1 is to subtract from the check-
sum cacheline the effect of the old/clean value of the data
cacheline on the checksum cacheline. Step 2 is to add to
the checksum cacheline the effect of the current/dirty value
of the data cacheline on the checksum cacheline. The effect
of a data cacheline on a checksum cacheline is the contribu-
tion of the values in the data cacheline on the values of the
checksums in the checksum cacheline, which is a function of
the exact code selected to implement the checksums.

To implement Step 1, we propose sending the value of a
clean data cacheline to the memory controller whenever the
clean data cacheline is modified for the first time (e.g., when
its dirty bit is being set). If the corresponding checksum
cacheline is not found in the checksum cache, the memory
controller first needs to retrieve the checksum from memory.
When the checksum cacheline has been received, the mem-
ory controller can then modify the checksum cacheline us-
ing the clean value of the data cacheline to complete Step 1.
Meanwhile, when a dirty cacheline is evicted/written back
to memory, the memory controller has to modify the cor-
responding checksum cacheline using the dirty value of the
data cacheline to complete Step 2.

This procedure for updating checksum has implications
for error localization because the checksums are not updated
by the current value of the dirty cachelines until the lines
are written back to memory. One method to account for
this simply is to update the checksum cacheline by search-
ing for dirty cachelines that belong to the checksum group
with errors and then writing them back to memory be-
fore performing error localization. Instead of updating the
checksum cacheline, a second method is to modify the error-
localization procedure such that dirty cachelines do not par-
ticipate in the computation of the new checksums to be com-
pared against the checksum cacheline.

Finally, checksum caching also has implications for the
placement of virtual pages in memory. To maximize the spa-
tial locality of the checksum lines in the checksum cache, the
OS ideally should allocate adjacent virtual pages to physical
pages in adjacent rows in the same bank of memory because
the lines across these rows share the same checksums. In this
way, when the checksum cacheline for a single virtual page
has been fetched into the checksum cache, memory write-
backs to the neighboring 255 virtual pages will not suffer
any checksum misses in the checksum cache. On the other

hand, storing adjacent virtual pages in different banks can
reduce the number of expensive bank conflicts during a se-
quence of memory accesses to these adjacent virtual pages
[14]. Because a thread typically does not benefit from inter-
leaving adjacent virtual pages over more than 16 banks [14],
we propose interleaving adjacent virtual pages among eight
different banks to balance between a high checksum cache
hit rate for the checksum cachelines and a low bank conflict
rate for memory accesses requested by the applications.

5.3 Optimizing Error Correction for Perma-
nent Faults

Error correction in Multi-ECC may incur high overhead,
because it requires reading out all the lines in the checksum
group to perform error localization. This is expensive be-
cause it requires 256 additional memory accesses to perform
error correction compared to commercial solutions. This
performance degradation due to error correction is partic-
ularly pronounced for permanent device-level faults, such
as the permanent complete device fault and the permanent
bank fault, which result in repeated and frequent errors that
require correction. Because these faults only affect perfor-
mance, not correctness (i.e., Multi-ECC can correct errors
due to these faults), it may be possible in certain scenar-
ios simply to replace the DIMMs with these faults during a
prescheduled downtime. The remainder of this section ex-
plores ways to reduce the performance impact of these faults
when DIMM replacement may be infeasible.

To reduce the performance overhead of error correction
for permanent faults, we observe that if only one codeword
in the checksum group contains a bad symbol (e.g., due to
a symbol fault or a row fault), one can retire the page con-
taining the bad symbol to prevent future expensive accesses
to the same bad codeword. However, if multiple codewords
in the checksum group contain errors (e.g., when a device
develops a serious device-level fault such as a bank fault),
simply retiring/disabling all pages with errors can signifi-
cantly reduce the total usable memory capacity.

For a checksum group with multiple codewords that are
erroneous in the same symbol position, we propose remap-
ping the bad symbols in the faulty device responsible for the
errors to another device. The remapping of bad symbols is a
technique that is used currently by double-chip sparing [11,
10]. In Multi-ECC, remapping the bad symbols in a faulty
device to another device is a two-step procedure. Step 1
is to find a device to remap the symbols to. Step 2 is to
record which symbol position in the faulty checksum group
has been remapped.

Implementing Step 1 of the remapping process is straight-
forward for double-chipkill correct Multi-ECC because it al-
locates two check symbols per codeword; one of the two
check symbols can instead become the destination of the
remapping while the second check symbol can still provide
erasure correction for a second bad symbol. However, this
is more complicated in our primary Multi-ECC with only
nine devices per rank, because it allocates a single check
symbol per codeword. Symbol remapping in our primary
Multi-ECC can be achieved with the help of a technique
proposed in ARCC [12]. When faults are detected, ARCC
combines two adjacent lines in two different memory chan-
nels into a single large line so each codeword in the large
line can be striped across twice as many DRAM devices.
This in turn allows each codeword to contain twice as many

Figure 6: Error correction optimized for correcting
errors due to permanent faults.

check symbols without affecting the storage overhead [12].
Multi-ECC can rely on the same technique to double the
number of check symbols per codeword so the bad symbol
can be remapped to the newly added check symbol, while
error detection of additional symbol errors can be provided
by the other check symbol. Although Multi-ECC uses the
same technique as ARCC to increase the number of check
symbols per codeword when faults are detected, their rea-
sons for doing so are completely different. ARCC does so to
increase the strength of the chipkill-correct solutions (e.g.,
to be able to detect double-symbol errors), while Multi-ECC
does so to reduce the performance overhead of error correc-
tion (i.e., not for reliability because Multi-ECC can already
detect double-symbol errors).

To implement Step 2 (remembering which symbol posi-
tion in the checksum group has been remapped), we use the
Fault History File to store which device contains the bad
symbols in the checksum group so error correction for fu-
ture memory accesses to the same column checksum group
do not require the expensive fault-localization step. There
is a fixed entry in the Fault History File for every checksum
group so the memory controller can easily find the desired
entry given the address of a data line. These entries are
stored in reserved physical pages in memory. The initial
value of every entry is 0; after bad symbols in a checksum
group have been localized to a particular device, the position
of the faulty device is recorded in the entry corresponding
to the group. Each entry takes a 5-bit value between 0 and
18, where 18 is the total number of symbols per codeword
after two regular nine-symbol codewords have been joined to
form a single large codeword. To protect the entries against
memory faults, we store three copies of the same entry in
three different devices to provide triple modular redundancy.
This translates to an overall overhead of only 15 bits for each
group of 256 codewords, which translates to an overall stor-
age overhead of 15/(256 · 18 · 16) = 0.02%.

With the help of the Fault History File, the expensive
fault localization step is required only when a new fault de-
velops. Since the incidence rate of new faults is very low

Table 1: Error-correction overhead
Worst Case Average Case

Commercial 0 0

VECC 1 [0,1]2

LOT-ECC 1 ˜1
Multi-ECC 256 ˜0

(e.g., our calculation using the measured DRAM fault rate
reported in [23] shows that a fault occurs once per two years
per 100GB of memory), the overall performance overhead of
fault localization, and hence error correction, is negligible.

Finally, similar to the checksums, we propose caching the
entries of the Fault History File in the processor so that they
do not always have to be read from memory. Because only
a single 5-bit value needs to be cached for every group of
data lines, a whole 64B cacheline of entries has extremely
high coverage of data lines (e.g., a cacheline of 5-bit fault
history entries covers more than 6,500 data lines). As such,
they can be cached effectively in a much smaller cache than
the checksum cache.

Figure 6 summarizes the optimized error-correction pro-
cedure described in this section while Table 1 compares the
worst case and the average cases of correction overhead of
Multi-ECC, in terms of the number of additional accesses to
memory per application access to memory, to that of other
chipkill-correct solutions.

6. METHODOLOGY
In our evaluation, we compare the power and performance

of Multi-ECC against commercial chipkill correct, VECC,
and LOT-ECC in a fault-free memory system. We simulate
a quadcore processor using M5 [6]; the parameters for the
simulated processor are provided in Table 2. The processor
contains a 2MB 16-way set-associative last-level cache. To
investigate the memory traffic overhead due to updating the
checksums, we take one way out of the 16-way set associa-
tive last-level cache to model a 128KB 32-way set-associative
checksum cache in the memory controller. Because both
Multi-ECC and VECC cache the error-correction resources,
we also cache the error correction resources of LOT-ECC to
perform a fair comparison.

We simulate the memory system using DRAMsim [19].
Similar to the evaluation of VECC, we choose the open-page
row buffer policy. We choose SDRAM High Performance
Map in DRAMsim [19] as the physical address-mapping pol-
icy. All memory configurations use DDR3 and take up 144
data pins in the memory bus. The DDR3 devices operate
at 1.3 GHz; their timing and power characteristics are ex-
tracted from Micron datasheets [17]. We choose the common
memory output granularity of 64B for all memory configu-
rations. To accomplish this for commercial chipkill correct
baseline with 36 devices per rank, we rely on the burst chop
option in DDR3, which reduces the burst length from the
usual eight bursts down to four bursts [17]. We optimisti-
cally model burst chop such that consecutive four burst ac-
cesses can always take place back to back. In practice, how-
ever, burst chop requires four useless memory cycles during
which only waste energy and occupy bandwidth between
various memory access combinations.

2The average case correction overhead of VECC depends
heavily on cache size and memory access patterns.

Table 2: Processor microarchitecture
Clock SS Width L1 D$, I$ L1 lat. L1 Assoc
2 GHz 2 32 kB 1 1
L2$ L2 Assoc L2 lat. L2 MSHR line Size
2MB 16 14 512 64B

Table 3: Memory configurations
Ranks/ Chips/ Mem.

ECC Channel I/O Pin Chan Rank Size
Commercial 1 X4 1 36 16GB

VECC 2 X4 1 18 15GB
LOT-ECC 2 X8 2 9 14GB
Multi-ECC 2 X8 2 9 16GB

Table 3 shows the memory configurations of commercial
chipkill correct, VECC, LOT-ECC, and Multi-ECC used
in our evaluation. The last column of Table 3 shows the
effective memory capacities of each memory configuration
after excluding the storage overheads. The column shows
that VECC and LOT-ECC have 1GB and 2GB less effec-
tive memory capacity, respectively, than commercial chip-
kill correct and Multi-ECC even though the total number of
DRAM devices is the same in each configuration. Our deci-
sion to evaluate design points for an equal amount of total
physical memory capacity instead of an equal amount of us-
able memory capacity is consistent with the methodology
used in VECC and LOT-ECC.

We use both multi-threaded PARSEC [5] workloads and
multi-programmed SPEC workloads. The compositions of
the multi-programmed SPEC workload are listed in Table
4. To simulate a multi-programmed SPEC workload, we
fast-forward each benchmark in the workload by 1 billion
instructions and evaluate the workload for 1 billion cycles.
For the PARSEC workloads, which have to be simulated in
the FULL SYSTEM mode [8], we evaluate each benchmark
for 1 billion cycles after the OS boots.

7. RESULTS

7.1 Power and Performance
Figure 7 shows the power of Multi-ECC normalized to

commercial chipkill correct, VECC, and LOT-ECC. The fig-
ure shows that the power reduction compared to commercial
chipkill correct correlates closely with the rate of memory
access, which is given in Figure 8. This is because the key
advantage of Multi-ECC relative to commercial chipkill cor-
rect is having a smaller rank size (nine devices instead of 36
devices); therefore, the higher the memory-access rate, the
greater the power savings. Compared to commercial chipkill
correct, Multi-ECC achieves maximum and mean power re-
ductions of 38% and 27%, respectively. Compared to VECC,
a similar trend of power reduction exists. The mean power
reduction with respect to VECC is 23%.

Compared to LOT-ECC, Figure 7 shows that the mean
difference in memory power consumption is small (e.g., only

Table 4: Simulated SPEC workloads
Mix1 mesa;swim;apsi;sphinx3
Mix2 lucas;gromacs;swim;fma3d
Mix3 sjeng;swim;facerec;ammp
Mix4 mcf 2006;libquantum;omnetpp;astar
Mix5 calculix;swim;art110;omnetpp
Mix6 lbm;facerec;h264ref foreman base;ammp

Figure 7: Power of Multi-ECC versus the baselines.

Table 5: Storage overhead
Commercial VECC LOT-ECC Multi-ECC

Storage
Overhead 12.5% 21.9% 26.5% 12.9%

4%). This is because Multi-ECC and LOT-ECC have the
same number of devices per rank. However, there are two
key advantages of Multi-ECC compared to LOT-ECC in
terms of storage overhead and error-detection strength. Re-
call from Section 2 that LOT-ECC requires a storage over-
head of 26.5%, instead of the conventional 12.5%. Table
5 summarizes the storage overhead of Multi-ECC as well
as the various baselines. Due to its high storage overhead,
the evaluated LOT-ECC memory system contains 2GB less
usable memory than commercial chipkill correct and Multi-
ECC (see Table 3). To provide the same usable memory ca-
pacity, LOT-ECC requires 12.5% additional physical mem-
ory, which would result in a minimum of 12.5% increase in
background power consumption. When we take this increase
in background power into account for a comparison with
equal usable memory capacity, Multi-ECC reduces power by
11.6% compared to LOT-ECC. Recall from Section 2 that
LOT-ECC can significantly reduce reliability compared to
other chipkill-correct solutions because even a single-symbol
error can cause SDC under LOT-ECC. (For more detailed
error detection/correction comparison, see Section 7.2.)

Figure 9 shows the IPC of Multi-ECC normalized to the
baselines. The figure shows that Multi-ECC improves IPC
by a mean of 3% compared to commercial chipkill correct.
This slight improvement in performance is due to the in-
crease in rank-level parallelism because Multi-ECC uses more
ranks per channel to provide the same total memory capacity
as commercial chipkill correct (see Table 3). For the same
reason, Multi-ECC improves IPC by a mean of 1% com-

Figure 8: Number of application memory accesses
per 1000 CPU cycles.

Figure 9: IPC of Multi-ECC versus baselines.

Figure 10: Memory traffic versus baselines.

pared to VECC. However, the IPC of Multi-ECC is 0.5%
lower than that of LOT-ECC. This is because Multi-ECC
interleaves adjacent virtual pages across only eight differ-
ent banks (see Section 5.2), while LOT-ECC has no such
restriction. This increases the number of expensive long-
latency bank conflicts compared to LOT-ECC, resulting in
slightly lower performance. When compared to the commer-
cial baseline and VECC, the slight reduction in performance
due to the increased bank conflicts is hidden by the increase
in performance due to the increase in rank-level parallelism.

Finally, to investigate the effectiveness of the checksum
cache, we compared the memory access rate of Multi-ECC
against the memory-access rates to the various baselines.
Figure 10 shows the memory-access rate of Multi-ECC nor-
malized to the baselines. The figure shows that Multi-ECC
increases memory traffic by a mean of 7% compared to the
idealized commercial baseline, which does not require any
additional memory accesses to update its error-correction re-
sources. On the other hand, the figure shows that the mem-
ory traffic rate of Multi-ECC is 4% and 10% lower than that
of VECC and LOT-ECC, respectively. This is because while
each checksum cacheline in Multi-ECC covers 256 data lines,
the corresponding error-correction cachelines in VECC and
LOT-ECC cover only 16 and eight data lines, respectively.

7.2 Reliability
Table 6 summarizes the combined rates of undetectable

single-symbol and double-symbol errors in Multi-ECC and
in the various baselines. The undetectable-error rate in Ta-
ble 6 for Multi-ECC is taken from Section 4.2. To calcu-
late the undetectable-error rate of LOT-ECC, which cannot
detect any address-decoder faults even if only a single de-
vice in a rank is affected by an address-decoder fault and
all other devices are error-free (see Section 2), we rely on

Table 6: Combined rate of undetectable single- and
double-symbol errors.

Combined Rate of
Detects all single undetectable single and
device errors? double symbol errors

Commercial yes 0
VECC yes 0

>0.3 per 1000 yrs
LOT-ECC no per DIMM
Multi-ECC <0.0015 per 1000 yrs

1 symbol/device yes per system

Multi-ECC < 1.5 · 10−8

2 symbols/device yes per 1000 yrs per system

the DRAM fault rates reported in a recent large-scale field
study of DRAM faults performed by Siddiqua et al. [22].
The study attributes 17% of soft faults to block faults, a
type of address-decoder fault, and reports that 17% of all
memory systems with faults suffered from soft faults; using
this report, we conservatively estimate that block faults ac-
count for roughly 1% of all DRAM faults. Because other
field studies of DRAM faults have shown that 3% [23] to 8%
[21] of all DIMMs have been reported to develop faults dur-
ing each year, we calculate that the SDC rate of LOT-ECC
due to block faults affecting a single device is approximately
0.3 SDC to 0.8 SDC per 1,000 years per DIMM. To put this
in perspective, a commercial SDC rate target for servers is
one SDC per 1,000 years per entire server system, not just
for the memory subsystem [7].

Meanwhile, our calculation in Section 4.4 shows that the
uncorrectable-error rate due to single-symbol errors for Multi-
ECC is less than 3.17 · 10−7 per 10 years per DIMM, which
results in only a 0.03% increase to a commercial target DUE
rate of once per 10 years per system [7] even if the sys-
tem contains 1000 DIMMs (servers typically contain many
fewer). This is four orders of magnitude lower than that of
the undetectable-error rate of LOT-ECC given in Table 6.
This is not surprising considering that while a single fault
affecting a single device can result in an undetectable error
in LOT-ECC, uncorrectable single-symbol errors in Multi-
ECC are caused by two or more symbol faults or row faults
in two different devices in a rank in close spatial proximity
of each other (See Section 4.4).

8. RELATED WORK IN OTHER AREAS
Multi-ECC uses RS codes in one dimension to perform

error detection and erasure correction, and checksums in a
second dimension to provide error localization. As such, it is
related to other works that use two-dimensional coding. 2D
coding is used by Manoochehri et al. [16] to reduce the stor-
age overhead of error correction in the cache, Kim et al. [13]
to correct multi-bit cluster errors in embedded cache, and
Longwell [15] to reduce the latency of error correction for on-
chip memory accesses. To the best of our knowledge, Multi-
ECC is the first to employ two-dimensional coding to enable
linear block codes with a single check symbol per codeword
to provide chipkill correct. Multi-ECC is also the first to
use two-dimensional coding to exploit the observation that
a single faulty DRAM device in a rank only corrupts the
same symbol of the codewords to reduce the storage over-
head of error correction in chipkill-correct memory systems
with minimal impact on reliability.

Another work related to Multi-ECC is redundant array

of independent disks (RAID), commonly used to provide er-
ror correction in hard-drives. RAID uses checksums stored
within each data disk to provide error detection and local-
ization, and RS check symbols stored in a redundant disks
to provide erasure correction. There are two key differences
between RAID and Multi-ECC. First, RAID does not re-
use the same RS check symbol intended for erasure correc-
tion for error detection. Therefore, it does not exploit the
strong detection capability of RS check symbols (i.e., the
ability of a single RS check symbol to guarantee detection
of single-symbol errors and to provide high detection cover-
age of double-symbol errors), as does Multi-ECC. Instead,
by using checksums for error detection, it is unable to de-
tect errors due to address-decoder faults in a single device,
as does LOT-ECC. Second, RAID does not share checksums
across multiple ‘lines’, as does Multi-ECC; because an out-
put line of a hard drive is often 4KB, the storage overhead
of the checksums is very small even though each 4KB line
has its own dedicated checksum.

9. CONCLUSION
As the memory capacity of servers increases, memory power

consumption and reliability become increasingly important
concerns. Chipkill correct has been commonly used in servers
to provide the desired memory reliability. However, existing
chipkill-correct solutions incur high memory power and/or
storage overheads.

In this paper, we observe that the high overhead of prior
chipkill-correct solutions is due to requiring a large number
of check symbols per codeword (i.e., a minimum of three
check symbols per codeword). The root cause of the large
number of check symbols per codeword is in turn due to
using a dedicated correction-check symbol per codeword for
error correction. Multi-ECC reduces the number of check
symbols per codeword to one by exploiting two observations.
First, because DRAM faults often affect the same symbol of
codewords in memory, it suffices to allocate a common set of
error-correction resources to a group of codewords for error
correction instead of allocating a dedicated correction-check
symbol to each codeword. Second, we observe that using a
dedicated check symbol per codeword for error correction,
as does prior chipkill-correct solutions, significantly reduces
the effectiveness of error detection, and, therefore, propose
an alternate method for error correction.

Instead of relying on a dedicated check symbol per code-
word for error correction, Multi-ECC relies on erasure cor-
rection. Multi-ECC uses a single check symbol per code-
word to provide both erasure correction and error detec-
tion. Meanwhile, Multi-ECC keeps the overhead of erasure
correction low by sharing error-localization checksums, re-
quired for erasure correction, across multiple lines in mem-
ory. Overall, Multi-ECC incurs low dynamic memory ac-
cess power (e.g., only nine devices per rank) at low storage
overhead (12.9%), and with only minimal impact on reliabil-
ity. Our evaluation using workloads across a wide range of
memory access rates shows that Multi-ECC reduces mem-
ory power consumption by a mean of 27% and up to 38%
compared to commercial chipkill-correct solutions.

10. ACKNOWLEDGEMENTS
We would like to thank anonymous reviewers for their

feedback. The work was partly supported by a gift from

Oracle.

11. REFERENCES
[1] “AMD, BIOS and Kernel Developer’s Guide for AMD

NPT Family 0Fh Processors,” 2007. [Online].
Available: http://www.amd.com/us-en/assets/
content type/white papers and tech docs/32559.pdf

[2] “CACTI 5.3,” 2008. [Online]. Available:
http://quid.hpl.hp.com:9081/cacti

[3] “Overview of the IBM Blue Gene/P project,” IBM J.
Res. Dev., vol. 52, no. 1/2, pp. 199–220, Jan. 2008.

[4] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich,
and R. S. Schreiber, “Future Scaling of
Processor-memory Interfaces,” SC, pp. 42:1–42:12,
2009.

[5] C. Bienia, “Benchmarking Modern Multiprocessors,”
Ph.D. dissertation, Princeton, NJ, USA, 2011.

[6] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,
A. G. Saidi, and S. K. Reinhardt, “The M5 Simulator:
Modeling Networked Systems,” MICRO, 2006.

[7] D. C. Bossen, “CMOS Soft Errors and Server Design,”
IEEE Reliability Physics Tutorial Notes, 2002.

[8] M. Gebhart, J. Hestness, E. Fatehi, P. Gratz, and
S. W. Keckler, “Running PARSEC 2.1 on M5.”

[9] W. A. Geisel, Tutorial on Reed-Solomon Error
Correction Coding. National Aeronautics and Space
Administration, Lyndon B. Johnson Space Center,
1990.

[10] A. A. Hwang, I. A. Stefanovici, and B. Schroeder,
“Cosmic Rays Don’t Strike Twice: Understanding the
Nature of DRAM Errors and the Implications for
System Design,” SIGARCH Comput. Archit. News,
pp. 111–122, 2012.

[11] Intel, “RAS Features of the Mission-Critical
Converged Infrastructure,” 2010.

[12] X. Jian and R. Kumar, “Adaptive Reliability Chipkill
Correct,” HPCA, pp. 270 – 281, 2013.

[13] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and
J. Hoe, “Multi-bit Error Tolerant Caches Using
Two-Dimensional Error Coding,” MICRO, pp.
197–209, 2007.

[14] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu,
“A Software Memory Partition Approach for
Eliminating Bank-level Interference in Multicore
Systems,” PACT, pp. 367–376, 2012.

[15] M. L. Longwell, “Method and apparatus for error
detection and correction,” 2010, US Patent number:
7644348.

[16] M. Manoochehri, M. Annavaram, and M. Dubois,
“CPPC: Correctable Parity Protected Cache,” ISCA,
pp. 223–234, 2011.

[17] MICRON, “2Gb: x4, x8, x16 DDR3 SDRAM,”
MICRON.

[18] S. Morioka, “Design Methodology for a One-shot
Reed-Solomon Encoder and Decoder,” ICCD, pp.
60–67, 1999.

[19] U. of Maryland, University of Maryland Memory
System Simulator Manual.

[20] M. K. Qureshi, “Pay-As-You-Go: Low-overhead
Hard-error Correction for Phase Change Memories,”
MICRO, pp. 318–328, 2011.

[21] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM
Errors in the Wild: a Large-scale Field Study,”
SIGMETRICS, pp. 193–204, 2009.

[22] T. Siddiqua, A. E. Papathanasiou, A. Biswas, and
S. Gurumurthi, “Analysis and Modeling of Memory
Errors from Large-scale Field Data Collection,”
SELSE, 2013.

[23] V. Sridharan and D. Liberty, “A Study of DRAM
Failures in the Field,” SC, 2012.

[24] A. N. Udipi, N. Muralimanohar, R. Balsubramonian,
A. Davis, and N. P. Jouppi, “LOT-ECC: LOcalized
and Tiered Reliability Mechanisms for Commodity
Memory Systems,” ISCA, pp. 285 – 296, 2012.

[25] A. N. Udipi, N. Muralimanohar, N. Chatterjee,
R. Balasubramonian, A. Davis, and N. P. Jouppi,
“Rethinking DRAM Design and Organization for
Energy-Constrained Multi-Cores,” ISCA, pp. 175–186,
2010.

[26] D. H. Yoon and M. Erez, “Virtualized ECC: Flexible
Reliability in Main Memory,” MICRO, pp. 285 – 296,
2010.

