
Software-based Gate-level Information Flow Security for IoT
Systems

Hari Cherupalli
University of Minnesota

cheru007@umn.edu

Henry Duwe
Iowa State University

duwe@iastate.edu

Weidong Ye
University of Illinois
wye5@illinois.edu

Rakesh Kumar
University of Illinois
rakeshk@illinois.edu

John Sartori
University of Minnesota

jsartori@umn.edu

ABSTRACT
The growing movement to connect literally everything to the inter-
net (internet of things or IoT) through ultra-low-power embedded
microprocessors poses a critical challenge for information security.
Gate-level tracking of information flows has been proposed to guar-
antee information flow security in computer systems. However, such
solutions rely on non-commodity, secure-by-design processors. In
this work, we observe that the need for secure-by-design processors
arises because previous works on gate-level information flow track-
ing assume no knowledge of the application running in a system.
Since IoT systems typically run a single application over and over
for the lifetime of the system, we see a unique opportunity to pro-
vide application-specific gate-level information flow security for IoT
systems. We develop a gate-level symbolic analysis framework that
uses knowledge of the application running in a system to efficiently
identify all possible information flow security vulnerabilities for the
system. We leverage this information to provide security guarantees
on commodity processors. We also show that security vulnerabilities
identified by our analysis framework can be eliminated through soft-
ware modifications at 15% energy overhead, on average, obviating the
need for secure-by-design hardware. Our framework also allows us
to identify and eliminate only the vulnerabilities that an application
is prone to, reducing the cost of information flow security by 3.3×
compared to a software-based approach that assumes no application
knowledge.

CCS CONCEPTS
• Computer systems organization→ Special purpose systems; Em-
bedded systems;

KEYWORDS
ultra-low-power processors, security, information flow, hardware-
software co-analysis, Internet of Things

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MICRO ’17, October 14-18, 2017, Boston, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/06. . . $15.00
https://doi.org/10.1145/XXXXX.XXXXX

ACM Reference format:
Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John Sartori.
2017. Software-based Gate-level Information Flow Security for IoT Systems. In
Proceedings of MICRO ’17, Boston, MA, USA, October 14-18, 2017, 13 pages.
https://doi.org/10.1145/XXXXX.XXXXX

1 INTRODUCTION
Wearables, sensors, and the internet of things (IoT) arguably represent
the next frontier of computing. On one hand, they are characterized
by extremely low power and cost requirements. On the other hand,
they pose a dire security and privacy risk. As the internet of things
progresses toward the internet of everything, where nearly everything
is connected to the internet via an embedded ultra-low-power pro-
cessor, higher connectedness implies more security attack vectors
and a larger attack surface. Similarly, immersive usage models imply
newer, more sinister consequences. The security and privacy concerns
are not theoretical either. In the last couple of years, reported IoT
attacks include compromising baby monitors to enable unauthorized
live feeds [1], interconnected cars to control a car in motion [2], smart-
watches and fitness trackers to steal private information and health
data [3], power grids and steel mills to render them offline [4], and
medical devices with detrimental, perhaps fatal, consequences on pa-
tients’ health [5]. Consequently, security and privacy need to be first
order design concerns for IoT systems.

Information-flow security is one of the most well-studied approaches
to providing security and privacy in computer systems [6–17]. The
goal is to track flows of information through a computer system and
either detect or prevent illicit information flows between tainted (e.g.,
untrusted or secure) state and untainted (e.g., trusted or non-secure)
state. Tracking and managing flows allows a computer system to sup-
port different information flow policies and provide information flow
guarantees that security and privacy constructs and protocols can be
built upon. An information flow security-based approach can be in-
valuable in context of IoT systems due to the above discussed security
and privacy risks associated with such systems.

The vast majority of techniques for tracking and managing infor-
mation flows operate at the level of the ISA or above. While these
techniques allow tracking and management of explicit information
channels, they are largely incapable of doing the same for implicit
or covert channels (including timing channels) [16]. Gate-level in-
formation flow security approaches [16, 17] have been proposed to
allow tracking and management of information flow channels at the
finest-grained digital level – gates. These approaches typically aug-
ment hardware logic blocks with gate-level information flow tracking

https://doi.org/10.1145/XXXXX.XXXXX
https://doi.org/10.1145/XXXXX.XXXXX

MICRO ’17, October 14-18, 2017, Boston, MA, USA H. Cherupalli et al.

(GLIFT) logic to perform information tracking. They also specify a
method for performing compositions of augmented logic blocks. A
gate-level approach allows tracking of all information flows – implicit,
explicit, and covert – allowing one to build secure-by-design sys-
tems [18, 19] with varying degrees of programmability, performance,
and area.

While gate-level approaches are effective at providing information
flow security, such approaches require hardware modifications. For
example, required hardware support may include stacks of isolated
timers that can reset the PC, new pipeline control hardware, support to
manage memory bounds masking, and partitioned memory structures
(caches, branch predictors, etc.) [19]. While these modifications may
be acceptable for certain high-assurance systems [19], the ultra-low
cost requirements of many IoT applications and the volume nature of
their microcontrollers may prohibit such modifications.

We observe that many of the required architectural changes arise
because prior works assume that all software besides the kernel is
completely unknown. Since many emerging IoT applications run the
same software again and again for the lifetime of the system, we argue
that there is a unique opportunity to build low-overhead gate-level
information flow techniques for these IoT systems. Many IoT systems
– consider wearables, implantables, industrial controllers, sensor nodes,
etc. – perform the same task (or a small set of tasks) repetitively. How-
ever, cost reasons dictate that these systems are implemented using a
programmable microcontroller running application software instead
of an ASIC. We observe that for such systems, it may be possible
for a commodity microcontroller to guarantee gate-level information
flow security for a given application, even if a guarantee cannot be
provided for all applications.1 Similarly, for some applications where
gate-level information flow guarantees are not met, it may be pos-
sible to guarantee gate-level information flow security only through
minimal changes to the application software, even if these changes
will be inadequate at providing guarantees for all applications (or for
other processors). The ability to guarantee gate-level information flow
security for the applications of interest on commodity hardware, even
if no guarantee is provided for all applications, allows trusted IoT
execution without the programmability, performance, and monetary
costs of specialized secure-by-design systems derived from previous
gate-level approaches.

We rely on these observations to build a software tool that performs
gate-level information flow tracking for a given application on a given
processor design without any hardware design effort. The tool takes as
input the processor’s gate-level netlist, unmodified application binary,
and information flow policies of interest, and performs symbolic (i.e.,
input-agnostic) gate-level simulation of the application binary on the
netlist to determine if any of the information flow policies could be
violated. If none of the information flow policies could be violated
at the gate-level, the processor is declared to guarantee gate-level
information flow security for the application. If an information flow
policy could be violated, the tool reports the offending instruction(s)
to the programmer as warnings or errors. This information can then
be used by the programmer or the compiler to modify application
software such that gate-level information flow guarantees are met for
the application. This analysis can be applied to an arbitrary application

1In this paper, we refer to the application as the entire binary code loaded into a
system’s program memory. This includes all computational tasks as well as all system
software.

A AT B BT O OT

0 0 0 0 1 0

0 0 0 1 1 0

0 0 1 0 1 0

0 0 1 1 1 0

0 1 0 0 1 0

0 1 0 1 1 1

0 1 1 0 1 1

0 1 1 1 1 1

1 0 0 0 1 0

1 0 0 1 1 1

1 0 1 0 0 0

1 0 1 1 0 1

1 1 0 0 1 0

1 1 0 1 1 1

1 1 1 0 0 1

1 1 1 1 0 1

A B

O OT

AT BT

Figure 1: Example truth table for gate-level information flow tracking
of a NAND gate. A ‘1’ in the taint value columns (shaded gray) repre-
sents a tainted value (e.g., untrusted or secret values). Taint is propagated
through a gate based on the gate’s input values (e.g., A,B) and their corre-
sponding taints (e.g., AT ,BT). If a tainted input can affect the output (e.g.,
when A = 0, AT = 1, and B = 1), the output becomes tainted. However, a
taint does not propagate to the output when a tainted input cannot affect
the output (e.g., due to masking, as when A = 1, AT = 1, B = 0, and BT = 0).

and even for a commodity hardware design. Also, our approach can be
used selectively for the applications limiting overheads only to certain
applications that need software modification.

This paper makes the following contributions:
•We present the first approach to track gate-level information on a
per-application basis. Our approach is software-based and can track
gate-level information even on a commodity hardware design.
• We show that feedback from our application-specific gate-level
information flow tracking can be used to modify application software
in a way that guarantees information flow security.
•We show that application-specific software modification to prevent
only the insecure information flows that a system is vulnerable to can
reduce overheads significantly (i.e., by 3.3×), on average, compared to
an “always on” software-based approach that assumes no knowledge
of the application running in a system.

2 BACKGROUND AND RELATED WORK
Information flow security aims to (1) determine if any information
flows exist from one state element (e.g., a variable in a program) to
another state element and to (2) prevent or warn users of such flows
when a flow violates an information flow policy. Past work [6–11] has
performed information-flow tracking at the software level and demon-
strated its effectiveness at detecting a set of security vulnerabilities
without modification of the hardware (i.e., applicable on commodity
hardware). Other work [12–15] proposes hardware modifications for
improved efficiency and accuracy of ISA-level information flow track-
ing. Unfortunately, these approaches not only require hardware modi-
fications, but they may still miss information flows that crop up as a
result of the low-level implementation details of a processor [16]. Our
approach aims to achieve the advantages of both software-based and
hardware-based information flow tracking – applicability to unmodi-
fied commodity hardware, accuracy in tracking information flows, and
minimal runtime overhead – without the corresponding limitations.

Software-based Gate-level Information Flow Security for IoT Systems MICRO ’17, October 14-18, 2017, Boston, MA, USA

In order to track all forms of digital information flow, Tiwari et
al. [16] proposed gate-level information flow tracking (GLIFT). As
shown in Figure 1, GLIFT augments each gate in a design with taint-
tracking hardware. The taint of a gate’s output is determined by the
values and taints of its inputs. By propagating taint values through
each gate, tainted data (e.g., untrusted or secret) can be tracked from
input ports (or other marked data, including instructions in program
memory) through the processor at the gate level to guarantee that no
tainted data reaches an output port that should remain untainted (e.g.,
a trusted or non-secret output). When fabricated with the base design,
GLIFT can dynamically track taints at a high degree of accuracy, albeit
at up to a 3× overhead in hardware. More recently, GLIFT has been
used to statically track information flows [19]. In this work, an anal-
ysis called *-logic is used to statically track taints for a microkernel
with no non-determinism running on hardware designed to be easily
verifiable. The focus was on performing gate-level information flow
tracking for a specific, application-agnostic secure-by-design system.
We focus, instead, on performing application-specific gate-level in-
formation flow tracking for arbitrary IoT applications on commodity
hardware, including applications with control dependencies on un-
known, tainted inputs. When analyzed with *-logic, such applications
could unnecessarily taint all software-exercisable gates (Footnote 8).

Based on the insights and verification of GLIFT, several secure-
by-design processors have been built. They range from a predication-
based, non-Turing-complete processor [16] to processors that can
handle arbitrary computations through hardware compartmentaliza-
tion [18, 19]. While these processors can guarantee that any software
that runs on them cannot violate a non-interference information secu-
rity policy (i.e., no untrusted inputs can affect trusted outputs and no
secret inputs can affect non-secret outputs), they can be limited in their
programmability (e.g., [16] requires all loops to be statically bounded
while [18] does not naturally support unbounded or variable-length
operations) and require hardware modifications (e.g., partitioned mem-
ory structures and memory bounds checking hardware). The cost of
any re-design of a commodity microcontroller may be prohibitive in
the context of IoT systems, given the huge diversity of IoT systems
being driven by commodity microcontrollers [20]. In this paper, we
design full systems that ensure the same non-interference policy as
[19] (i.e., no untrusted input can affect a trusted output and no secret
input can affect a non-secret output), but on a per-application basis.

Recently, a body of work has emerged on developing hardware
description languages and tools to design and verify information flow
secure hardware [21–24]. While such works can prove that a hardware
design meets an information flow security policy, even one that is
commercial, such as ARM’s Trustzone [24], these approaches cannot
verify commodity hardware that does not already implement infor-
mation flow security. Our approach targets commodity hardware, in
addition to emerging hardware, and allows application developers to
demonstrate the security of their applications at a fine-grained level.

3 MOTIVATION
In this section, we motivate an application-specific approach for gate-
level information flow security in IoT systems through a series of ex-
amples. In the first example (Figure 2), we consider existing secure-by-
design systems based on gate-level information flow tracking. These
systems have been designed assuming that the application software
running on the system is unknown [16, 18, 19]. Figure 2 depicts a

PROCESSOR

P2

P1

P3

P4

ADDR Instruction

K+0 XXXX XXXX XXXX XXXX

K+1 XXXX XXXX XXXX XXXX

K+2 XXXX XXXX XXXX XXXX

K+3 XXXX XXXX XXXX XXXX

K+4 XXXX XXXX XXXX XXXX

PO
RT

S

Untainted
Tainted

Violation

DA
TA
	M

EM
OR

Y
PR

OG
RA

M
	M

EM
OR

Y

Figure 2: Assuming that an application is unknown means that the ap-
plication may perform any action, including reading from all possible
sources of tainted data, propagating tainted data to all parts of the pro-
cessor, and writing tainted data through all untainted ports if hardware-
based mechanisms are not put in place to prevent insecure information
flows.

processor running an unknown application (all Xs). In the figure, port
P1 is an input port through which the processor may read tainted
data. Also, a partition in the data memory is marked as containing
tainted data. Since the application is unknown, we are forced to as-
sume that the unknown instructions may read tainted data from all
possible sources, propagate tainted data to all parts of the processor,
and also write tainted data to all untainted ports and memory regions.
I.e., we must assume that an unknown application has the potential
to cause all possible information flow security violations. Faced with
this possibility, the only way to guarantee information flow security is
to design a secure-by-design system that includes hardware mecha-
nisms to proactively prevent all possible insecure information flows.
While this approach results in a system that is immune to all possible
security violations that an arbitrary application may cause, such strin-
gent security measures require modifications to processor hardware
and may often be overly-conservative in an IoT system that runs a
single, and often simple, application. For example, consider Figure 3,
which shows the same processor running a known application. When
the application is run on the processor, it never writes tainted data
to untainted ports or memory partitions.2 Therefore, it is possible to
guarantee information flow security for this system without making
any changes to the hardware or software. This example demonstrates
that guaranteeing information flow security is possible, even for an
application running on a commodity processor, when the application
software is known. This is encouraging for security-critical IoT sys-
tems, which, due to economic considerations, more often than not rely
on lightweight commodity processors.

For the next example, consider Figure 4, which shows the same
processor running a different known application that reads an input
from a tainted port an uses it as a base pointer (offset) to access data
memory. Since the input is tainted, it is possible that the memory
address calculated from the offset maps to the untainted region of
memory, allowing tainted data to propagate through the memory to
an untainted output port. Thus, the application contains a potential
information flow security violation that could be either exploited in-
tentionally (e.g., an input supplied by a malicious attacker) or exposed

2Tracking of information flow violations is simplified for demonstrative purposes
in these examples by assuming that the only flows that exist are the ones visible in
the abstract processor representation; actual identification of tainted information flows
requires gate-level tracking to ensure complete coverage [16] (see Section 4).

MICRO ’17, October 14-18, 2017, Boston, MA, USA H. Cherupalli et al.

PROCESSOR

DA
TA
	M

EM
OR

Y

offset = 3;
for (int i = 0; i < 25; i++){

a = <P1>;
c[i + offset] = a + c[i];
<P2> = c[i + offset]; }

for (int i = 0; i < 25; i++){
b = <P3>;
d[i] = b + d[i];
<P4> = d[i]; }

P2

P1

P3

P4

PO
RT

S

Untainted
Tainted

Violation

1 1

2

2
3

3

4
4

5

5
6

6

PR
OG

RA
M
	M

EM
OR

Y

Figure 3: An IoT system that runs a single application may not be vul-
nerable to any insecure information flows, even when the application is
run on a commodity processor. In this example, tainted/untainted code
only uses tainted/untainted ports, and no insecure information flows are
possible.

PROCESSOR offset = <P1>;
for (int i = 0; i < 25; i++){

a = <P1>;
c[i + offset] = a + c[i];
<P2> = c[i + offset]; }

for (int i = 0; i < 25; i++){
b = <P3>;
d[i] = b + d[i];
<P4> = d[i]; }

P2

P1

P3

P4

PO
RT

S

1

1

2

2

3

34
4

Untainted
Tainted

Violation

DA
TA
	M

EM
OR

Y
PR

OG
RA

M
	M

EM
OR

Y

Figure 4: This application is vulnerable to information flows that could
jeopardize system security. The application uses tainted input data to
compute the address for a write operation. The write taints untainted
memory, allowing a violation when tainted data are sent out of an un-
tainted port.

unintentionally (e.g., an unfortunate input supplied by an unwitting
user).

Although the application in Figure 4 is vulnerable to an insecure
information flow, it does not necessarily mean that the application must
be run on a secure-by-design system with hardware-based security
mechanisms to ensure information flow security. Consider Figure 5,
which shows a different, functionally-equivalent version of the same
application running on the same commodity processor. In this version
of the application, the base address (offset) read from the tainted
port is filtered through a masking operation that sets certain bits in
the address (e.g., the most significant bits) to ensure that addresses
computed using the offset map only to the tainted region of memory.
Since this software change prevents the possibility of propagating
tainted data to an untainted output port, no information flow security
violations are possible for the modified application. Thus, through
knowledge of the application and its potential security exploits, it is
possible in this case to prevent information flow security violations
in a system only by making changes to the software running in the
system.

The examples in this section show that (1) it is possible to guarantee
information flow security on a commodity processor without the use of
restrictive, hardware-based information flow control mechanisms, and
(2) it is possible to eliminate information flow security violations in an
embedded system simply by making software modifications. However,
these possibilities can only be realized with (1) knowledge of the

offset = <P1>;
Offset = mask (offset);
for (int i = 0; i < 25; i++){

a = <P1>;
c[i + Offset] = a + c[i];
<P2> = c[i + Offset]; }

for (int i = 0; i < 25; i++){
b = <P3>; d[i] = b + d[i];
<P4> = d[i]; }

P2

P1

P3

P4

PROCESSOR

PO
RT

S

Untainted
Tainted

Violation

1

1

2

2

3

3
4

4

PR
OG

RA
M
	M

EM
OR

Y
DA

TA
	M

EM
OR

Y

Figure 5: A simple change to the application in Figure 4 (masking the
tainted memory address to limit its scope) renders the system immune
to insecure information flows, demonstrating that it may be possible to
provide information flow security on a commodity processor by changing
the software that runs on the processor.

application running in the system, and (2) a means of identifying
all possible insecure information flows to which the application is
vulnerable.

Based on these insights, we propose an application-specific ap-
proach to guaranteeing information flow security for IoT systems that
identifies all information flow security violations that are possible
for a system consisting of a commodity processor and application
software and provides software-based techniques that can be used to
prevent these information flow security violations.

4 APPLICATION-SPECIFIC GATE-LEVEL
INFORMATION FLOW TRACKING

Section 3 motivates the potential benefits of a software-based application-
specific approach to information flow security, but bringing the ap-
plication into the picture presents several challenges for gate-level
information flow tracking. While it does allow secure-by-design sys-
tems to be built on commodity hardware, it requires a means of iden-
tifying all possible insecure information flows that may occur in a
system, for all possible executions of the system’s software, for any
possible inputs that may be applied to the system. In this section,
we describe an automated technique that takes as input the hardware
description (gate-level netlist) of a processor, the software that runs
on the system, and labels identifying trusted / untrusted (or secure /
insecure) inputs and outputs in the system and efficiently explores all
possible application-specific execution states for the system to iden-
tify all possible insecure information flows in the system. The output
from our automated framework can be used to verify the information
flow security of a system as well as to guide and automate software
modification to eliminate information flow security vulnerabilities in
the system.

Figure 6 shows the process for verifying a security policy using
application-specific gate-level information flow tracking. The first
step performs offline input-independent gate-level taint tracking of
an entire systems binary running on a gate-level description of a
processor. The initial components that are tainted are specified by the
information flow security policy (e.g., ports labeled as untrusted or
memory locations labeled as secret). The result of taint tracking is a
per-cycle representation of tainted state (both gates and memory bits).
The second step performs information flow policy checking where the
information flow checks specified by the information flow security

Software-based Gate-level Information Flow Security for IoT Systems MICRO ’17, October 14-18, 2017, Boston, MA, USA

policy are verified on the per-cycle tainted state. The result is a list of
possible violations of the information flow security policy.

4.1 Input-independent Gate-level Taint Tracking
Algorithm 1 describes our input-independent gate-level taint tracking.
Initially, the values of all memory cells and gates are set as unknown
values (i.e., Xs) and are marked as untainted. The system binary,
consisting of both tainted and untainted partitions3, is loaded into
program memory. Our tool performs input-independent taint tracking
based on symbolic simulation, where each bit of an input is set to an
unknown value symbol, X. Additionally, inputs or state elements may
be tainted according to the specified information flow security policy
(e.g., the non-interference policy described in Section 2). Throughout
simulation, logical values are propagated throughout the circuit as
standard ternary logic. Taint values, which are dependent on both
the taint values of inputs and their logical values, are propagated as
described in [16] and exemplified in Figure 1.

A key difference between our input-independent gate-level taint
tracking and prior analyses such as *-logic occurs when an unknown
symbol propagates to the PC. For example, directly applying a *-
logic analysis on commodity hardware to an application where the
PC becomes unknown and tainted results in most of the gates in the
hardware also becoming unknown and tainted, since most gates are
impacted by the PC. However, in our analysis, if an X propagates to the
PC, indicating input-dependent control flow, our simulator branches
the execution tree and simulates execution for all possible branch
paths (i.e., the abstract representation of the PC is made concrete
while still retaining the taint values), following a depth-first ordering
of the control flow graph. Since this naive simulation approach does
not scale well for complex or infinite control structures which result
in a large number of branches to explore, we employ a conservative
approximation that allows our analysis to scale for arbitrarily-complex
control structures while conservatively maintaining correctness in
exploring possible execution states. Our scalable approach works by
tracking the most conservative gate-level state that has been observed
for each PC-changing instruction (e.g., conditional branch). The most
conservative state is the one where the most variables are assumed to
be unknown (X). When a branch is re-encountered while simulating on
a control flow path, simulation down that path can be terminated if the
symbolic state being simulated is a substate of the most conservative
state previously observed at the branch (i.e., the states match or the
more conservative state has Xs in all differing variables), since the
state (or a more conservative version) has already been explored. If
the simulated state is not a substate of the most conservative observed
state, the two states are merged to create a new conservative symbolic
state by replacing differing state variables with Xs, and simulation
continues from the conservative state.

The result of the conservative approximation technique is a pruned
execution tree that stores both the logical and taint values at each point.
Once a state, such as S2, is observed for a second time, there is no
further exploration down that path since all further states have already
been considered. This conservative approximation technique allows
input-independent gate-level taint tracking to complete in a tractable

3Note that tainted and untainted code partitions do not indicate that the corresponding
instructions are marked as tainted or untainted in the program memory, although our tool
allows them to be.

Gate-level	
Processor	
Description

Input-
independent	
Gate-level	

Taint	Tracking

Information	Flow	
Policy	Checking

Application	+	
System	
Binary

Per-cycle	Tainted	
State

Information	Flow	
Violations

Information	
Flow	Policy

Figure 6: Application-specific gate-level information flow tracking eval-
uates specific information flow security policies across all possible execu-
tions of the entire system binary, producing a list of all possible violations.

amount of time, even for applications with an exponentially-large or
infinite number of execution paths.4

Algorithm 1 Input-independent Gate-level Taint Tracking
1. Procedure Taint Tracking(system_binary, design_netlist, security_policy)
2. Initialize all memory cells and all gates in design_netlist to untainted X
3. Mark tainted ports and gates according to security_policy
4. Load system_binary into program memory
5. Propagate reset signal
6. s← State at start of system_binary
7. Table of previously observed symbolic states, T .insert(s)
8. Symbolic execution tree, S.set_root(s)
9. Stack of un-processed execution points, U .push(s)

10. mark_all_gates_untoggled(design_netlist)
11. while U != /0 do
12. e←U .pop()
13. while e.PC_next != X and !e.END do
14. e.set_inputs_X() // set all peripheral port inputs to Xs
15. e.set_taints(security_policy) // taint appropriate state according to security_policy
16. e′ ← propagate_gate_values(e) // simulate this cycle
17. t← propagate_taint_values(e′ ,e) // determine taint values for e’
18. S.add_simulation_point(e′ ,t) // store logical and taint state
19. if e′ .modifies_PC then
20. c← T .get_conservative_state(e)
21. if e′ 1 c then
22. T .make_conservative_superstate(c,e′)
23. else
24. break
25. end if
26. end if
27. e← e′ // advance cycle state
28. end while
29. if e.PC_next == X then
30. c← T .get_conservative_state(e)
31. if e 1 c then
32. e′ ← T .make_conservative_superstate(c,e)
33. for all a ∈ possible_PC_next_vals(e′) do
34. e′′ ← e.update_PC_next(a)
35. U .push(e′′)
36. end for
37. end if
38. end if
39. end while

4.2 Information Flow Checking
The result of input-independent gate-level taint tracking is a conser-
vative symbolic execution that represents all possible executions of
the entire system’s binary. This symbolic execution tree is annotated
with logical gate values and associated taint values. Using these taint
values, information flow checking can be performed where the spe-
cific security policy is checked. An example information flow security

4Some complex applications and processors might still require heuristics for explo-
ration of a large number of execution paths [25, 26]; however, our approach is adequate
for ultra-low-power systems, representative of an increasing number of future uses which
tend to have simple processors and applications [27, 28]. For example, complete analysis
of our most complex system takes 3 hours.

MICRO ’17, October 14-18, 2017, Boston, MA, USA H. Cherupalli et al.

policy is defined by [19]: input and output ports are labeled as trusted
or untrusted and, independently, as secret or non-secret (i.e., untrusted
and secret are two taints that are analyzed separately). An attacker is
assumed to have complete control over all untrusted inputs to the de-
vice and controls the initial implementation of untrusted code, which
is known at analysis time. No untrusted information can flow out of a
trusted port, and no secret information can flow out of a non-secret
port.

4.3 Illustrative Example
This section illustrates how application-specific gate-level information
flow tracking works. Figure 7 depicts application-specific gate-level
information flow tracking on an example portion of a processor circuit
using a symbolic execution tree that identifies all information flows in
all execution paths of an application.

Consider a small portion of a processor represented by the simple
state machine in the top left of Figure 7 and implemented by the
circuit in the bottom left of the figure. During application-specific
gate-level information flow tracking of the application binary, the
gate-level circuit is symbolically simulated using logical 1s, 0s, and
Xs (i.e., unknown value symbols). Along with the values of each gate,
a taint value is associated with each gate and is propagated according
to the gate type and input values of the gate (taint values are shown
with a light gray background). The right side of Figure 7 contains
an example (abbreviated) symbolic execution tree that tracks taint
values through all possible execution paths of an application during
application-specific gate-level information flow tracking. In cycle 0,
the circuit starts out in an unknown, yet untainted state (i.e., both S and
In are Xs while ST and InT are 0s). As a result of the untainted reset
asserted in cycle 0, the circuit enters a known state, S = 0. Input In
becomes an untainted 1 in cycle 1, resulting in the circuit transitioning
to an untainted S = 1 state in cycle 2. After cycle 2, the PC (not shown)
becomes an unknown value (X), so symbolic simulation is split into
two paths. Since In is a tainted 0 in cycle 2 and propagates its taint to
S′, both branches start in a tainted state S = 1 in cycle 3. In cycle 3 of
the left-hand path, In, which is unknown and untainted is XORed with
S, which is tainted, and the circuit transitions into an unknown tainted
state (S = X ,ST = 1). In cycle 4 of the left-hand path, a tainted reset
is asserted, which puts the circuit into a known state, S = 0. However,
since the reset signal was tainted, the output state of the flip-flop
remains tainted (ST = 1). This illustrates that a tainted reset signal will
not untaint processor state elements. However, on the right-hand path,
an untainted reset is asserted in cycle 4. This does reset the circuit
into a known and untainted state (S = 0,ST = 0).

After tracking taints through every execution of the application,
the execution tree characterizes all possible information flows for the
application and can be used to identify all possible information flow
violations. The specific conditions that we check for violations are
described in Section 5.1.

5 GUARANTEEING INFORMATION FLOW
SECURITY FOR AN APPLICATION

In this section, we describe software-based techniques that eliminate
information flow security vulnerabilities in applications. Section 5.1
establishes conditions that are sufficient to guarantee information flow
security, and Section 5.2 describes software transformations that are
designed to guarantee that an application that is vulnerable to insecure

information flows will satisfy the sufficient conditions. In Section 5.3,
we verify that the software transformations achieve information flow
security when run on a commodity processor, and in Section 5.4, we
prove that the transformations satisfy the sufficient conditions and
ensure information flow security.

5.1 Sufficient Conditions for Guaranteeing
Information Flow Security

In this section, we lay out a set of conditions that are sufficient for
guaranteeing the non-interference information flow security policy de-
scribed in Section 2. Later, we will show how our application-specific
approach to information flow security satisfies these conditions.
(1) All processor state elements are untainted before untainted code
(i.e., trusted or non-secret code) is executed.
(2) Tainted code does not taint an untainted memory partition used by
untainted code.
(3) Untainted code does not load data from a tainted memory partition.
(4) Untainted code does not read from tainted input ports.
(5) Tainted code does not write to untainted output ports.

While the conditions above are not necessary for guaranteeing
information flow security, they are sufficient; i.e., a system that main-
tains the conditions will not leak information. For an information
leak of tainted data to occur, tainted data must be accessible to an
untainted task in some state or memory element or through a port;
a leak occurs when an untainted task propagates accessible tainted
data to an untainted output that it has access to, or when a tainted
task sends tainted data directly to an untainted output. The conditions
above are sufficient to guarantee information flow security because
they preclude all possible direct (through a port) or indirect (through
state or memory) channels through which tainted information could
leak. The first four conditions preclude all possible indirect informa-
tion flows of tainted data, stating that if an untainted task executes in
a taint-free processor, its memory partition remains taint-free, and it
does not load tainted data from tainted memory or ports, its computa-
tions and outputs will remain untainted. The last condition precludes
direct information flows of tainted data, stating that a tainted task is
not allowed to write to untainted output ports.

Since the set of conditions above are sufficient, a system that meets
the conditions guarantees non-interference. Secure-by-design proces-
sors use hardware-based information flow control mechanisms to
guarantee that the above conditions are met for all possible applica-
tions that execute on the processor [16, 18, 19]. However, none of the
conditions above are actually necessary to guarantee non-interference.
For example, it is acceptable for state elements to be tainted when
an untainted task executes (a violation of condition 1), as long as the
computations performed by the task do not depend on any tainted
state elements. Similarly, exceptions can be made for all the sufficient
conditions (they are not necessary). Thus, as long as the original non-
interference property (see Section 2) holds, any or all of the sufficient
conditions described above may be relaxed. This insight has several
interesting implications. (1) Since our symbolic analysis technique
for input-independent gate-level taint tracking can check whether the
non-interference property holds for all possible executions of a known
application without forcing the application to meet the conditions
above, it is possible to provide a security guarantee for any applica-
tion that has no possible violations, even on a commodity processor

Software-based Gate-level Information Flow Security for IoT Systems MICRO ’17, October 14-18, 2017, Boston, MA, USA

Cycle S ST In InT rst rstT S’ S’T
0 X 0 X 0 1 0 X 0
1 0 0 1 0 0 0 1 0
2 1 0 0 1 0 0 1 1

Execution	Tree:

Circuit:

State	Machine:

SIn
S’

CLK

rst

clr
QD

In

In

In! In!

Cycle S ST In InT rst rstT S’ S’T
3 1 1 X 0 0 0 X 1
4 X 1 X 0 1 1 X 1
5 0 1 0 0 0 0 0 1

Cycle S ST In InT rst rstT S’ S’T
3 1 1 1 1 0 0 0 1
4 0 1 X 1 1 0 X 1
5 0 0 0 0 0 0 0 0

Figure 7: Example of application-specific gate-level information flow tracking.

that is not secure by design. (2) Since symbolic input-independent
gate-level taint tracking can identify all possible instances where an
application causes the non-interference property to be violated for
a system, it can be used to identify locations where an application
must be modified to prevent insecure information flows, as well as to
verify whether a modified application is secure. (3) Some applications
have no possibility of violating one or more of the conditions above.
Therefore, some security mechanisms applied by secure-by-design
processors represent unnecessary overhead for those applications. On
the other hand, if insecure information flows can be eliminated through
software modifications, the modifications can specifically target only
the insecure information flows to which an application is vulnerable,
potentially reducing the overhead of providing security for the system
and enhancing programmability (by imposing fewer restrictions on
software).

5.2 Software Techniques to Eliminate Insecure
Information Flows

When the sufficient conditions for information flow security described
in the previous section are not satisfied, it is possible for tainted
information to leak. For example, allowing an untainted task to read
and operate on tainted data may result in tainting of a processor’s
control flow state, and subsequently the execution of an untainted
task. Specifically, if a processor’s program counter (PC) becomes
tainted, then all subsequent instructions will be tainted. Therefore,
the control flow of an untainted computational task can also become
tainted if it executes after a tainted task that taints the processor’s
control flow state. In fact, once the PC is tainted by a tainted task, it is
possible that control may never become untainted, even if control is
returned to untainted code. Preventing information flows from tainted
to untainted code must include prevention of all direct information
flow (e.g., the tainted code cannot call a yield function to return to
untainted execution) and all indirect information flow (i.e., there must
exist a mechanism that deterministically bounds the execution time
of the tainted code). To avoid information leaks through control flow,
there must exist an untaintable, deterministic mechanism that recovers
the PC to an untainted state that fetches code from an untainted code
partition.

Another common way for information to leak in a commodity pro-
cessor is through the memory. If code that is allowed to handle tainted
information writes to data memory using a fully tainted address, then
the entire data memory, including partitions belonging to untainted
code, will become tainted. For example, if tainted code reads a value
from a tainted input port and then uses the value as an index to write
into an array, the tainted address causes the entire data memory to
become tainted, not just the memory location pointed to by the ad-
dress. To avoid such leaks, a mechanism is needed to guarantee that
no possible execution of tainted code can write to an untainted data
memory partition.

For cases where an application violates the sufficient conditions and
is vulnerable to insecure information flows, we propose two software
transformations, analogous to the hardware mechanisms presented in
[18], that target and prevent insecure information flows.
Untainted Timer Reset: An untainted timer can be used to reset
the PC to an untainted location after a deterministic execution time
of running tainted code, thus guaranteeing that tainted code cannot
affect the execution of untainted code. However, on a commodity
processor (e.g., openMSP430), generating such a timer is challenging
for two reasons. First, common mechanisms for setting the PC, such
as interrupts, still depend on the current, possibly tainted state of
the pipeline to determine when the PC is reset. Second, the timer
must not become tainted. As an example, on the openMSP430, a
timer could be directly tainted by tainted code writing to its memory-
mapped control register. To overcome these challenges, we propose
using the watchdog timer that is common to many microcontrollers
to reset the entire processor after a deterministic-length period of
tainted execution. We use our symbolic simulation-based analysis to
guarantee that the watchdog remains untainted.

Figure 8 shows our proposed watchdog timer reset. During the
execution of a context switch in an untainted system code partition, the
watchdog timer is set to a predetermined value for the computational
task that is being switched in. The untainted system code then transfers
execution to the tainted computational task. This tainted task can
make full use of the processor, except writing to the watchdog or
an untainted memory space partition or port, possibly propagating
taints throughout the pipeline. When the untainted watchdog expires,

MICRO ’17, October 14-18, 2017, Boston, MA, USA H. Cherupalli et al.

ADDR Instruction

0 nop

1 mov #100, r10

2 nop

3 nop

4 dec r10

5 jnz #2

6 jmp #0

Untainted
Tainted

PROGRAM	MEMORY

0x0000

ADDR Instruction

0 ; enable interrupts
mov #0x0008, r2

1 ; enable watchdog
mov #0x5a0b, &WDTCTL

2 nop

3 mov #100, r10

4 nop

5 nop

6 dec r10

7 jnz #2

8 nop

... ...

64 nop

PC

0x0001
PC

0x0002
PC

0x0003
PC

0x0004
PC

0x0041
PC

0x0000
PC

0x0002
WDG

0x0003
WDG

0x0040
WDG

0x0000
WDG

0x0000
PC

Figure 8: Untainted timer reset example: In the left-hand code listing, all
instructions after address 0 are marked as tainted. Once the first tainted
instruction is loaded, the PC quickly becomes tainted and the jump back
to the untainted instruction at address 0 does not reset the PC to being
untainted. However, by setting the watchdog timer during the untainted
portion of the code (the right-hand code listing) and padding the tainted
portion with nops, the PC can be reset to an untainted value in the un-
tainted partition of code.
it resets the entire pipeline with a power-on reset (POR).5 Since this
reset is untainted, the state within the pipeline will be reset to untainted
values, including the PC.

While using the watchdog timer flushes tainted data from the pro-
cessor, the subsequent reset state is only untainted if the watchdog
timer itself remains untainted. Since applications are known during
analysis, the symbolic simulation used during input-independent gate-
level taint tracking allows us to identify whether or not any tainted
code can write to the control register of the watchdog timer during
any possible execution of the tainted code. If there is no possibility of
tainted code writing to the control register of the watchdog timer, the
write enable input for the control register is verified to be untainted.
The only information this can leak is the fact that the tainted code does
not access the watchdog timer – a known requirement for guaranteeing
information flow security using our approach.

Note that this mechanism works naturally in multi-programming
and task switching environments that are common in realtime em-
bedded systems. Before context switching to a tainted computational
task, the untainted system code simply sets the watchdog timer to the
appropriate interval for the task – either the maximum length of the
task or the length of an OS time slice, depending on the usage scenario.
Expiration of the timer resets the processor to an untainted state, as
usual, which also resets the PC. The code at PC=0 either contains or
vectors to the system routine for switching in the next context.

5We assume that the POR does not reset memory. This is a reasonable assumption,
since many microcontrollers have non-volatile memory, including TI’s MSP430FRXX
series.

ADDR Instruction

0 mov #4096, &DMEM_250

1 mov #49, r15

2 mov.b #1, 0(r15)

3 mov #32, r15

4 ; read untrusted input
mov @r15, r15

5 mov #512, r14

6 add r15, r14

7 mov #500, 0(r14)

8 mov r15, &DMEM_200

ADDR Instruction

0 mov #4096, &DMEM_250

1 mov #49, r15

2 mov.b #1, 0(r15)

3 mov #32, r15

4 ; read untrusted input
mov @r15, r15

5 mov #512, r14

6 add r15, r14

7 and #0x03FF, R14

8 bis #0x0400, R14

9 mov #500, 0(r14)

10 mov r15, &DMEM_200

DATA	MEMORY

Untainted
Tainted

PROGRAM	MEMORY

0x400

0x500

0x400

0x500

Figure 9: Memory mask example: In the left-hand code listing, the in-
struction at address 4 reads a tainted and unknown input. At address 6,
the tainted input is used to calculate the address for a store at address 7.
Since the address is both unknown and tainted, that store ends up tainting
the whole data memory space. By adding two instructions at addresses 7
and 8 (see the right-hand code listing) that mask the address to only use
the tainted task’s memory partition, no untainted memory locations be-
come tainted.

If a tainted computational task wants to use the watchdog timer,
it may not be possible to certify the system as secure unless a) it is
impossible for the tainted task to cause a control flow violation or b) an
alternative, functionally-equivalent (or otherwise acceptable) option
can be used in place of the watchdog timer. Microprocessors typically
provide several hardware timers, and it may be possible to emulate the
functionality desired by the tainted task using a different timer. If it
is not possible to use another available timer, software optimizations
such as prediction may be used to eliminate the possibility of control
flow violations.
Software Masked Addressing:

Figure 9 shows our proposed memory bounds masking. The left
side shows the original assembly code where a tainted address is used
to store data, tainting the entire data memory. On the right side, the
assembly code is modified to mask the memory address to guarantee
that it falls within the region of data memory to which tainted code is
allowed to write. Input-independent taint tracking can then verify that
no taint is propagated to memory regions that are untainted. While
simple masking solves the memory address taint problem for the case
where the PC remains untainted, masking alone cannot guarantee
information flow security when the PC becomes tainted. In this case,
the tainted PC taints the masking instructions themselves. However,
during application-specific gate-level information flow tracking, the
program, including the added masking instructions, is known. In
this case, our information flow tracking analysis can verify that no
possible execution of the tainted code can generate an address outside
of the regions of data memory that are allowed to be tainted. If there
is no possibility of being able to write outside of allowed memory
regions, there is no possibility of information flow, either explicit or
implicit, between the allowed and disallowed memory regions. The
only information flow that can leak is the information that the tainted

Software-based Gate-level Information Flow Security for IoT Systems MICRO ’17, October 14-18, 2017, Boston, MA, USA

application does not write outside of its allowed memory region – a
known condition for guaranteeing information flow security.

5.3 Verification of Software Techniques
Here, we verify that our software techniques for guaranteeing informa-
tion flow security indeed work using the micro-benchmarks presented
in Figure 8 and Figure 9 and an unmodified openMSP430 processor.
Consider the left-hand code listing in Figure 8. We initialize the input-
independent gate-level taint tracking such that the instructions shaded
gray are tainted. During any possible execution of the application, once
the PC becomes tainted, it never becomes untainted again. However,
if the watchdog timer is set using untainted code (see the right-hand
code listing in Figure 8), each execution of the untainted code section
has a trusted PC. Now consider the right-hand code listing in Figure 9.
Here, the code itself is not marked as tainted, but the code reads data
from a tainted port and uses it to index into an array. During input-
independent taint tracking, each input that is read from the tainted port
is tainted. We observe during information flow tracking that the entire
memory space becomes tainted, due to the propagation of tainted data
to a memory address calculation. When instructions are inserted that
guarantee that the unknown address is bounded to the tainted task’s
region in data memory, then the result of information flow tracking
indicates that no untainted memory locations can be tainted.

5.4 Proving Information Flow Security
Theorem: For a system 𝒮 consisting of a processor 𝒫 and application
𝒜, if application-specific gate-level information flow tracking 𝒯𝒮 of
𝒮 reports that 𝒮 is secure (i.e., satisfies the non-interference prop-
erty), tainted data in 𝒫 will never influence the execution of a trusted
computational task 𝒜ℐ in 𝒮, and 𝒫 will never propagate tainted data
through an untainted output.

Proof : For tainted data to influence the execution of 𝒜ℐ , a taint
must propagate from a tainted input of 𝒮 to an untainted output written
by 𝒜ℐ either through a state element of 𝒫 , through the memory, or
directly from a port.
Case 1 – taint propagation through a state element: For taintedness
to influence 𝒜ℐ through a state element ℰ , ℰ must be tainted by
a tainted computational task 𝒜𝒥 and remain tainted while 𝒜ℐ is
executing on 𝒫 . However, in any case where 𝒯𝒮 identifies a possible
tainted information flow from 𝒜𝒥 to 𝒜ℐ , 𝒜 is modified to invoke the
watchdog timer mechanism to reset all state elements in the processor
after the execution of 𝒜𝒥 and before the execution of 𝒜ℐ . Therefore,
taint propagation through a state element is impossible, as long as
𝒜𝒥 does not interfere with the untainted operation of the watchdog
timer. Since 𝒯𝒮 checks all possible execution states of 𝒜 on 𝒫 and
also reports that 𝒜 is insecure if a taint propagates to the watchdog
timer in any possible state, assurance of security from 𝒯𝒮 means that
it is impossible for tainted data to propagate through a state element
and influence the execution of 𝒜ℐ .
Case 2 – taint propagation through memory: For taintedness to in-
fluence 𝒜ℐ through the memory, a tainted computational task 𝒜𝒥
must write to some memory location ℳ outside its tainted memory
partition, and 𝒜ℐ must read from that memory location while it is
executing on 𝒫 . However, in any case where 𝒯𝒮 identifies that 𝒜𝒥
could write outside of its memory partition, 𝒜 is modified such that
masking instructions are inserted to ensure that 𝒜𝒥 can only write
inside its own memory partition. Furthermore, 𝒯𝒮 checks all possible

Gate-level	
Processor	
Description

Application-specific	
Gate-level	

Information	Flow	
Tracking

Application	+	
System	
Binary

Per-cycle	Tainted	
State

Information	Flow	
Violations

Information	
Flow	Policy

Programmer/
Compiler

Root	Cause	
Identification

List	of	Violating	
Instructions	&	
Code	Tasks

Figure 10: Software refactoring tool flow: Based on the results of
application-specific gate-level information flow tracking (Section 4), root
cause identification generates a list of instructions that violate the un-
tainted memory partitions condition and code tasks (e.g., functions) that
violate the untainted control flow condition. These can then be used by a
programmer or compiler to apply software-based fixes for the informa-
tion flow violations.

execution states of 𝒜 on 𝒫 and reports that 𝒜 is insecure if a tainted
write is performed to untainted memory or a read is performed from
tainted memory by any untainted computational task. Therefore, as-
surance of security from 𝒯𝒮 means that it is impossible for tainted
data to propagate through memory and influence the execution of 𝒜ℐ .
Case 3 – taint propagation through a port: For taintedness to propagate
to an output through a port, either some 𝒜ℐ must read from a tainted
port or some 𝒜𝒥 must write directly to an untainted port. Both cases
are reported as insecure by 𝒯𝒮 as it evaluates all possible execution
states of 𝒜. Therefore, assurance of security from 𝒯𝒮 means that it
is impossible for tainted data to influence the execution of 𝒜ℐ or
propagate to an untainted output from a port. ■

6 A TOOLFLOW FOR SOFTWARE-BASED
GATE-LEVEL INFORMATION FLOW
SECURITY

We have developed an end-to-end toolflow, depicted in Figure 10, for
developing systems that guarantee information flow security on com-
modity processors. The first stage in the toolflow checks whether an
application conforms to a given information flow security policy. This
stage takes as input the application software, including application
code, library code, and system code, as well as the gate-level descrip-
tion of the processor, and performs application-specific gate-level
information flow tracking (Section 4) on the system for a developer-
defined information flow security policy that provides tainted / un-
tainted labels for hardware and software (e.g., ports, code partitions,
data partitions). The output of information flow tracking is a list of
all possible information flow violations that may be generated by the
application, along with cycle-accurate tainted state for each type of
information flow.

To guarantee information flow security for the system, all identified
violations must be eliminated by modifying the application software.
To this end, the next stage of the toolflow reports potential information
flow security violations to the developer at instruction-level granular-
ity. This stage identifies the root cause of each potential gate-level
violation – i.e., the instructions that lead to violations. For violations
where the PC becomes tainted during execution of a tainted code
partition, our root cause identification tool marks the tainted partition
as having tainted control flow, requiring the watchdog mechanism to
be invoked. In cases where a store instruction in a tainted program
partition can potentially write to an untainted memory partition, the

MICRO ’17, October 14-18, 2017, Boston, MA, USA H. Cherupalli et al.

Application-specific	Information	Flow	
Tracking	&	

Root	Cause	Identification

Hex	
Conversion

Gate-level	
Processor	
Description

msp430-arAssembly	File
(.s43)

Loadable	Program	
Binary
(.ihex)

Object	File
(.o)

C/C++	Code	
(Application	+	

System)
Compiler msp430-ld

Executable	Object	
File
(.elf)

List	of	Violating	
Store	Instructions

List	of	Violating	
Code	Tasks

Watchdog	
Protection	
Insertion

Memory	
Address	Mask	

Insertion
objdump

Disassembled	
Binary
(.lst)

Figure 11: Automated software modification to eliminate information
flow security violations for MSP430 involves C/C++ source code compila-
tion and assembly into an object file that is linked with libraries, including
a runtime support library to generate an executable object file, which is
converted into hex that can be loaded into program memory. Application-
specific information flow tracking and root-cause analysis use the final
hex (program memory contents) to identify code tasks and store instruc-
tions that can cause violations. If a watchdog timer is needed, it is enabled
in the system software via a #define. Any necessary mask insertions are
performed in the assembly file at the specific addresses (instructions) iden-
tified by root cause analysis (if the watchdog was needed, analysis must be
performed again on the new assembly file prior to mask insertion). The
new, modified assembly file is run through the remainder of the toolflow
to produce a new hex file to be loaded into the program memory.

static instruction (identified by its address in the program memory) is
marked as needing masking.

The final stage of our toolflow refactors the software of the appli-
cation in order to guarantee information flow security. The necessary
software modifications identified by root cause analysis can be applied
either manually or automatically by the compiler (Figure 11).6 For
each instance where the compiler applies a modification to the soft-
ware to eliminate a possible insecure information flow, it also reports
a compile error or warning (depending on the severity of the violation)
to the developer, indicating the line of code that caused the violation
and the change that was made to fix the violation. Errors are reported
for direct information leaks of tainted data that are not allowed (e.g.,
tainted code writes to an untainted output port), and warnings are
reported for violations that may indirectly lead to information leaks
if not fixed (e.g., a store from tainted code can write to an untainted
memory partition). Reviewing the list of compile errors and warnings
can be informative, since some violations and fixes are unavoidable
(e.g., tainted control flow resulting from a control instruction that
depends on a tainted input, which is fixed using the watchdog timer),
while other violations may be caused by unintended software bugs
(e.g., a store that is vulnerable to buffer overflow, which is fixed by

6Two specific cases require programmer attention. First, if an untainted task directly
accesses a tainted memory location or input port or a tainted task directly accesses an
untainted output port, there is a fundamental violation in the software. In this case, an error
is reported and the programmer must either change the software to eliminate the illegal
access or redefine the information flow security labels. Second, if a tainted task originally
uses the watchdog and also requires the watchdog for information flow guarantees, the
programmer must either avoid using the watchdog or refactor the program to avoid tainting
control flow (see Section 5.2 for details).

Table 1: Benchmarks

Embedded Sensor Benchmarks [34]
mult, binSearch, tea8, intFilt,
tHold, div, inSort, rle, intAVG

EEMBC Embedded Benchmarks [35]
Autocorr, FFT, ConvEn, Viterbi

masking). In the case of unintended software bugs, changing the pro-
gram code may avoid the need for automated software modification to
eliminate violations (e.g., fixing the buffer overflow problem avoids
the need to mask the store).

After software has been modified to eliminate all possible informa-
tion leaks of tainted data, application-specific gate-level information
flow tracking can be used to verify that it is now impossible for the
system to violate the specified information flow policy, i.e., the system
now guarantees information flow security.

The feedback provided by our toolflow potentially represents an-
other benefit of application-specific information flow tracking over
secure-by-design processors. Our toolflow identifies and reports all
possible causes of insecure information flows. Thus, security vul-
nerabilities are brought to the developer’s attention and can be ad-
dressed appropriately, resulting in an application that is secure. In a
secure-by-design processor, hardware mechanisms are used to alter
the functionality of the application silently, so an application’s se-
curity vulnerabilities may never be remedied, or even known. Also,
violations corrected silently in hardware may manifest as runtime
errors. For example, address masking performed by hardware can fix
a buffer overflow problem, but the result is probably to map the store
to some erroneous location inside the buffer, resulting in an erroneous
execution / output for the application.

7 RESULTS
Processor and Benchmarks: We perform evaluations on a silicon-
proven processor – openMSP430 [29], an open-source version of one
of the most popular ultra-low-power processors [30, 31]. The pro-
cessor is synthesized, placed, and routed in TSMC 65GP technology
(65nm) for an operating point of 1V and 100 MHz using Synopsys
Design Compiler [32] and Cadence EDI System [33]. Gate-level sim-
ulations are performed by running full benchmark applications on
the placed and routed processor using a custom gate-level simula-
tor that implements application-specific gate-level information flow
tracking (Section 4). We show results for all benchmarks from [34]
and all EEMBC benchmarks [35] that fit in the program memory of
the processor (Table 1). Benchmarks are chosen to be representative
of emerging ultra-low-power application domains such as wearables,
internet of things, and sensor networks [34]. Benchmark performance
(IPC) on our processor varies from 1.25 to 1.39.

We evaluate the information flow security of each benchmark run-
ning as a tainted computational task on the system (ports it uses are
labeled tainted). System code is an untainted task consisting of the
instructions needed to restart the benchmark after each execution.

7.1 Information Flow Violations
Application-specific gate-level information flow tracking reports all
possible information flow violations for an application. Table 2 shows
which of the unmodified benchmarks violated the sufficient conditions

Software-based Gate-level Information Flow Security for IoT Systems MICRO ’17, October 14-18, 2017, Boston, MA, USA

Table 2: Benchmarks that violate
sufficient conditions 1 and 2 for
information flow security (see Sec-
tion 5.1) before and after modifica-
tion.

Benchmark Unmodified Modified
C1 C2 C1 C2

binSearch ✓ ✓ - -
div ✓ ✓ - -
inSort ✓ ✓ - -
intAVG ✓ ✓ - -
intFilt - - - -
mult - - - -
rle - - - -
tHold ✓ ✓ - -
tea8 - - - -
FFT - - - -
Viterbi ✓ ✓ - -
ConvEn - - - -
autocorr - - - -

Table 3: Performance overhead
(%) for watchdog timer reset
and memory address mask-
ing applied with and without
application-specific analysis.

Benchmark Without With
Analysis Analysis

binSearch 34.63 34.63
div 33.16 33.16
inSort 37.92 10.00
intAVG 45.56 11.90
intFilt 19.58 0
mult 150.9 0
rle 45.61 0
tHold 106.2 106.2
tea8 93.89 0
FFT 17.63 0
Viterbi 1.029 1.029
ConvEn 19.69 0
autocorr 42.15 0

described in Section 5.1. Seven benchmarks do not violate any of
the conditions. Effectively, our analysis shows that these benchmarks
cannot violate our information flow security policy on this proces-
sor. However, six benchmarks violate sufficient conditions 1 and 2.7

These benchmarks require the techniques described in Section 5.2
to guarantee information flow security. After performing software
modifications identified by our toolflow, all condition violations are
eliminated.8 Thus, symbolic gate-level information flow tracking in
conjunction with software modification is able to guarantee informa-
tion flow security for these applications on a commodity processor
without hardware-based information flow control mechanisms.

7.2 Runtime Overheads of Software-based
Gate-level Information Flow Security

Since we eliminate possible tainted information flows through soft-
ware modification, guaranteeing information flow security in our ap-
proach incurs performance and energy overheads whenever an ap-
plication has potential violations to eliminate. The right column of
Table 3 (With Analysis) shows the performance overhead of using
the watchdog timer and memory masking to eliminate information
flow security vulnerabilities in our benchmark applications. Since
application-specific gate-level information flow tracking is able to
identify and eliminate only the tainted information flows that an appli-
cation is vulnerable to, applications that are not vulnerable to tainted
information flows require no modifications and incur no overhead. For
applications where modifications are necessary, masking is applied to
store instructions that may be tainted, and the watchdog timer is used
to deterministically bound the execution time of tainted computational
tasks.

7None of our benchmarks violate sufficient conditions 3, 4, or 5; however, this is
not surprising for well-written code, since the conditions preclude scenarios like reading
memory out of bounds or illegal port accesses.

8When *-logic analysis was used to verify information flow security on the six appli-
cations with information flow violations, it identified that the condition violations were
not removed. This is because these applications have control dependences on an unknown,
tainted input, which causes *-logic to taint the PC and make it unknown, resulting in
70% of the gates in MSP430 becoming unknown and tainted, even those required by the
software techniques to remain untainted (e.g., the watchdog timer). Therefore, a direct ap-
plication of *-logic analysis would not allow the software-based techniques to be verified
on commodity hardware.

Since the MSP430 watchdog has a maximum interval length of
32768 cycles, which may not be long enough to bound the longest
execution time of a computational task, we evaluate a system that
implements time-slicing (e.g., as an RTOS might schedule one com-
putational task across multiple time slices). Also, since the execution
time of a task may not be an even multiple of one of the available
watchdog timer intervals (64, 512, 8192, and 32768 cycles), an infinite
idle loop is added at the end of each benchmark to fill the remain-
der of the final time slice. The number and duration of time slices
are selected to minimize overhead, based on the available watchdog
timer intervals and the overhead of state checkpointing and recovery
(context switching) for time slicing.9 Intuitively, using fewer, longer
time slices for a given task duration incurs less overhead for context
switching but may incur more idling overhead in waiting for the final
watchdog interval to complete. Our toolflow accounts for the over-
heads of context switching and scheduling the watchdog timer, along
with the maximum duration of a computational task, to select the
number and duration of watchdog intervals that minimize overhead
while providing a deterministic bound on execution time.

Since application-specific gate-level information flow analysis in-
dicates precisely which computational tasks need to be protected by
a watchdog timer and which store instructions need to be protected
by address masking, the techniques can be applied only where neces-
sary. On the other hand, guaranteeing information flow security for
an unknown application requires masking of every store and time
bounding of every tainted task using a deterministic timer, since all
sufficient conditions must be satisfied to guarantee non-interference,
even though they may not be necessary for a particular application
(Section 5.1). Without the ability to identify all possible tainted in-
formation flows for all possible executions of an application on a
commodity processor using input-independent gate-level information
flow tracking, an “always-on” approach for information flow control
would be required.

The left column of Table 3 (Without Analysis) shows the perfor-
mance overhead of using masking for all stores and time bounding for
all tainted tasks, representing a case where application analysis is not
available and all sufficient conditions must be enforced. In this case,
performance overhead is 3.3× higher than in the case where applica-
tion analysis is able to target only the possible insecure information
flows for an application. Even considering only the applications that
have possible information flow security violations, applying software-
based techniques only where necessary reduces performance overhead
by 24%. Overall, application-specific information flow analysis can
minimize the overhead of providing information flow security guar-
antees on a commodity processor using software-based techniques.

7.3 Information Flow Secure Scheduling:
A System-level Use Case

In this section, we show that we can use the techniques developed
in this work to guarantee information flow security at the system
level; we focus on an IoT system that performs scheduling between
multiple tasks. Specifically, we show that without any modifications
to the processor, we can guarantee that (1) there are no insecure

9For openMSP430, the overhead of saving and restoring a task’s state is 20 cycles,
and watchdog timer initialization and reset takes 10 cycles.

MICRO ’17, October 14-18, 2017, Boston, MA, USA H. Cherupalli et al.

information flows across scheduled tasks, and (2) no task can affect the
scheduling performed by the system software. In order to demonstrate
these properties, we construct an IoT system in which FreeRTOS [36]
performs task scheduling between two tasks – div and binSearch –
where binSearch is an untrusted task (its input and output ports are
marked as untrusted), and FreeRTOS and div are both trusted.

The control flow of binSearch depends on an untrusted input
value. Thus, in the baseline case, after binSearch is scheduled on the
processor, the processor’s control flow becomes tainted. Among the
consequences of this tainting are that (1) the trusted task div becomes
untrusted the next time it is scheduled, and (2) the scheduling of
FreeRTOS itself is compromised, since it too becomes untrusted as a
result of the tainted task.

To provide information flow security for this system, we use our
toolflow to modify the system’s application, consisting of FreeRTOS
and the two computational tasks. 330 store instructions in binSearch
are identified as potential security violations, and our toolflow applies
memory masking to these instructions. Also, our toolflow invokes
the watchdog timer mechanism around the untrusted task. This mod-
ification is performed in FreeRTOS system code. The value of the
reset interrupt vector is set to a location in the middle of FreeRTOS’s
scheduler interrupt. On a watchdog-invoked reset, scheduling is per-
formed as usual with the exception that the watchdog timer is also
reset with the scheduling timer prior to restoring the context of the next
task from its own stack. After modification, application-specific in-
formation flow tracking verifies that the application runs successfully
without any tainting of the trusted task or the RTOS.

We measure the performance overhead of our modification using
input-based gate-level simulations; runtime is measured from when
the first task is scheduled to when both tasks have completed. The total
performance overhead of adding the watchdog timer reset and memory
masking is only 0.83%. The overhead is low since only binSearch
requires memory masking and the modifications required to add the
watchdog timer to FreeRTOS’s system code are small (e.g., FreeRTOS
already requires context saving and restoring).

The above example shows that we can guarantee gate-level infor-
mation flow security with low-overhead software modifications for
an application built on a commodity RTOS. More broadly, this shows
that our techniques are applicable at the system-level and can be used
to verify complex and system-level security properties.

8 GENERALITY AND LIMITATIONS
We target application-specific information flow security for IoT appli-
cations with ultra-low area and power constraints. Low-power proces-
sors are already the most widely-used type of processor and are also
expected to power a large number of emerging applications [37–41].
Such processors also tend to be simple, run relatively simple applica-
tions, and often do not support non-determinism (no branch prediction
and caching; for example, see Table 4). This makes our symbolic
simulation-based technique a good fit for such processors. Below, we
discuss how our technique may scale for complex processors and
applications, if necessary.

More complex processors contain more performance-enhancing
features such as caches, prediction or speculation mechanisms, and
out-of-order execution, that introduce non-determinism into the in-
struction stream. Symbolic co-analysis is capable of handling this
added non-determinism at the expense of analysis tool runtime. For

Table 4: Microarchitectural features in recent embedded processors.

Processor Branch Predictor Cache
ARM Cortex-M0 no no
ARM Cortex-M3 yes no

Atmel ATxmega128A4 no no
Freescale/NXP MC13224v no no

Intel Quark-D1000 yes yes
Jennic/NXP JN5169 no no

SiLab Si2012 no no
TI MSP430 no no

example, by injecting an X as the result of a tag check, both the cache
hit and miss paths will be explored in the memory hierarchy. Similarly,
since co-analysis already explores taken and not-taken paths for input-
dependent branches, it can be adapted to handle branch prediction. In
an out-of-order processor, instruction ordering is based on the depen-
dence pattern between instructions. While instructions may execute in
different orders depending on the state of pipelines and schedulers, a
processor that starts from a known reset state and executes the same
piece of code will transition through the same sequence of states each
time. Thus, modifying input-independent CFG exploration to perform
input-independent exploration of the data flow graph (DFG) may allow
analysis to be extended to out-of-order execution.

For complex applications, CFG complexity increases. This may not
be an issue for simple in-order processors (e.g., the ultra-low-power
processors studied in this paper), since the number of possible exe-
cution states that must be evaluated is naturally limited based on the
number of instructions that can be resident in the processor pipeline at
once. However, for complex applications running on complex proces-
sors, heuristic techniques may have to be used to improve scalability;
a large number of such heuristics have been proposed [25, 26].

In a multi-programmed setting (including systems that support dy-
namic linking), we consider the union of all application code (e.g.,
caller, callee, and relevant OS code in case of dynamic linking) to
identify all possible execution states. Similarly, for self-modifying
code, the set of exercisable states is determined considering all code
versions. In case of fine-grained execution, any state that is not main-
tained as part of a thread’s context is assumed to have a value of X
when symbolic execution is performed for an instruction belonging to
the thread. This leads to a conservative coverage of execution states
for the thread, irrespective of the behavior of the other threads.

9 CONCLUSION
IoT applications present a stress test for information flow security. The
rapidly increasing quantity and variety of IoT devices also increases
the quantity and variety of data handled by the devices, while driving
down the power and area constraints, leaving little budget for security
in this security-critical domain. In this work, we showed how knowl-
edge of the application that runs on an IoT device can be leveraged to
identify all possible information flow security vulnerabilities in the
system, modify application software to eliminate vulnerabilities, and
provide a guarantee that a system is information flow secure, even for
systems built upon commodity ultra-low-power processors commonly
used in IoT applications. Since our analysis framework identifies and
eliminates only the information flows that a particular application is
vulnerable to, the cost of eliminating all insecure information flows
with our application-specific approach to information flow security is
3.3× lower than a software-based approach that assumes no applica-
tion knowledge.

Software-based Gate-level Information Flow Security for IoT Systems MICRO ’17, October 14-18, 2017, Boston, MA, USA

REFERENCES
[1] M. Stanislav and T. Beardsley, “Hacking iot: A case study on baby monitor exposures

and vulnerabilities,” 2015.
[2] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger vehicle,”

Black Hat USA, vol. 2015, 2015.
[3] H. Wang, T. T.-T. Lai, and R. Roy Choudhury, “Mole: Motion leaks through smart-

watch sensors,” in Proceedings of the 21st Annual International Conference on
Mobile Computing and Networking, MobiCom ’15, (New York, NY, USA), pp. 155–
166, ACM, 2015.

[4] S. Sridhar, A. Hahn, and M. Govindarasu, “Cyber-physical system security for the
electric power grid,” Proceedings of the IEEE, vol. 100, pp. 210–224, Jan 2012.

[5] J. Sametinger, J. Rozenblit, R. Lysecky, and P. Ott, “Security challenges for medical
devices,” Commun. ACM, vol. 58, pp. 74–82, Mar. 2015.

[6] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis framework,”
in Proceedings of the 2007 International Symposium on Software Testing and
Analysis, ISSTA ’07, (New York, NY, USA), pp. 196–206, ACM, 2007.

[7] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu, “Lift: A low-overhead practi-
cal information flow tracking system for detecting security attacks,” in Proceedings
of the 39th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 39, (Washington, DC, USA), pp. 135–148, IEEE Computer Society, 2006.

[8] J. Newsome, “Dynamic taint analysis for automatic detection, analysis, and signature
generation of exploits on commodity software,” 2005.

[9] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham,
“Vigilante: End-to-end containment of internet worms,” in Proceedings of the Twen-
tieth ACM Symposium on Operating Systems Principles, SOSP ’05, (New York, NY,
USA), pp. 133–147, ACM, 2005.

[10] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy enforcement: A practical
approach to defeat a wide range of attacks,” in Proceedings of the 15th Conference
on USENIX Security Symposium - Volume 15, USENIX-SS’06, (Berkeley, CA,
USA), USENIX Association, 2006.

[11] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna, “Cross-site scripting
prevention with dynamic data tainting and static analysis,” in In Proceeding of the
Network and Distributed System Security Symposium (NDSS’07, 2007.

[12] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible information flow
architecture for software security,” in Proceedings of the 34th Annual International
Symposium on Computer Architecture, ISCA ’07, (New York, NY, USA), pp. 482–
493, ACM, 2007.

[13] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C. Mowry, V. Ra-
machandran, O. Ruwase, M. Ryan, and E. Vlachos, “Flexible hardware acceleration
for instruction-grain program monitoring,” in 2008 International Symposium on
Computer Architecture, pp. 377–388, June 2008.

[14] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic, “Flexitaint: A pro-
grammable accelerator for dynamic taint propagation,” in 2008 IEEE 14th Interna-
tional Symposium on High Performance Computer Architecture, pp. 173–184, Feb
2008.

[15] H. Chen, X. Wu, L. Yuan, B. Zang, P. c. Yew, and F. T. Chong, “From speculation
to security: Practical and efficient information flow tracking using speculative
hardware,” in 2008 International Symposium on Computer Architecture, pp. 401–
412, June 2008.

[16] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and T. Sherwood,
“Complete information flow tracking from the gates up,” SIGPLAN Not., vol. 44,
pp. 109–120, Mar. 2009.

[17] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and R. Kastner, “On
the complexity of generating gate level information flow tracking logic,” IEEE
Transactions on Information Forensics and Security, vol. 7, pp. 1067–1080, June
2012.

[18] M. Tiwari, X. Li, H. M. G. Wassel, F. T. Chong, and T. Sherwood, “Execution leases:
A hardware-supported mechanism for enforcing strong non-interference,” in 2009
42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 493–504, Dec 2009.

[19] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf, R. Kastner,
F. T. Chong, and T. Sherwood, “Crafting a usable microkernel, processor, and i/o
system with strict and provable information flow security,” in Proceedings of the
38th Annual International Symposium on Computer Architecture, ISCA ’11, (New
York, NY, USA), pp. 189–200, ACM, 2011.

[20] “Products with an MSP430.” http://43oh.com/2012/03/winner-products-using-the-
msp430/.

[21] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood, and B. Hard-
ekopf, “Caisson: A hardware description language for secure information flow,” in
Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’11, (New York, NY, USA), pp. 109–120, ACM,
2011.

[22] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam, R. Kastner, T. Sher-
wood, B. Hardekopf, and F. T. Chong, “Sapper: A language for hardware-level
security policy enforcement,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’14, (New York, NY, USA), pp. 97–112, ACM, 2014.

[23] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design language
for timing-sensitive information-flow security,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, (New York, NY, USA), pp. 503–516, ACM,
2015.

[24] A. Ferraiuolo, R. Xu, D. Zhang, A. C. Myers, and G. E. Suh, “Verification of a
practical hardware security architecture through static information flow analysis,”
in Proceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’17, (New
York, NY, USA), pp. 555–568, ACM, 2017.

[25] C. Cadar and K. Sen, “Symbolic execution for software testing: Three decades later,”
Commun. ACM, vol. 56, pp. 82–90, Feb. 2013.

[26] K. Hamaguchi, “Symbolic simulation heuristics for high-level design descriptions
with uninterpreted functions,” in High-Level Design Validation and Test Workshop,
2001. Proceedings. Sixth IEEE International, pp. 25–30, 2001.

[27] “International Technology Roadmap for Semiconductors 2.0 2015 Edition Execu-
tive Report.” http://www.semiconductors.org/main/2015_international_technology_-
roadmap_for_semiconductors_itrs/.

[28] G. Press, “Internet of Things By The Numbers: Market Estimates And Forecasts,”
Forbes, 2014.

[29] O. Girard, “OpenMSP430 project,” available at opencores.org, 2013.
[30] Wikipedia, “List of wireless sensor nodes,” 2016. [Online; accessed 7-April-2016].
[31] J. Borgeson, “Ultra-low-power pioneers: TI slashes total MCU power by 50 percent

with new “Wolverine” MCU platform,” Texas Instruments White Paper, 2012.
[32] Synopsys, Design Compiler User Guide.
[33] Cadence, Encounter Digital Implementation User Guide.
[34] B. Zhai, S. Pant, L. Nazhandali, S. Hanson, J. Olson, A. Reeves, M. Minuth,

R. Helfand, T. Austin, D. Sylvester, et al., “Energy-efficient subthreshold pro-
cessor design,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 17, no. 8, pp. 1127–1137, 2009.

[35] “EEMBC, Embedded Microprocessor Benchmark Consortium.”
http://www.eembc.org.

[36] “The FreeRTOS website.” http://www.freertos.org/.
[37] M. Magno, L. Benini, C. Spagnol, and E. Popovici, “Wearable low power dry

surface wireless sensor node for healthcare monitoring application,” in Wireless
and Mobile Computing, Networking and Communications (WiMob), 2013 IEEE 9th
International Conference on, pp. 189–195, IEEE, 2013.

[38] R. Yu and T. Watteyne, “Reliable, Low Power Wireless Sensor Networks for the
Internet of Things: Making Wireless Sensors as Accessible as Web Servers,” Linear
Technology, 2013.

[39] A. Dunkels, J. Eriksson, N. Finne, F. Osterlind, N. Tsiftes, J. Abeillé, and M. Durvy,
“Low-Power IPv6 for the internet of things,” in Networked Sensing Systems (INSS),
2012 Ninth International Conference on, pp. 1–6, IEEE, 2012.

[40] R. Tessier, D. Jasinski, A. Maheshwari, A. Natarajan, W. Xu, and W. Burleson, “An
energy-aware active smart card,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 13, no. 10, pp. 1190–1199, 2005.

[41] C. Park, P. H. Chou, Y. Bai, R. Matthews, and A. Hibbs, “An ultra-wearable,
wireless, low power ECG monitoring system,” in Biomedical Circuits and Systems
Conference, 2006. BioCAS 2006. IEEE, pp. 241–244, IEEE, 2006.

	Abstract
	1 Introduction
	2 Background and Related work
	3 Motivation
	4 Application-specific Gate-Level Information Flow Tracking
	4.1 Input-independent Gate-level Taint Tracking
	4.2 Information Flow Checking
	4.3 Illustrative Example

	5 Guaranteeing Information Flow Security for An Application
	5.1 Sufficient Conditions for Guaranteeing Information Flow Security
	5.2 Software Techniques to Eliminate Insecure Information Flows
	5.3 Verification of Software Techniques
	5.4 Proving Information Flow Security

	6 A Toolflow for Software-Based Gate-Level Information Flow Security
	7 Results
	7.1 Information Flow Violations
	7.2 Runtime Overheads of Software-based Gate-level Information Flow Security
	7.3 Information Flow Secure Scheduling: A System-level Use Case

	8 Generality and Limitations
	9 Conclusion
	References

