
Exploiting Dynamic Timing Slack for Energy Efficiency in
Ultra-Low-Power Embedded Systems

Hari Cherupalli
University of Minnesota
Minneapolis, Minnesota

Email: cheru007@umn.edu

Rakesh Kumar
University of Illinois

Urbana-Champaign, Illinois
Email: rakeshk@illinois.edu

John Sartori
University of Minnesota
Minneapolis, Minnesota
Email: jsartori@umn.edu

Abstract—Many emerging applications such as the internet of things,
wearables, and sensor networks have ultra-low-power requirements. At
the same time, cost and programmability considerations dictate that many
of these applications will be powered by general purpose embedded
microprocessors and microcontrollers, not ASICs. In this paper, we
exploit a new opportunity for improving energy efficiency in ultra-
low-power processors expected to drive these applications – dynamic
timing slack. Dynamic timing slack exists when an embedded software
application executed on a processor does not exercise the processor’s
static critical paths. In such scenarios, the longest path exercised by the
application has additional timing slack which can be exploited for power
savings at no performance cost by scaling down the processor’s voltage
at the same frequency until the longest exercised paths just meet timing
constraints. Paths that cannot be exercised by an application can safely
be allowed to violate timing constraints. We show that dynamic timing
slack exists for many ultra-low-power applications and that exploiting
dynamic timing slack can result in significant power savings for many
ultra-low-power processors. We also present an automated methodology
for identifying dynamic timing slack and selecting a safe operating point
for a processor and a particular embedded software. Our approach
for identifying and exploiting dynamic timing slack is non-speculative,
requires no programmer intervention and little or no hardware support,
and demonstrates potential power savings of up to 32%, 25% on average,
over a range of embedded applications running on a common ultra-low-
power processor, at no performance cost.

I. INTRODUCTION

A large number of computing applications have recently exploded
onto the scene. Notable among them include the internet of things,
wearables, and sensor networks. A common thread running across
these applications is that they often have ultra-low-power require-
ments [1], [2], [3], [4], [5]. These requirements are due to the fact
that these applications are either energy-constrained (e.g., when they
are battery powered) or power-constrained (e.g., applications with
inductive coupling or power scavenging).

Considering that these applications tend to be embedded, one
option to target these applications is to use an ASIC. However,
many of these applications are cost-sensitive. Also, many of these
applications need to be tuned or updated in the field. As a result,
an ultra-low-power embedded microprocessor or microcontroller is
often a better fit.

The question we ask in this research is: are there unique op-
portunities for power reduction for these emerging applications that
exploit (a) the embedded nature of these applications and (b) the
fact that these applications are often driven by ultra-low-power
microprocessors and microcontrollers?

In this paper, we identify one such opportunity to reduce power
consumption in ultra-low-power embedded systems without reducing
performance. This opportunity leverages the observation that an em-
bedded software application running on an ultra-low-power processor
may not utilize all the functionalities provided by the processor. Only
the parts of a processor that can be utilized by an application need to

meet timing constraints. Therefore, in scenarios where unused func-
tionalities correspond to timing-critical logic, there may exist timing
slack between the most timing-critical functionalities in the processor
and the most timing-critical functionalities that are exercised by the
embedded software application running on the processor. We call
this workload-dependent timing slack dynamic timing slack (DTS).
We show in Section III that considerable DTS may exist for ultra-
low-power processors.

Since only exercised parts of the processor need to meet timing
constraints for the processor to work correctly, we can exploit DTS
to improve the energy efficiency of the processor by operating the
processor at a lower voltage for the same frequency. A safe, energy-
efficient operating voltage ensures that all utilized functionalities of
a processor meet timing constraints, while functionalities that cannot
be toggled by an embedded software application are allowed to
violate timing constraints. Nevertheless, unlike timing speculative
approaches that save power by reducing safety guardbands (e.g.,
Razor [6]), exploiting DTS does not involve reducing guardbands
for the subset of processor logic that is exercised by an application
and therefore is completely non-speculative.

Exploiting DTS to improve energy efficiency of an ultra-low-power
embedded system requires a methodology for identifying when DTS
exists in a processor and how much DTS can be exploited while
still guaranteeing safe operation of the processor. We present an
automated technique for identifying and exploiting DTS that is non-
speculative and requires no programmer intervention and little or
no hardware support, making it particularly relevant for the ultra-
low-power embedded systems we target in this work. The proposed
methodology can be used to optimize the minimum voltage for
the software running on an embedded ultra-low-power processor.
It can also optionally be used to improve performance of the end
application. We have packaged our DTS identification technique as
an automated tool that takes an application binary and processor RTL
as input and determines the minimum safe operating voltage for the
application on the processor.1.

Our paper makes the following contributions.
• We identify a novel opportunity to improve the energy efficiency
of ultra-low-power embedded systems, based on identification and
exploitation of dynamic timing slack.

• We present measurement-based evidence that considerable DTS
exists in common ultra-low-power microprocessors.

• We present an automated technique for determining the amount
of dynamic timing slack that can be exploited for a particular ultra-
low-power processor running an embedded software application and

1Our automated DTS identification tool is available for download at the
following link: http://www.ece.umn.edu/users/jsartori/tools.html

Fig. 1. A path in a synchronous circuit.

the corresponding minimum operating voltage that ensures safe exe-
cution of the application on the processor, without any programmer
intervention. To the best of our knowledge, this is the first known
methodology that determines an application-specific Vmin (or fmax)
that is guaranteed to be safe irrespective of the input or operating
conditions.

• We propose microarchitectural support to increase the benefits
possible from exploiting dynamic timing slack.

• We show potential power savings of up to 32%, 25% on average,
for a common ultra-low-power processor over a range of embedded
applications, at no performance cost.

The rest of the paper is organized as follows. Section II explains
the idea of workload-dependent DTS and motivates exploiting DTS
for improved energy efficiency. Section III presents measurement-
based observations of DTS in modern ultra-low-power processors.
Section IV presents an automated methodology for identifying and
exploiting DTS and discusses optional architectural support that can
be used to increase the power benefits. Section V describes our
experimental methodology in detail. Section VI presents experimental
results that demonstrate significant power savings from exploiting
DTS and compares DTS with related work. Section VII concludes
the paper and discusses future work directions.

II. WORKLOAD-DEPENDENT DYNAMIC

TIMING SLACK

Most modern processors are synchronous or clocked. This means
that computation is performed in clock periods where data is passed
from flip-flop (FF) to flip-flop (launch FF or startpoint to capture FF
or endpoint) through some combinational logic gates. Transmission
from launch to capture FF begins with a clock signal to the launch FF
and must complete before the next clock signal reaches the capture
FF (i.e., one clock period). For example, in Figure 1 a logic transition
(toggle) initiated by the data at the Q-pin of FF1 (launch FF) must
reach the D-pin of FF2 (capture FF) in one clock period. A path
that respects these constraints is said to meet timing. If the combined
delay of gates G1 through G4 is greater than the clock period, the path
does not meet timing. Decreasing the operating voltage reduces power
consumption, but also increases logic delays, which can potentially
cause a path to violate timing constraints. Note, however, that if the
output of a path (e.g., the D-pin of FF2) does not toggle, the circuit
will still operate correctly even if the path violates timing constraints,
since the capture FF will still capture the correct (constant) value in
each clock period.

A typical processor has a large number of paths [7], and all paths
must meet timing. However, some paths may just meet timing with
little time to spare (timing-critical paths), while for other paths the
correct data is available at the D-pin of the capture FF (endpoint)
significantly before the end of a clock period. We observe that many
emerging applications for ultra-low-power processors do not utilize a
GPP’s entire feature set [1], [4], [5]. Non-exercised features can mean

Fig. 2. Static slack distribution vs dynamic slack distributions for two
applications (mult and binSearch) on openMSP430. Slack is normalized to
the processor clock period. The dynamic slack distributions show that both
applications do not exercise all of the endpoints in the processor.

that only a subset of the paths in a processor are exercised (toggled).
If the longest exercised path in the processor is not a timing-critical
path (i.e., it produces data at its endpoint with time to spare), then
there exists an opportunity to trade this extra time for reduced power
at no performance cost by keeping frequency constant and reducing
the voltage of the processor to the lowest voltage where all exercised
paths still meet timing. Any un-exercised paths are allowed to violate
timing constraints. This is the opportunity we exploit in this research.
Remember, as mentioned above, that if a path is not exercised, its
output will remain constant, and the capture FF for the path will
continue to capture the correct value in each clock period.

We now demonstrate the opportunity described in this section
with an example that illustrates the existence of DTS in an example
ultra-low-power processor. Figure 2 compares several different slack
distributions for slack up to 40% of the clock period, for a fully
synthesized, placed, and routed openMSP430 processor [8]. In the
figure, the x-axis has bins for various slack ranges (normalized to
the clock period), the left y-axis shows the number of processor
endpoints with worst slack in a particular range, and the right y-axis
shows the number of paths with slack in a particular range.2 The
static slack distributions, Static and Path (Static), characterize the
worst slacks of all endpoints and paths in the processor, respectively,
whether exercised or not. Note that a large number of paths in the
design are statically critical (over 325000). This is consistent with
previous observations on other designs [9], [10]. Nevertheless, when
a particular application is executed on the processor, not all the paths
or path endpoints may be exercised. The other two series in Figure 2
show the distributions of worst slacks for only the endpoints in the
processor that are exercised by the mult and binSearch applications
(see Table III). We call these dynamic slack distributions, and we
call the longest exercised paths in a design the dynamic critical paths
for a particular application [11]. Slack distributions are reported at
the worst-case corner to isolate DTS from all other phenomena that
might affect the minimum operating voltage for an application (e.g.,
voltage, temperature, or aging variations).

The following observations and inferences can be drawn from
Figure 2.
• Several endpoints of the processor (and hence orders of magnitude

2Worst slack is defined for an endpoint (FF) as the timing slack of the
longest path terminating at that endpoint. Since many paths lead to the same
endpoint, the number of paths in a design is typically several orders of
magnitude larger than the number of endpoints [7]. In our processor, each
endpoint corresponds to tens or hundreds of thousands of paths.

2

more paths) are not exercised when a particular application is exe-
cuted. This is demonstrated by the difference between the static slack
distribution and the two dynamic slack distributions. For example,
the processor contains seven endpoints (and hundreds of thousands
of paths) with worst slack in the range [0.0 - 0.1] and 17 endpoints
in the range of [0.1 - 0.2], but binSearch does not exercise any of
those endpoints (or their associated paths).
• Different applications exercise different processor features and can
have different dynamic critical paths. Consequently, the amount of
available DTS can be different for different applications. For example,
since binSearch does not exercise any endpoints with worst slack less
than 0.2, its normalized DTS is at least 0.2. On the other hand, mult
exercises one endpoint with worst slack in the range [0.0 - 0.1] (the
timing-critical multiplier overflow register), and it has less DTS than
binSearch.
• DTS represents an opportunity to save power without sacrificing
performance. For example, if binSearch is executing on the processor,
operating voltage can be reduced while keeping frequency constant,
such that paths with timing slacks of up to 20% of the clock period
of the processor violate timing constraints (since these paths are
not exercised by the application). This generates power savings (see
Section VI) without affecting either the functionality or performance
of the processor for binSearch. Note also that unlike timing specula-
tive approaches that save power by reducing safety guardbands (e.g.,
Razor [12], [13], [6]), exploiting DTS does not require guardband
reduction and therefore is completely non-speculative. Exploiting
DTS simply involves adjusting the voltage of the processor to the
minimum safe voltage for the subset of processor logic that is
exercised by an application. Guardbands for the exercised logic are
not violated.

Given that DTS exists for some applications, “free” power savings
can be attained at no performance cost and no risk to timing safety
by adjusting the operating voltage of the processor to exploit DTS
while leaving design guardbands in place.

III. QUANTIFYING DTS IN PROCESSORS

Ultra-low-power embedded systems are a promising context for
exploiting DTS, since embedded applications typically do not use all
of the hardware features provided by a processor. Such applications
may, therefore, not exercise the most timing critical logic in a proces-
sor [14], [11], [15]. Also, ultra-low-power processors are optimized
to minimize area and power rather than maximize performance (e.g.,
many common microcontrollers have a small number of pipeline
stages3), which typically results in relatively less balanced logic
across pipeline stages or more delay variation across processor logic
within a pipeline stage. This may increase available DTS, since in
a design with larger delay variation, finite options for cell drive
strength, threshold voltage, layout, etc. mean that not all paths will
become timing-critical after design optimization.4 Previous research
has also observed that only a fraction of logic in an embedded design
may be timing-critical [16].

In this section, we present measurement-based evidence of DTS
in common ultra-low-power processors. We performed measurement
experiments on four ultra-low-power processors to see whether DTS
could be observed. We tested two processors (PIC24FJ64GA002

3Many PIC and Atmel microcontrollers have only two stages
4Section VI shows significant power reduction from exploiting DTS for

a processor that was synthesized, placed, and routed using an aggressive
industry-standard design methodology that minimizes timing slack as much
as possible.

Fig. 3. Test setup for DTS measurement experiments.

and MSP430F1610) by fixing the operating frequency and lower-
ing the supply voltage to observe whether different applications
exhibit different minimum safe operating voltages. For the other
two processors (PIC16F88, and PIC18LF4550), we fixed the supply
voltage and measured the maximum safe operating frequency for
each application. Figure 3 shows the experimental setup used for the
measurement experiments. The voltage of the processor is supplied by
an external voltage supply, the frequency is regulated by an external
function generator, and an ammeter is used to measure current.

For DTS testing on PIC24 and MSP430, frequency is held constant,
voltage is lowered by increments of 0.01 V from the nominal voltage
(2.00 V for PIC24, 3.30 V for MSP430), and the application under
test is executed 1000 times to confirm correct operation. Table I
reports the minimum voltage at which each application operates
without errors, along with the power savings with respect to operation
at the nominal voltage. The observed Vmin varies by up to 120 mV for
different applications on PIC24 and by up to 160 mV on MSP430,
suggesting existence of significant DTS.5

TABLE I: OBSERVED Vmin ON PIC24 AND MSP430 FOR DIFFERENT
SENSOR NETWORK BENCHMARKS [17].

PIC24 MSP430
Benchmark Vmin(V) Pwr Saved (%) Vmin(V) Pwr Saved (%)
binSearch 1.82 20.2 2.87 30.3

div 1.83 20.3 2.87 33.7
inSort 1.85 17.2 2.90 36.2

intAVG 1.89 13.1 2.77 38.4
intFilt 1.83 20.0 2.92 30.5
mult 1.82 20.4 2.76 41.7
rle 1.77 25.5 2.83 35.9

tHold 1.83 20.1 2.86 34.4
tea8 1.82 20.4 2.82 39.5

For DTS testing on PIC16 and PIC18 processors, we held voltage
constant at each chip’s nominal voltage and increased frequency
beyond the maximum rated frequency (20 MHz for PIC16, 48 MHz
for PIC18) in increments of 0.5 MHz. Table II reports the maximum

5Some fraction of the Vmin differences across benchmarks in measured
results could theoretically be due to input-dependent voltage and temperature
variations, in spite of ultra-low currents. Results reported in Section VI
isolate the impact of DTS alone, since they are captured assuming worst
case variations and inputs.

3

Fig. 4. We propose a tool that automatically identifies DTS by analyzing an
application binary to determine parts of a design that cannot be exercised by
the application and subsequently analyzing the timing safety of the constrained
design at different voltages to determine the minimum safe operating voltage
that exploits DTS for power reduction.

frequency at which each application operates without errors. Across
benchmarks, we observed a difference in fmax of 4.0 MHz (20% of
rated fmax) for PIC16, and 6.5 MHz (14% of rated fmax) for PIC18.
This provides further evidence that significant DTS may exist for
ultra-low-power processors.

In the next section, we present an automated methodology that
identifies how much DTS is guaranteed to exist for a given processor
and application under worst case conditions and determines the
minimum operating voltage at which the application is guaranteed
to execute safely at a given frequency.

TABLE II: OBSERVED fmax ON PIC16 AND PIC18 FOR DIFFERENT
SENSOR NETWORK BENCHMARKS [17].

fmax(MHz)
Benchmark PIC16 PIC18

binSearch 40.5 51.0
div 40.0 52.5

inSort 42.5 55.5
intAVG 41.5 53.5
intFilt 41.0 52.5
mult 42.0 55.5
rle 44.0 57.5

tHold 43.0 55.0
tea8 42.5 55.5

IV. IDENTIFYING AND EXPLOITING DTS

To exploit DTS, we need a methodology that determines the
minimum operating voltage at which an application is guaranteed
to work correctly irrespective of the input and operating condi-
tions. This automatically precludes all profiling or measurement-
based approaches, since such approaches cannot guarantee that the
minimum operating voltage determined during profiling is safe under
all conditions; the voltage may not be safe when either the operating
conditions change (e.g., temperature increases, the chip experiences
aging-based degradation, the application is run on a different chip
with a different amount of process variations, etc.) or the application
is executed with a different input set. Instead, our approach for DTS
identification and exploitation, illustrated in Figure 4, is based on
analyzing an embedded software application to identify which parts of
a design (e.g., registers, paths) cannot be exercised by the application
for any input and subsequently determining the minimum operating
voltage of the design such that parts of the design that can be
exercised by the application are guaranteed to meet timing constraints
even under worst case operating conditions. Parts of the design that
cannot be exercised by the application are allowed to violate timing
constraints. The approach is automated and determines the minimum
safe operating voltage for an embedded application on a processor
without any programmer intervention. Thus, an application designer
need only provide an application binary; our tool automatically
analyzes the binary and processor to determine the minimum voltage

at which the processor can safely execute the application without
reducing operating frequency at all.

As shown in Figure 4, the first stage of our DTS identification
approach analyzes an application to determine the parts of a design
that cannot be exercised by the application. This application analysis
stage takes an application binary as input and evaluates the appli-
cation’s control flow graph (CFG) symbolically on the processor to
determine which logic the application could possibly exercise (toggle)
and which logic the application can never toggle. Analysis is input-
independent, and information specifying which parts of the processor
cannot be toggled by the application are passed to the next analysis
stage in the form of design constraints. Our automated application
analysis is described in detail in Section IV-A.

The second stage of our DTS identification approach takes as input
the constraints (i.e., nets in the design that can never be toggled by
the application) identified during application analysis and performs
a constrained timing analysis on the processor design to determine
the minimum safe operating voltage for the constrained design.
Constrained timing analysis is performed at worst-case conditions
(i.e., the slow process corner assuming worst-case process, voltage,
temperature, and aging variations) to ensure that the selected voltage
is safe under all possible operating conditions without reducing any
design guardbands. The minimum safe operating voltage is chosen
such that all parts of the processor that can be exercised by the
application are guaranteed to meet timing constraints. Even though
some processor logic may not meet timing constraints at the minimum
safe voltage determined by voltage safety analysis, the application
is still guaranteed to execute correctly since application analysis
guarantees that this logic will not be toggled by the application.
Thus, if our automated DTS identification approach identifies a more
aggressive, safe operating voltage for an application, then operating
at the new voltage results in free power savings, since the processor
executes the application correctly without reducing frequency or
performance at all. Section IV-B describes voltage safety analysis
in detail.

A. Application Analysis

The goal of application analysis for DTS identification is to
identify logic in the processor that an application is guaranteed to
never exercise for any possible execution of the application. DTS
is exposed for an application when un-exercised logic contains or
contributes to the delay of timing-critical logic in the processor.
DTS depends on two factors – a processor’s functionalities (i.e.,
the architecture) and how those functionalities are used (or not
used) by the processor’s embedded software application. Application
analysis performs symbolic evaluation of an application’s CFG on
the processor and observes which logic (specifically, which nets) in
the processor cannot be toggled by the application.

Our automated approach for determining which nets in a processor
design can be toggled by an application is based on the intuition
that the embedded software application executing on a processor
determines the possible states and state transitions that the processor
can and cannot express. For example, an application that contains no
multiply instructions will never exercise the logic in the processor’s
hardware multiplier. To fully explore which logic an application can
exercise in a processor, our application analysis tool creates a CFG
from the application binary and explores the possible paths through
the CFG in breadth-first fashion. Each CFG path corresponds to a
sequence of instructions, and CFG exploration involves performing
gate-level simulation of the instruction sequences on the processor
while monitoring the values of nets in the design. If a net toggles

4

for any of the possible CFG paths, the net can be exercised by the
application and will not be constrained. If a net maintains a constant
value during exploration of the possible CFG paths, the net cannot
be exercised by the application, and our tool generates a constraint
specifying the constant value of the net for the application.

Because the logic exercised by an application can depend on the
application’s input data, we perform data-independent application
analysis by injecting “don’t care” (X) values into the processor logic
whenever it reads an input value. This is equivalent to making worst
case assumptions on input data. Any net that is assigned a value
of X during CFG exploration cannot be constrained. In this way,
the net constraints reported by application analysis guarantee that
the constrained nets can never be toggled by the application for any
possible input set. Algorithm 1 describes our automated approach for
DTS identification through application analysis.

Algorithm 1 Application analysis for DTS identification

Procedure Identify Constraints(app binary, netlist)
1. Add all nets to net constraints[] // initially, constrain all nets
2. Create CFG from app binary and identify CFG paths PCFG
3. foreach path p ∈ PCFG do
4. Perform symbolic execution for p, using X for input values
5. if net n toggles or is assigned with X during symbolic execution then
6. Remove n from net constraints[] // cannot constrain nets that can toggle
7. end if
8. end for
9. foreach net n ∈ net constraints[] do

10. Record constrained value of n in net constraints[n]
11. end for
12. return net constraints[]

For an example of how application analysis can automatically
identify un-exercised logic in a design that can be constrained to
expose DTS, consider the inst_alu register in openMSP430. This
12-bit one-hot encoded register selects the function unit that will
execute an instruction. A bit selecting a particular function unit will
be set by an instruction that executes on the function unit. Not all
applications utilize the entire instruction set, and a bit in inst_alu
will not be toggled by an application that does not use the function
unit selected by the bit. For example, none of the applications in our
benchmark set use the DADD instruction (for BCD addition). Thus, the
select bit corresponding to this instruction’s function unit remains a
constant zero during application analysis. As an example of different
DTS for different applications, rle does not use right shift or left
shift instructions, but tea8 does. Thus, application analysis reports a
constraint for the shifter select bit in inst_alu for rle but not for
tea8.

Figure 5 illustrates how application analysis can automatically
identify constraints for un-exercised nets in inst_alu with a
simplified example (i.e., a processor with only 4 operation types).
As described above, a select bit in inst_alu only toggles during
the execution of an embedded software application if the application
contains an instruction that executes on the function unit selected
by the bit. Exploring the CFG of the (tHold) application generates
toggles in the adder and comparator select bits in inst_alu
(colored blue in Figure 5), since tHold contains an inc instruction
(which executes on the adder) and a cmp instruction. The code
does not contain any and or shift instructions, however, so the
corresponding select bits remain constant zero during application
analysis of tHold. Applying these constraints propagates a controlling
value to the select gates for the corresponding function units and
eliminates the logic (labeled inactive) from consideration during
timing analysis, potentially exposing DTS. Section A provides several

Fig. 5. DTS identification enabled by application analysis.

additional examples of constraints determined by application analysis
for applications executing on openMSP430.

B. Voltage Safety Analysis

Voltage safety analysis takes as input the constraints identified
during application analysis (Algorithm 1), applies them to the gate-
level netlist, and performs timing analysis on the constrained design
to determine the minimum voltage at which the design is guaranteed
to operate safely for a given application. Voltage safety analysis is
performed for worst case timing conditions such that the minimum
operating voltage reported is guaranteed to be safe independent of
PVT variations. Like application analysis, voltage safety analysis is
fully automated and requires no effort on the part of the programmer.
The combination of application analysis and voltage safety analysis
forms an end-to-end automated tool that takes an application binary
as input and reports the minimum operating voltage at which the
processor can safely execute the application.

Voltage safety analysis is based on the observation that if part of
a processor design cannot be exercised by the embedded software
application, then it can be constrained to a constant value or ignored
during design timing analysis to expose DTS and reveal a more
aggressive operating voltage. During voltage safety analysis, net
constraints reported by application analysis are applied to the gate-
level netlist. Propagating these constants through the gate-level netlist
can identify more constrained logic by propagating controlling values
to logic gates. Any logic with a constant controlling value cannot
toggle and thus can be ignored during timing analysis. A controlling
value is defined for a gate as a value that, when assigned to an
input pin of the gate, uniquely determines the output of the gate. For
example, the controlling value of an AND/NAND gate is ‘0’, because
when any input to an AND/NAND gate is ‘0’, the output is controlled
to ‘0’/‘1’, regardless of the value of the other input. Similarly, the
controlling value of an OR/NOR gate is ‘1’. An XOR gate does not
have a controlling value.

Figure 6 describes the significance of propagating constraints for
voltage safety analysis. If application analysis reveals that FF2 cannot
toggle for a particular embedded software application (e.g., if FF2 is
a register in the multiplier and the application contains no multiply
instructions), then all paths terminating at FF2 cannot toggle for the
application (since a toggle on any path terminating at FF2 implies a
toggle of FF2). As another example, if application analysis reveals
that FF3 cannot toggle for an application and is constrained to a value
of ‘0’, then the path FF1-G1-G2-G3-G4-FF2 also cannot toggle for
the application, since an input to one of its gates (G1) is constrained
to a controlling value. If the path in question is a critical path in the

5

Fig. 6. Example circuit to illustrate the potential of design constraints to
expose DTS.

design, then constraining the path may expose DTS.
All paths that pass through an un-toggled net or gate can be ignored

during voltage safety analysis for an application. Such paths, by
definition, are not toggled by the application, and the application
will complete successfully even if these paths do not meet timing
constraints. Voltage safety analysis ensures that all other paths in the
design (the exercisable paths) meet timing constraints.

Once all possible constraints identified by application analysis have
been applied to a design, voltage safety analysis checks whether all
of the exercisable paths remaining in the design (e.g., the dynamic
critical paths) meet timing constraints. The minimum safe operating
voltage for the constrained design is determined by lowering the
voltage in steps and performing constrained timing analysis at each
step to find the lowest voltage at which all paths in the constrained
design meet timing constraints (details in Section V). Algorithm 2
describes the voltage safety analysis stage of our automated DTS
identification approach. Applying constraints to the netlist simply
involves assigning constant values (the constraints identified by Algo-
rithm 1) to nets in the design. The function GetDynamicCriticalPath
uses STA to find the longest delay path in the constrained design
and therefore has linear time complexity with the number of gates
and nets in the circuit. On our system (system details in Section V),
Algorithm 2 takes a maximum of 10 minutes and 10 seconds for
OpenMSP430 (7218 gate design) to report the dynamic critical path
at the 61 voltage levels spaced at 10 mV intervals between 1.00 V
and 0.40 V.

Algorithm 2 Voltage safety analysis for DTS identification

Procedure Find Vmin(net constraints[],netlist)
1. Read netlist and initialize PrimeTime Tcl socket interface
2. Vmin,V ←Vnominal
3. foreach constraint c ∈ net constraints[] do
4. Apply c to netlist // using set_case_analysis
5. end for
6. PV ← GetDynamicCriticalPath()
7. SV ← GetSlack(PV)
8. while SV ≥ 0 do
9. V ←V −0.01

10. PV ← GetDynamicCriticalPath() // report longest delay path at voltage V
11. SV ← GetSlack(PV) // report DTS at voltage V
12. if SV ≥ 0 then
13. Vmin←V // if design meets timing constraints, this voltage is safe
14. end if
15. end while
16. return Vmin

C. Enhancing DTS Benefits Through Dynamic Toggle Monitoring

If it is not possible to statically determine whether a net can toggle
based on application analysis, then the net cannot be constrained
during voltage safety analysis to expose DTS. However, it may be
desirable to constrain some nets of this type in order to expose more
DTS. For such scenarios, we propose microarchitectural support in
the form of a simple circuit that detects a signal transition and sends a

Fig. 7. Microarchitectural support for toggle detection and voltage adaptation
– example for interrupt / low-power mode wakeup in openMSP430.

control signal to the voltage regulator to adapt the operating voltage
to a safe level for the impending transition. When the monitored
signal transitions back to its original value, the circuit stops asserting
the control signal and the voltage regulator returns to the original
aggressive voltage for the embedded software application.

Figure 7 shows an example of the proposed microarchitectural
support for interrupt / low-power mode wake-up detection and
adaptation in openMSP430. The circuit adds an extra FF to create a
2-bit shift register with the monitored low-power mode register bit
(LPM ctrl). Different values between the FFs indicate a transition. An
IRQ or wakeup signal or a transition of a low-power mode register bit
sends a control signal (signal LDO) that tells the voltage regulator
to transition to a safe voltage (nominal) for the impending mode
transition. Support circuitry delays the mode transition until an ack
signal (rising edge of LDO safe) from the voltage regulator indicates
that the voltage has stabilized at the safe level for execution of the
mode transition sequence. Once wake-up is complete, the voltage
of the processor can be returned to the minimum safe operating
voltage for the embedded software application. This happens when
signal LDO goes low after any IRQ or wakeup signal is reset
(automatically by the processor) and the operating mode transition is
complete (i.e., FF = FF prev).

In most scenarios, there are no constraints on how quickly the
supply voltage must be adjusted after detecting a toggle. The slew
rate simply determines the performance overhead of stalling program
execution on a toggle detection until the supply voltage adjustment
is complete.6 In case of some hard realtime systems, a slow voltage
adjustment may cause missed hard deadlines, leading to correct-
ness problems. The minimum slew rate for such systems will be
determined by the realtime deadline and the latency jitter that the
system was designed for. For many realtime systems, especially ones
that interface with buses (e.g., CAN, FlexRay, or RealTimeEthernet),
allowable jitter is in the ms to µs range. For such systems, even a slow
off-chip voltage regulator will suffice, since the voltage adjustment
required to exploit DTS would take around 10 µs at most with a
slow regulator [18]. Finally, note that the microarchitectural support
proposed in this section is a strictly optional mechanism provided to
designers for exploiting additional DTS in their designs.

V. EXPERIMENTAL METHODOLOGY

We verify the existence of DTS and evaluate the power benefits
available through DTS exploitation for a silicon-proven ultra-low-
power processor – openMSP430 [8]. The processor is synthesized,
placed, and routed with TSMC 65GP library (65nm), using Synopsys
Design Compiler [19] and Cadence EDI System [20]. The processor

6Since exceptions, interrupts, and power mode changes are typically rare,
dynamic toggle detection for these events would have insignificant impact on
performance in most scenarios.

6

is optimized at the highest optimization level, including aggressive
cell sizing and multiple threshold voltages, to minimize slack as much
as possible. To analyze design timing and power at different voltages,
Cadence Library Characterizer was used to generate libraries at
each voltage (Vdd) between 1.0V and 0.5V at 0.01V intervals. The
processor was implemented at 100 MHz. Gate-level simulations are
performed by running full benchmark applications on the placed and
routed processor using Synopsys VCS [21]. We show results for all
benchmarks from [17] and all EEMBC benchmarks that fit in the pro-
gram memory of the processor. These benchmarks are chosen to be
representative of emerging ultra-low-power application domains such
as wearables, internet of things, and sensor networks [17]. In addition
to evaluating a bare-metal environment common in ultra-low-power
embedded systems, we also evaluate DTS for our applications running
on the processor with an operating system (FreeRTOS [22]). Timing
and power analyses are performed with Synopsys PrimeTime [23].
Experiments were performed on a server housing two Intel Xeon
E5-2640 processors (8-cores each, 2GHz operating frequency, and
64GB RAM). Our application and voltage safety analysis tool is
implemented in C++.

TABLE III: BENCHMARKS

Embedded Sensor Benchmarks [17]
mult, tea8, binSearch, rle, intAVG, inSort, tHold, div, intFilt

EEMBC Embedded Benchmarks
AutoCorr, ConvEnc, FFT, Viterbi

Operating System
FreeRTOS

VI. RESULTS

To validate the software implementation of our toolflow, we ran
gate-level simulations for the applications in our benchmark set and
confirmed that the constrained paths reported by application analysis
indeed did not toggle during execution.7

Table IV presents the power reduction for openMSP430 afforded
by DTS identification based on automated application analysis and
voltage safety analysis. The table shows the amount of DTS exposed
by our tool as a percentage of the clock period, the minimum safe
operating voltage reported, and the power savings afforded for each
application. The voltage reduction allowed from exploiting DTS is
non-speculative and requires no reduction in operating frequency, so
reported benefits are essentially “free” power savings. Our baseline
for the results is the processor operating at nominal frequency and
voltage (100MHz and 1V for openMSP430).

The results in Table IV show that different applications can expose
different amounts of DTS, resulting in different minimum safe operat-
ing voltages. This is because different applications exercise different
processor features, resulting in a different set of logic constraints. For
example, relatively less DTS is available for AutoCorr, FFT, intFilt,
and mult because these applications use the hardware multiplier,
which is one of the most timing-critical modules in the processor
(Table V lists the most timing critical registers in the design –
most registers contain multiple endpoints). Among these benchmarks
AutoCorr and FFT have the least DTS, since they can exercise the
critical multiplier paths terminating at the peripheral data capture
register (exercised when multiplier operands are read from registers

7For our benchmarks, gate-level simulation to completion for MSP430 took
an average of 16.7 s (minimum of 12.1 s for a 70119 cycle application and
maximum of 40.8 s for a 173412 cycle application).

TABLE IV: POWER SAVINGS FROM EXPLOITING DTS

Benchmark DTS (%) Voltage (V) Power Savings (%)

E
m

be
dd

ed
Se

ns
or

s

binSearch 32.01 0.86 28.38
div 31.42 0.86 28.42

inSort 31.79 0.86 28.40
intAVG 31.73 0.86 28.36
intFilt 21.64 0.90 21.10
mult 12.34 0.94 13.54
rle 31.76 0.86 28.34

tHold 32.13 0.86 28.37
tea8 31.42 0.86 28.36

E
E

M
B

C AutoCorr 10.04 0.95 11.15
ConvEnc 31.73 0.86 28.39

FFT 10.04 0.95 11.14
Viterbi 31.43 0.86 28.50

TABLE V: TIMING-CRITICAL REGISTERS AND THEIR WORST SLACK
VALUES (OPENMSP430)

Endpoint / Functionality Worst Slack (%)
Data synchronization for DCO wakeup 0.80
Low frequency oscillator disable 1.74
Digitally Controlled Oscillator (DCO) disable 1.86
Clock gating / enable master clock 2.28
Peripheral data capture 9.94
Multiplier overflow 17.62
Program memory data backup 21.87
Upper bits of multiplier 22.55

and the result overflows). mult has slightly more DTS, since its
dynamic critical path terminates at the multiplier overflow register
(exercised when input operands are read from memory and the result
overflows). intFilt has even more slack, since the coefficients of the
filter in intFilt are all less than one and cannot cause overflow.

Our tool reports similar DTS for several benchmarks. This is
because several embedded benchmarks exercise similar hardware
resources, especially in an in-order processor. All studied applications
have some DTS, since the static critical paths of the design go through
clock and power management circuitry (Table V), and none of our
benchmarks change the clock source or the processor power state.
Thus, they do not exercise the static critical paths and as a result,
they have dynamic timing slack. 8 Over the range of applications,
average power savings from exploiting DTS are 25%.

DTS can also be exploited to increase frequency without increasing
the voltage. The first two columns in Table VI show the maximum
increase in performance possible from exploiting DTS, along with the
corresponding power increase. It is also possible to exploit DTS to
maximize performance for the same power budget by reducing volt-
age and increasing frequency in tandem. The “Iso-power” columns
in Table VI show the maximum performance increase possible from
exploiting DTS while maintaining a constant power budget, along
with the corresponding operating voltage.

Note that our voltage safety analysis is performed at the worst case
(slow) corner, so the operating voltage determined by our analysis is
guaranteed to be safe even when the design is affected by worst
case variations. This comes at the expense of power benefits. We
calculated the average power cost of performing analysis at worst
case rather than typical case as 23%. In Section VI-A we discuss
how better-than-worst-case design techniques can be combined with
DTS analysis to mitigate this cost.

8Applications show even more difference in their minimum voltages in our
measured results in Section III.

7

TABLE VI: PERFORMANCE IMPROVEMENT FROM EXPLOITING DTS

Benchmark Maximum
Perf. Inc.
(%)

Power
Inc.
(%)

Iso-power
Perf. Inc.
(%)

Iso-power
Voltage
(V)

E
m

be
dd

ed
Se

ns
or

s

binSearch 47 37 22 0.93
div 45 35 22 0.93

inSort 46 36 22 0.93
intAVG 46 36 22 0.93
intFilt 27 21 15 0.96
mult 14 11 6 0.98
rle 46 36 21 0.92

tHold 47 37 22 0.92
tea8 45 35 22 0.93

E
E

M
B

C AutoCorr 11 8 6 0.98
ConvEnc 46 27 22 0.93

FFT 11 8 6 0.98
Viterbi 45 36 22 0.93

Finally, to ensure safety our analysis makes worst-case assumptions
about input data (Section IV-A). Benefits may be higher if input
data are known. For example, for a benchmark like mult, the slack
difference can be significant across inputs, since many multiplier
paths that are near-critical are only exercised for particular inputs
(e.g., inputs that cause overflow). In fact, while a guaranteed safe
voltage of 0.94 V was reported by our input-independent analysis
(Table IV), the benchmark is able to operate safely at 0.85 V when
small input values that do not cause overflow are used.

A. Comparison with Related Work

DVFS:
In this work, we exploit DTS for power reduction by reducing

voltage without reducing frequency, such that all exercised parts
of a processor design meet timing constraints. Related work on
DVFS [24], [25], [26] also reduces power by reducing voltage;
however, DVFS reduces frequency along with voltage to ensure tim-
ing safety. Figure 8 compares power and energy reduction achieved
by DVFS and DTS at different DVFS operating points (V/f). The
“Power” series in Figure 8 shows power reduction for DVFS along
with additional power reduction achieved by exploiting DTS at each
operating point. DTS is orthogonal to DVFS and as such, DTS can
be exploited for additional power savings at any DVFS operating
point, even at the nominal operating point, where DVFS is not
exploited to reduce power. Furthermore, while DVFS may lead to
significant performance reduction, especially when performance is
strongly correlated with frequency (e.g., in a system with embedded
memories, like openMSP430), exploiting DTS at any operating point
introduces no additional performance degradation, since DTS allows
voltage reduction without any frequency reduction. Results for power-
delay product (PDP) reduction show that DVFS can lead to an
increase in energy (negative PDP reduction) at some operating points
while DTS always reduces energy.
Better-than-worst-case Design:

Our DTS identification methodology performs analysis at the
worst-case design corner, leaving unexploited benefits at better-than-
worst-case (BTWC) operating conditions. Below, we describe how
our DTS identification approach can be combined with BTWC design
techniques to reclaim benefits of guardband reduction while safely
exploiting DTS. We also compare our approach for exploiting DTS
against two popular BTWC design techniques – critical path monitors
(CPMs) [27] and Razor [6].
CPMs: CPMs exploit static timing slack by monitoring circuits that
track the static critical paths of a processor and adjusting the voltage

-1.05 -7.38

1.00/100 0.95/90 0.90/80 0.85/70 0.80/60 0.76/50
-10

P
e

rc
e

n
ta

ge
 R

e
d

u
ct

io
n

DVFS points in V/MHz

0

11.1

21.1

30.4

39.5

46.3

25.92

21.8

17.57
14.9

11.8

9.54

0 1.6 1.6 0.5 -1.1 -7.4

25.92 24.04 21.75
21.3 20.0

19.0

0 10

20

30

40

50

0

0

0

0

0

1.00/100 0.95/90 0.90/80 0.85/70 0.80/60 0.76/50
-10

0

10

20

30

40

50

60

P
e

rc
e

n
ta

ge
 R

e
d

u
ct

io
n

 (
%

)

DVFS points (V/MHz)

DVFS (Power) DTS (Power)
DVFS (PDP) DTS (PDP)
DVFS (Perf. Degrd.) DTS(Perf. Degrd.)

Fig. 8. DVFS reduces frequency along with voltage and may lead to perfor-
mance degradation. DTS enables voltage reduction without any reduction of
frequency. Furthermore, the benefits of DTS are orthogonal to those of DVFS
and can be extracted in addition to any benefits produced by DVFS.

to ensure that the circuit and processor meet timing constraints when
the processor operates at an aggressive BTWC operating point. CPMs
are less intrusive and have lower design and verification overhead
than many comparable BTWC techniques and may also be more
conservative, since they cannot track local process, voltage, and
temperature (PVT) variations. For our evaluations of designs that
employ CPMs, we select the operating point to maintain guardbands
for local PVT variations. Compared to the power of the processor,
the power overhead of CPM circuits is negligible.

The timing slack in guardbands under BTWC conditions (exploited
by CPMs) is orthogonal to DTS (timing slack between un-exercised
static critical paths and exercised dynamic critical paths). As such,
DTS exploitation techniques can be used synergistically with CPMs
for additional power reduction by using CPMs to track dynamic
critical path delay rather than static critical path delay. We refer
to CPMs that track dynamic critical path delay as dynamic critical
path monitors (DCPMs) as opposed to conventional static critical
path monitors (SCPMs). Since our DTS identification techniques
identify the dynamic critical paths exercised by an application, tuning
CPMs to track dynamic critical path delay is feasible using tunable
CPMs [28], [29].
Razor: Razor introduces error detection and correction circuitry
to a processor and adjusts the processor’s voltage to operate at
the minimum energy operating point, close to the point of first
failure. Since Razor determines an aggressive operating voltage by
observing when errors exceed a predefined threshold, it can eliminate
guardbands and also exploit DTS. While Razor can potentially exploit
DTS, it adds non-trivial area, design, and verification overheads,
making it unsuitable for ultra-low-power processors. Our approach,
on the other hand, is non-speculative – software analysis determines
an application-specific Vmin (or fmax) that is guaranteed to be safe,
irrespective of the input or operating conditions, since we perform
input-independent analysis at the worst-case (slow) corner. As a
result, our technique has little or no hardware overhead and pro-
vides benefits even during worst-case operating conditions. Also, our
approach for exploiting DTS can even be used for existing processors
and applications, without need for re-designing and re-certifying the
processor.

To evaluate Razor, we first identify flip-flops (FFs) that need to be
replaced with Razor FFs by selecting the minimum safe operating
voltage for the processor under typical case operating conditions
and identifying all the FFs that can violate timing constraints at this
voltage under worst case operating conditions. After replacing these
FFs with Razor FFs containing an extra (shadow) latch, clock buffer,

8

25.92% 25.92% 25.92%

32.58%

15.32%

0%

53.53%

41.84%

25.92%

63.20%

39.40%

14.10%

0.00%

20.00%

40.00%

60.00%

80.00%

Best Typical Worst

P
o

w
e

r
Sa

vi
n

gs

Operating Conditions

DTS (alone) SCPMs DCPMs + DTS Razor

Fig. 9. Comparison of power savings for DTS, Razor, and CPMs under
different operating conditions.

XOR gate for error detection, and MUX for error correction, an “OR”
network was added to combine the error signals to be sent to the
voltage regulator, and hold time constraints were placed on the Razor
FFs during layout of the synthesized netlist to generate the placed
and routed netlist. Implementing Razor in this fashion resulted in an
area overhead of 14% for openMSP430. Note, however, that this is
an optimistic evaluation of Razor, as the Razor overheads for meta-
stability detectors, error correction (dynamic performance and power
overheads), clock gating, error rate measurement, and voltage control
logic were not considered. Also, the design was not able to meet
the hold time constraint for all Razor FFs (one of several difficult
challenges for Razor designs [6]). Although we did not account any
error correction overheads, we evaluated the Razor-based design at a
reduced voltage corresponding to a 1% error rate for each benchmark.

Figure 9 compares power reduction achieved by DTS exploitation,
SCPMs, DCPMs+DTS, and Razor under different operating condi-
tions (worst, typical, best). SCPMs achieve significant power reduc-
tion at BTWC operating points (typical, best) but no reduction under
worst case conditions. DTS, however, can be exploited for significant
power savings (25%) even in worst case conditions. Exploiting
DTS synergistically with CPMs (DCPMs+DTS) achieves significant
additional benefits over SCPMs at BTWC operating points.

As mentioned above, Razor can potentially exploit DTS in addition
to static timing slack resulting from BTWC operating conditions.
Under best-case conditions, Razor can reduce power more than
DTS+DCPMs, since CPMs maintain guardbands to protect against
local variations. Under worst-case conditions, exploiting DTS (with
or without DCPMs) reduces power more than Razor, even though Ra-
zor exploits DTS. This is due to the power overheads associated with
Razor-based design. Nevertheless, both best-case and worst-case con-
ditions are rare. Under typical conditions, Razor and DCPMs+DTS
achieve similar power savings. However, our automated techniques
for exploiting DTS may be more attractive, especially in ultra-low-
power embedded designs, due to the area, design, and verification
overheads of Razor.

B. Generality and Limitations

The above results show that the proposed approach for identify-
ing and exploiting DTS is very effective at improving the energy
efficiency of ultra-low-power embedded systems. In this section, we
discuss the efficacy of the proposed approach in other contexts.
Complex processors: DTS requires that the subset of exercised
logic for a given application is not timing-critical. Unlike ultra-low-
power processors, which are optimized to minimize power and area,
processors that are optimized for high performance may exhibit more

balanced logic delays (slack wall [9], [10]) and consequently less
DTS. At the same time, prior work shows that only 7 - 15% of flip-
flops in the Alpha processors in [12], [13], [30] were near-critical.
UltraSparc T2 was reported to have similar behavior [10]. It may be
possible to exploit DTS for such designs.

More complex processors also contain performance-enhan-cing
features such as large caches, prediction or speculation mechanisms,
and out-of-order execution, that introduce non-determinism into the
instruction stream. Our application analysis is capable of handling
this added non-determinism at the expense of analysis tool runtime.
For example, by injecting an X as the result of a tag check, both
the cache hit and miss paths will be explored in the memory hier-
archy. Similarly, since our application analysis tool already explores
taken and not-taken paths for input-dependent branches, it can be
easily adapted to handle branch prediction. Our approach for input-
independent CFG exploration is easily modifiable to perform input-
independent exploration of the data flow graph (DFG), and thus
can be made to analyze out-of-order execution. Finally, even in the
worst case where DTS cannot be exploited for a complex processor,
we note that DTS benefits are high for ultra-low-power embedded
processors (see Sections III and VI). These processors are already
ubiquitous and are also expected to power a large number of emerging
applications [1], [2], [3], [4], [5].
Complex Applications: Our automated application analysis approach
employs techniques similar to symbolic execution [31], [32], where X
symbols are propagated for input values. One limitation of the general
symbolic execution approach is a potential explosion of possible
CFG paths as CFG complexity increases. This issue is ameliorated
in the context of simple in-order processors (e.g., the ultra-low-
power processors studied in this paper) because the maximum length
of instruction sequences (CFG paths) that must be considered is
limited based on the number of instructions that can be resident in
the processor pipeline at once. However, for complex applications
running on complex processors, heuristic techniques may have to be
used to improve the scalability of symbolic execution [33].

Also, complex applications may have more phases with distinct
behavior and more complex CFGs. For such applications, per-phase
application analysis may expose more DTS. Once phases have been
identified, our application analysis tool can easily identify a unique
minimum safe voltage corresponding to each phase. Phase adaptation
can be achieved by instrumenting the binary to change the voltage
prior to execution of each phase.
System Code: Our evaluations in Section VI were performed for
a bare-metal system (application running on the processor without
an operating system (OS)). While this setting is representative of
ultra-low-power processors and a large segment of embedded sys-
tems [34], [35]9, use of an OS is common in several embedded
application domains as well as in more complex systems. Thus, we
also evaluated DTS for our applications running on the processor
with an OS (FreeRTOS [22]). System code was analyzed in addition
to application code to identify available DTS.

Application analysis of system code for FreeRTOS reveals that
many nets are not exercised by the OS, including the entire hardware
multiplier. For the OS running with applications that do not use the
multiplier, average power savings from exploiting DTS are 21.1%.
For applications that use the multiplier, power savings are 11.2% with
the OS.

In several settings, it may not be possible to analyze the system

9Many embedded processors provide toolchains for bare-metal develop-
ment [36], [37].

9

code completely. To guarantee safety when exploiting DTS in such
settings, any un-analyzed code must be run at nominal voltage.
For example, this is a simple alternative to application analysis for
handling startup code, bootloader, etc. that runs only briefly. Voltage
can be reduced to exploit DTS after startup when the system enters
user mode.
Multi-programming and Multi-threading: Multi-program-ming
and multi-threading present a challenge for DTS analysis, since they
can introduce non-determinism in the instruction stream executed by
a processor. In a multi-program environment, different applications
(including system code) may expose different amounts of DTS.
In such a scenario, the metadata for a binary can incorporate the
minimum safe voltage for the application reported by voltage safety
analysis, and the processor can use dynamic voltage scaling at
context switch time to adjust to the minimum safe voltage for each
application or system code. While an application is resident, the value
corresponding to the minimum safe voltage can be stored as part
of the application’s context. Entry into system code, which triggers
voltage scaling, can be initiated by a timer interrupt or when the
running process yields control to the OS through a system call.
Voltage scaling in response to a timer interrupt is easily managed
by the architectural support described in Section IV-C, and yielding
control to the OS can be handled by performing voltage scaling in
software as the first action of a system call.

DTS benefits may also be possible for fine-grained concurrent
execution (e.g., block multithreading, SMT, etc.). For fine-grained
execution, the minimum voltage of the processor is determined as
the maximum of the minimum voltages reported by our analysis
tool for the different threads. However, since it may not be possible
to determine all possible interleavings of instructions between the
threads, a minor adaptation to Algorithm 1 is needed to determine the
safe minimum voltage for a thread that is agnostic to other threads’
behavior. Any state that is not maintained as part of a thread’s context
is now assumed to have a value of X when symbolic execution is
performed for an instruction belonging to the thread. All state that
is part of the thread’s context will be maintained, and thus, need not
be set to X . This leads to a safe minimum voltage for the thread
irrespective of the behavior of the other threads.
Dynamic Linking and Self-Modifying Code: For systems that
support dynamic linking10, our methodology can be used to identify
the minimum safe voltages for the caller application, the called library
function, and the OS code used for performing dynamic linking.
The minimum safe voltage of the processor is the maximum of
the three minimum voltages. Similarly, for self-modifying code, our
methodology can be used to identify the minimum safe voltage for
each code version. The maximum of these voltages will be chosen
as the safe operating point for the processor.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a novel opportunity for power savings in
ultra-low-power processors – dynamic timing slack. DTS is observed
because embedded applications do not always use all the features
of a general purpose processor. As such, there may be timing slack
between unused static critical paths of a processor and the dynamic
critical paths that are exercised by an application. We show that
DTS exists for a common ultra-low-power processor and propose
a fully automated technique that is non-speculative and requires

10Very few embedded systems support dynamic linking [38], [39] (space
constraints) or self-modifying code (needs RAM program memory instead of
ROM – RAM is more expensive than ROM and also more susceptible to EM
interference).

no programmer intervention for identifying and exploiting DTS for
power savings. We demonstrate that exploiting DTS in an ultra-low-
power processor results in power savings of up to 32%, 25% on
average, without any performance degradation.

Future work includes:
• Design- and architecture-level optimizations that increase DTS by
increasing timing slack on dynamic critical paths
• Compiler- and algorithm-level optimizations that increase DTS by
eliminating activity on the dynamic critical paths exercised by a
workload
• DTS-aware scheduling policies in multi-programmed and multi-
threaded settings
• Exploiting DTS at a finer granularity (e.g., per-phase DTS adapta-
tion)
• Leveraging symbolic simulation to enable other hardware optimiza-
tion and analysis techniques

ACKNOWLEDGMENTS

The authors would like to thank Jingjing Zhou, Taoran Wang, and
Himanshu Shekhar Sahoo, who performed testing of ULP processors
for Section III. This work was partially supported by NSF, SRC/GRC,
and CFAR, within STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

APPENDIX

Below, we present several examples that illustrate how DTS can
be exposed in openMSP430 for various applications.
Execute: The execute stage contains the general purpose register
(GPR) file and the function units. For a GPR to toggle, some
instruction must use the GPR as a destination register. For a function
unit to toggle, a binary must contain an instruction that executes on
the function unit. If a certain GPR or function unit is not used at
all by an application, application analysis reports a constraint for the
register or opcode select bit. Figure 5 presents an example.
Fetch: The fetch stage in the processor frontend contains two key
registers – the Program Counter (PC) and the Instruction Register
(IR). The IR holds fetched instructions. Certain IR bits might not
be toggled by an application if the set of instructions used by the
application is limited.

While it should be possible to constrain the PC based on the
range of addresses defined by the code area that a binary can access
and the valid interrupt vectors for the application, we choose not to
constrain the PC to ensure correct operation in case an error causes
the processor to execute from an illegal address.
Decode: Constraints are reported for decode registers when some of
the legal values of the decode registers are unused by an application.
Since these register fields control logic in other parts of the pipeline,
constraints here may propagate controlling values to other logic,
resulting in additional DTS.
Memory: Since memory values are input-dependent, logic in the
memory stage generally cannot be constrained, unless an application
contains no load, store, or move instructions.
Write Back: Like in the case of GPRs, writeback to a register requires
that the register is the destination register for some instruction. The
select bits corresponding to registers that are never written are never
toggled by a captive application and can be constrained.
Peripherals, Special Function Registers, Clock and Reset Man-
agement: These structures toggle only when a specific instruction
sequence is executed. For example, the multiplier in openMSP430 is
written to with a mov instruction to address 0x132 or 0x138. If
neither mov instruction appears in an application’s binary, then the

10

multiplier is not utilized at all and can be constrained to expose DTS.
Other functionalities mentioned here have similar behavior.
Other Modes of Operation: Debug and scan modes are initiated by
particular pins in the processor (i.e., mode entry or exit is controlled
by setting or resetting the pin’s value). These pins can typically be
constrained to expose DTS, since scan and debug modes are typically
only used during design testing and validation and not during system
deployment.

When the processor exits a low-power mode, the corresponding
state register toggles in response to either an external or timer-
generated interrupt. While this condition (interrupt) cannot be de-
termined statically, it is easy to detect by monitoring the interrupt
request (IRQ) and wakeup pins in the processor (Section IV-C).

REFERENCES

[1] Michele Magno, Luca Benini, Christian Spagnol, and E Popovici.
Wearable low power dry surface wireless sensor node for healthcare
monitoring application. In Wireless and Mobile Computing, Networking
and Communications (WiMob), 2013 IEEE 9th International Conference
on, pages 189–195. IEEE, 2013.

[2] Ross Yu and Thomas Watteyne. Reliable, Low Power Wireless Sensor
Networks for the Internet of Things: Making Wireless Sensors as
Accessible as Web Servers. Linear Technology, 2013.

[3] Adam Dunkels, Joakim Eriksson, Niclas Finne, Fredrik Osterlind, Nico-
las Tsiftes, Julien Abeillé, and Mathilde Durvy. Low-Power IPv6 for the
Internet of Things. In Networked Sensing Systems (INSS), 2012 Ninth
International Conference on, pages 1–6. IEEE, 2012.

[4] Russell Tessier, David Jasinski, Atul Maheshwari, Aiyappan Natarajan,
Weifeng Xu, and Wayne Burleson. An energy-aware active smart card.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
13(10):1190–1199, 2005.

[5] Chulsung Park, Pai H Chou, Ying Bai, Robert Matthews, and Andrew
Hibbs. An ultra-wearable, wireless, low power ECG monitoring system.
In Biomedical Circuits and Systems Conference, 2006. BioCAS 2006.
IEEE, pages 241–244. IEEE, 2006.

[6] Matthew Fojtik, David Fick, Yejoong Kim, Nathaniel Pinckney,
David Money Harris, David Blaauw, and Dennis Sylvester. Bubble razor:
Eliminating timing margins in an arm cortex-m3 processor in 45 nm
cmos using architecturally independent error detection and correction.
Solid-State Circuits, IEEE Journal of, 48(1):66–81, 2013.

[7] A Hakan Baba and Subhasish Mitra. Testing for transistor aging. In
VLSI Test Symposium, 2009. VTS’09. 27th IEEE, pages 215–220. IEEE,
2009.

[8] O Girard. Openmsp430 project. available at opencores.org, 2013.
[9] Janak Patel. Cmos process variations: A critical operation point hypoth-

esis. www.stanford.edu/class/ee380/Abstracts/080402-jhpatel.pdf, 2008.
[10] A.B. Kahng, Seokhyeong Kang, R. Kumar, and J. Sartori. Slack

redistribution for graceful degradation under voltage overscaling. In
Design Automation Conference (ASP-DAC), 2010 15th Asia and South
Pacific, pages 825–831, Jan 2010.

[11] John Sartori and Rakesh Kumar. Compiling for energy efficiency on
timing speculative processors. In Design Automation Conference (DAC),
2012 49th ACM/EDAC/IEEE, pages 1297–1304. IEEE, 2012.

[12] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao,
Toan Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian
Flautner, et al. Razor: A low-power pipeline based on circuit-level
timing speculation. In Microarchitecture, 2003. MICRO-36. Proceedings.
36th Annual IEEE/ACM International Symposium on, pages 7–18. IEEE,
2003.

[13] Shidhartha Das, Carlos Tokunaga, Sanjay Pant, Wei-Hsiang Ma, Sud-
herssen Kalaiselvan, Kevin Lai, David M Bull, and David T Blaauw.
RazorII: In situ error detection and correction for PVT and SER
tolerance. Solid-State Circuits, IEEE Journal of, 44(1):32–48, 2009.

[14] Giang Hoang, Robby Bruce Findler, and Russ Joseph. Exploring circuit
timing-aware language and compilation. In Proceedings of the Sixteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVI, pages 345–356, 2011.

[15] Jeremy Constantin, Lai Wang, Georgios Karakonstantis, Anupam Chat-
topadhyay, and Andreas Burg. Exploiting dynamic timing margins in
microprocessors for frequency-over-scaling with instruction-based clock
adjustment. In Proceedings of the 2015 Design, Automation & Test in

Europe Conference & Exhibition, DATE ’15, pages 381–386, San Jose,
CA, USA, 2015. EDA Consortium.

[16] D. Bull, S. Das, K. Shivashankar, G.S. Dasika, K. Flautner, and
D. Blaauw. A Power-Efficient 32 bit ARM Processor Using Timing-Error
Detection and Correction for Transient-Error Tolerance and Adaptation
to PVT Variation. Solid-State Circuits, IEEE Journal of, 46(1):18–31,
Jan 2011.

[17] Bo Zhai, Sanjay Pant, Leyla Nazhandali, Scott Hanson, Javin Olson,
Anna Reeves, Michael Minuth, Ryan Helfand, Todd Austin, Den-
nis Sylvester, et al. Energy-efficient subthreshold processor design.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
17(8):1127–1137, 2009.

[18] Wonyoung Kim, Meeta Sharma Gupta, Gu-Yeon Wei, and David Brooks.
System level analysis of fast, per-core DVFS using on-chip switching
regulators. In High Performance Computer Architecture, 2008. HPCA
2008. IEEE 14th International Symposium on, pages 123–134. IEEE,
2008.

[19] Synopsys. Design Compiler User Guide.
[20] Cadence. Encounter Digital Implementation User Guide.
[21] Synopsys. VCS/VCSi User Guide.
[22] The FreeRTOS website. http://www.freertos.org/.
[23] Synopsys. PrimeTime User Guide.
[24] Etienne Le Sueur and Gernot Heiser. Dynamic voltage and frequency

scaling: The laws of diminishing returns. In Proceedings of the 2010
international conference on Power aware computing and systems, pages
1–8. USENIX Association, 2010.

[25] Padmanabhan Pillai and Kang G Shin. Real-time dynamic voltage
scaling for low-power embedded operating systems. In ACM SIGOPS
Operating Systems Review, volume 35, pages 89–102. ACM, 2001.

[26] Trevor Pering, Tom Burd, and Robert Brodersen. The simulation and
evaluation of dynamic voltage scaling algorithms. In Proceedings of the
1998 international symposium on Low power electronics and design,
pages 76–81. ACM, 1998.

[27] Charles R Lefurgy, Alan J Drake, Michael S Floyd, Malcolm S Allen-
Ware, Bishop Brock, Jose A Tierno, and John B Carter. Active
management of timing guardband to save energy in POWER7. In
proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 1–11. ACM, 2011.

[28] James Tschanz, Keith Bowman, Steve Walstra, Marty Agostinelli, Tanay
Karnik, and Vivek De. Tunable replica circuits and adaptive voltage-
frequency techniques for dynamic voltage, temperature, and aging vari-
ation tolerance. In VLSI Circuits, 2009 Symposium on, pages 112–113.
IEEE, 2009.

[29] Xiaobin Yuan, Pawel Owczarczyk, Alan J Drake, Marshall D Tiner,
David T Hui, John P Pennings, Francesco A Campisano, Richard L
Willaman, Leana M Cropp, and Rudolph D Dussault. Design Consid-
erations for Reconfigurable Delay Circuit to Emulate System Critical
Paths. 2014.

[30] S. Das, D. Roberts, Seokwoo Lee, S. Pant, D. Blaauw, T. Austin,
K. Flautner, and T. Mudge. A self-tuning DVS processor using delay-
error detection and correction. Solid-State Circuits, IEEE Journal of,
41(4):792–804, April 2006.

[31] Randal E. Bryant. Symbolic simulation – techniques and applications.
In Proceedings of the 27th ACM/IEEE Design Automation Conference,
DAC ’90, pages 517–521, 1990.

[32] James C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, 1976.

[33] Cristian Cadar and Koushik Sen. Symbolic execution for software
testing: Three decades later. Commun. ACM, 56(2):82–90, February
2013.

[34] Hacking Pacemakers. http://spectrum.ieee.org/podcast/biomedical/
devices/hacking-pacemakers/.

[35] Bare Machine, Wikipedia. http://en.wikipedia.org/wiki/Bare machine.
[36] StarterWare. http://processors.wiki.ti.com/index.php/StarterWare.
[37] Building BareMetal ARM systems with GNU. http://www.

state-machine.com/arm/Building bare-metal ARM with GNU.pdf.
[38] Embedded systems. https://en.wikibooks.org/wiki/Embedded Systems,

2015.
[39] John Regehr, Alastair Reid, and Kirk Webb. Eliminating stack overflow

by abstract interpretation. ACM Trans. Embed. Comput. Syst., 4(4):751–
778, November 2005.

11

www.stanford.edu/class/ee380/Abstracts/080402-jhpatel.pdf
http://www.freertos.org/
http://spectrum.ieee.org/podcast/biomedical/devices/hacking-pacemakers/
http://spectrum.ieee.org/podcast/biomedical/devices/hacking-pacemakers/
http://en.wikipedia.org/wiki/Bare_machine
http://processors.wiki.ti.com/index.php/StarterWare
http://www.state-machine.com/arm/Building_bare-metal_ARM_with_GNU.pdf
http://www.state-machine.com/arm/Building_bare-metal_ARM_with_GNU.pdf
https://en.wikibooks.org/wiki/Embedded_Systems

