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Abstract—Aggressive requirements for low power and high perfor-
mance in VLSI designs have led to increased interest in approximate
computation. Approximate hardware modules can achieve improved
energy efficiency compared to accurate hardware modules. While a
number of previous works have proposed hardware modules for approx-
imate arithmetic, these works focus on solitary approximate arithmetic
operations. To utilize the benefit of approximate hardware modules,
CAD tools should be able to quickly and accurately estimate the output
quality of composed approximate designs. A previous work [10] proposes
an interval-based approach for evaluating the output quality of certain
approximate arithmetic designs. However, their approach uses sampled
error distributions to store the characterization data of hardware,
and its accuracy is limited by the number of intervals used during
characterization.

In this work, we propose an approach for output quality estimation
of approximate designs that is based on a lookup table technique that
characterizes the statistical properties of approximate hardwares and a
regression-based technique for composing statistics to formulate output
quality. These two techniques improve the speed and accuracy for several
error metrics over a set of multiply-accumulator testcases. Compared
to the interval-based modeling approach of [10], our approach for
estimating output quality of approximate designs is 3.75× more accurate
for comparable runtime on the testcases and achieves 8.4× runtime
reduction for the error composition flow. We also demonstrate that our
approach is applicable to general testcases.

I. INTRODUCTION

Modern VLSI designs face increasingly significant challenges in
meeting the power and performance constraints demanded by present
and future computing systems. Recently, approximate computing has
been explored as a means of improving energy efficiency for noise-
tolerant applications. While approximate computation circuits have
been shown to be effective at improving energy efficiency at the
expense of perfect functional correctness, modern CAD tools are
inequipped to perform design automation for designs that contain
approximate computation circuits. One key building block required
for CAD tools that can create efficient approximate designs is the
ability to quickly and accurately estimate the output quality of designs
composed of approximate computation circuits. Such functionality is
necessary for CAD tools that would minimize the energy of a design
during synthesis, optimization, etc. while maintaining acceptable
output quality, as specified by system designers. In this paper, we
propose a flow that can analyze how errors originate and propagate
in designs composed of approximate computation circuits to quickly
and accurately estimate the output quality at nets in an approximate
design. The following terminology is relevant to our treatment of
approximate circuit design.

• Error metric (EM): a unit of measure that quantifies the
deviation between the outputs produced by a functionally
correct design and an approximate design. We review several
commonly-used EMs from the existing literature in Sec-
tion II-A below.

• Approximate hardware module: a hardware module that is
functionally incorrect by design (e.g., approximate adders
and multipliers).
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Fig. 1. Illustration of approximation module replacement, in which accurate
hardware modules are replaced by approximate ones.

• Approximate circuit: a circuit that contains one or more
approximate hardware modules. Figure 1 compares an ap-
proximate circuit to its accurate counterpart.

• Composed EM (EMcomposed): the estimated EM value at an
output or internal net in an approximate circuit.

• Pre-characterized EM (EMchar): a sampled EM for an indi-
vidual approximate hardware module that has been stored in
a library. We measure EMchar using Gaussian random vari-
ables as inputs and propose composition rules for different
EMs.

• Composition function: a function that maps EMchar to
EMcomposed .

• Dre f (X): the output of a correct circuit (not approximate)
for an input distribution X .

• Dappx(X): the output of an approximate circuit for an input
distribution X .

Given the above definitions, the error metric composition problem
seeks to find a composition function for a composed EM as described
in Equation (1), where EMi

char denotes the EMchar of the ith approxi-
mate module in an approximate circuit. Values of EMchar for different
approximate hardware modules may be stored in a library for quick
reference during computation of EMcomposed .

EMcomposed = f
(

EM1
char, EM2

char, ..., EMn
char

)
(1)

In this paper, we propose an automated methodology to estimate
EMcomposed at the outputs and internal nodes of an approximate
circuit. Our approach accounts for the relationship between EM
behavior, input distribution statistics, and hardware characteristics of
approximate hardware modules. We use lookup tables parameterized
by approximate hardware module statistics to accelerate EM compo-
sition; we further incorporate regression-based models that capture
how errors propagate through the topology of an approximate circuit.
We demonstrate and validate our methodology with several randomly
generated benchmark circuits with varying complexity as well as
designs evaluated in previous work [9] (e.g., FIR filter).



We make the following contributions.

• We analyze the interval-based approach in [9] [10], and
explore the potential drawbacks of the approach.

• We propose composition rules for estimating the EM ob-
served at any net within an approximate circuit.

• We develop an approach to build pre-characterized libraries
for individual approximate hardware modules and demon-
strate how to accelerate the computation of composed EMs
using the libraries. Our approach reduces runtime for char-
acterization and results in improved accuracy compared to
previous works [9] [10].

• Compared to previous works, we improve the accuracy of
EM estimation by 3.75× for the same runtime. We achieve
1.36× and 8.4× runtime improvements, respectively, for
library characterization and error composition.

• We demonstrate that our proposed approach achieves accu-
rate estimates for approximate FIR circuits as well as random
artificial circuits with various topologies.

The remainder of the paper is organized as follows. Section II
reviews related works according to different system abstraction levels
and error sources. Section III describes the motivation of error metric
composition and our search for rules that govern composition of error
distributions. In Section IV, we show how to apply our composition
rules and pre-characterized error libraries to analyze arbitrary circuit
topologies. Section V concludes the paper and gives directions for
our future work.

II. RELATED WORKS

A. Error Metrics

Definitions of EMs from the literature are given in Equations (2)
to (7). Note that E[·] indicates the expected value of a random variable
and max[·] indicates the maximum value.

ER = ∑
Xs.t.Dappx(X)!=Dre f (X)

Pr(X) (2)

ES = E[Dappx(X)−Dre f (X)] (3)

ARES = E[(Dappx(X)−Dre f (X))/Dre f (X)] (4)

MSE = E[|Dappx(X)−Dre f (X)|2] (5)

SNR = E[|Dre f (X)|2/|Dappx(X)−Dre f (X)|2] (6)

MAXE = max
X

[|Dappx(X)−Dre f (X)|] (7)

• Error rate (ER) [15] is used to evaluate the likelihood of
correctness in arithmetic operations. An accurate estimation
of ER is important in the case where approximate circuits
spend additional cycles for error corrections.

• Error significance (ES) [27] addresses the magnitude of er-
rors. We define ES as the signed average difference between
correct and erroneous results.

• Average relative error significance (ARES) is used to mea-
sure the impacts of errors for image processing in [12] [29].
ARES is defined as the average absolute difference between
correct and erroneous results, normalized to correct results.
In digital signal processing (DSP) circuits, the magnitude of
errors is important because small errors may be masked by
other noise sources.

TABLE I. CATEGORIES OF ERROR ANALYSIS, PROPAGATION, AND

OPTIMIZATION WORKS.
Category (C1) (C2) (C3) (C4)

Manipulated
Logic cell Arithmetic Arithmetic

Multiple
Elements Levels

Error Appx.
Rounding

Appx. Over-scaled
Source HW HW VDD

Probabilistic
N N N Y

Errors

Reference
[27] [21] [6] [24] [1] [2] [8] [10] [13] [3]

[23] [22] [17] [18] [14] [9] [4] [25]

• Mean squared error (MSE) in [5] [28] and signal-to-noise
ratio (SNR) in [5] [7] are common metrics to measure
signal degradation in communication and image processing
systems.

• Maximum error (MAXE) is defined as the maximum abso-
lute value of produced errors. In [9], the MAXE metric is
used to evaluate approximate circuits.

B. Approximate Arithmetic Modules

Various approximate arithmetic modules have been proposed in
previous works, where aggressive timing and power benefits are
obtained by breaking critical paths in the approximate module. To
achieve a bounded error significance or configurable error rate, several
techniques have been applied to reduce the severity of errors in these
approximate hardware modules. ETAI [29] limits the maximum error
by detecting a carry propagation and setting all lower sum bits to “1”.
A similar compensation approach is used in Shin’s approximate adder
[23], which detects a carry propagation using a specially designed
truth table. By using error compensation approaches, the error can be
reduced compared to simply breaking the carry chain. ETAIIM [29],
ACA-SD [12], Lu’s adder [19], and ACA-X [26] use a carry-look-
ahead (CLA)-based approach to shorten the longest carry propagation
path in the adder. These adders are composed of CLA submodules,
and the numbers and sizes of the submodules can be configured at
design time. The error significance and error rate can be configured
by changing the length of carry propagation paths. Kahng et al. [12]
also show that the errors can be detected and corrected in each CLA
block, and that the accuracy can be configurable during runtime.

C. Analysis and Composition of Errors

We categorize existing works on hardware error analysis into
four categories as shown in Table I. In category (C1), the works
focus on searching for useful approximations during logic synthesis.
Venkataramani et al. [27] work with existing commercial synthesis
tools and simplify logic based on approximate don’t-care (ADC)
information under a given error significance bound. Miao et al.
[21] focus on a methodology to design more efficient adders by
combining logic components to reduce the maximum error. In [23],
Shin et al. provide a heuristic to search for useful approximations
based on a truth table to study the tradeoff between the error
rate and literal terms (hardware cost). Previous works in category
(C2) address rounding errors between floating-point and fixed-point
conversions. In these works, the rounding errors are determined by
the wordlength of hardware, and so are different from the errors
induced by approximate hardware. In category (C3), [9] and [10] use
an interval-based approach (interval arithmetic or affine arithmetic) to
propagate errors. The interval-based approach uses pre-characterized
libraries for error estimations, but the runtime of characterization
can increase when more intervals are required for large ranges of
signals. In category (C4), existing works assign overscaled supply
voltages to achieve a graceful accuracy degradation. Kedem et al.
[13] analyze propagations of errors induced by the degraded supply
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Fig. 2. Probability mass function (PMF) used in the interval-based approach
is shown. Note that the error magnitudes are in log scale. The error magnitudes
will be clamped to ±2max or ±2min if they are out of range.

voltage, and they simplify the analysis by assuming that no error
cancellations occur between multiple adders. Venkatesan et al. [25]
propose the MACACO flow to evaluate propagations of errors induced
by overscaled supply voltage. They also apply this approach to
characterize errors for different approximate adders. Chippa et al.
in [3] [4] propose methodologies to analyze and optimize computing
effort at different levels of abstraction, and also consider errors due
to overscaled voltage supplies.

Compared to previous works, our work focuses on (1) the error
propagation at arithmetic-level instead of gate-level computation,
(2) the errors induced by approximate hardware as opposed to the
overscaled supply voltage, and (3) awareness of both ER and ES.
Furthermore, we simplify the composition of errors with a pre-
characterized library and regression coefficients.

III. ANALYTICAL STUDIES ON ERROR ESTIMATION

A. Analysis of Existing Interval-based Approach

Huang et al. address the issue of error rate estimation for approx-
imate circuits in [9] [10]. Their flow first characterizes approximate
hardware modules by simulating the error probabilities for different
input value intervals. Then, with given input operand distributions,
they use interval arithmetic to estimate the probability mass function
(PMF) of errors produced and propagated in an approximate arith-
metic circuit. After propagating and composing errors with interval
arithmetic, the error metrics are obtained from PMFs. Their interval-
based approach samples the probability distribution functions (PDFs)
or PMFs of errors to generate sampled PMFs. The height of each
interval in the sampled PMF represents the probability of error.
Figure 2 shows an example PMF which is used in the interval-
based approach. Due to the limited number of intervals used for
characterization, the error magnitudes will be clamped to ±2max or
±2min if they are out of range. As a result, the accuracy of the interval-
based approach will be impacted if the range of characterization does
not match the inputs.

We observe two drawbacks in the interval-based approach. First,
there is a quantization error, since the approach represents multiple
error values with a single interval. If the actual error distribution
varies greatly within one interval, the estimation will be inaccurate.
This may particularly be an issue for large intervals closer to ±2max.
For such large intervals, quantization error may be quite substantial.
For example, an error value of 2max−1 +1 is placed in the bin for 2max,
and the quantization error (2max−1 −1) is essentially as large as the
error value itself (2max−1 + 1). This example also illustrates another
potential drawback. Unless the error value is an exact power of two,
the quantization error for a large interval tends to be large. Perhaps
counter-intuitively, error values that are very close to an interval value
may cause very large errors. Second, the interval-based approach
requires consecutive intervals to cover the range from maximum to
minimum error magnitude (±2max and ±2min in Figure 2). If the
errors fall out of ±2max or ±2min, the interval-based approach will
clamp the estimated errors to the ±2max or ±2min values, and the

estimation error will be saturated. If a large portion of errors or
data experience this saturation issue, the estimation inaccuracy will
be high. To address these drawbacks, the interval-based approach
requires re-characterization of the libraries to increase the number
of intervals, incurring significant runtime overhead. For better under-
standing of the strengths and weaknesses of the interval-based EM
composition, we evaluate the EM estimation with a testcase shown
in Figure 3(a). We vary the input distribution to evaluate accuracy
for different input distributions and hardware configurations. We
collect results from 100 combinations (10 Gaussian distributions with
different standard deviations and 10 sets of ETAIIM configurations).
Figure 3(b) shows the runtime of library characterization performed
by the interval-based approach for different numbers of samples
per interval. The accuracy results of the interval-based approach
compared to Monte Carlo simulation are shown in the form of a
correlation plot in Figure 3(c). From Figure 3(b) we notice that
increasing the sample size to 18.5M requires 1.7 hours for library
characterization, but estimation errors (offsets) are still observed in
Figure 3(c). Possible reasons for the inaccuracy are (1) the use of
discrete PMF and (2) inaccurate propagation of EMs from the pre-
characterized library.

0.23 0.26
0.39

1.78

0.10

1.00

10.00

1 100 10000To
ta

l C
ha

ra
ct

er
iz

at
io

n 
R

un
tim

e 
(h

r)

Sample Size (K)
n1 n2 n3

n4

n5

A B C D E F
(a) (b)

(c)

n5=((A+B)+(C+D))+(E+F)

Fig. 3. (a) Five-node test case. (b) Runtime from interval-based approach
for each sample size. (c) ER estimation results from interval-based approach.
The results are generated from 100 testcases (10 hardware configurations and
10 combinations of input distributions).

B. Analysis for Computation of Error Metrics

We analyze an ETAIIM adder to understand the error generation
of approximate modules. ER of the ETAIIM adder is given in
Equation (8). N is the total bit width of the adder; bits-per-block
(BPB) is the size of carry-look-ahead (CLA) blocks; k is the number
of connected CLA blocks, an architectural parameter used to control
error magnitudes. From Figure (4), we observe that the errors are
related to the input values of CLA blocks because errors occur when
all input bits of the CLA block are in carry-propagate state. For
example, if most of the input values are small, then the probability
of generating larger errors will be small. This observation regarding
ETAIIM motivates us to study the sensitivity of EMs to input
distributions.

ERETAIIM = 1− (1− 1
2BPB

2BPB −1
2BPB+1 )

N
BPB−2−k

×(1− 1
2(BPB·k)

2(BPB·k)−1
2(BPB·k)+1

)
(8)
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Fig. 4. The structure of an ETAIIM approximate adder. CLAs are carry-
lookahead sub-adders. RCAs are ripple-carry sub-adders.

C. Proposed Approach to Estimate EMs

The analytical expression in Equation (8) is based on the assump-
tion that distributions of the input values are uniform and the ranges
cover from the MSB to LSB. However, this is not always the case, and
we need to consider input distributions for the accurately-estimated
EMs. To analyze the relationship between input distributions and
EMs, we use 24-bit ETAIIM adders and simulate the EMs for
different BPB and k. In this motivating experiment, both operands are
assumed to have the same standard deviation for simplicity. Figure 5
shows each simulated EM value (y-axis) with respect to the standard
deviation of input data (x-axis).

ER ES: log(abs()) ARES: log(abs())

MSE: log(abs()) SNR MAXE: log(abs())

Fig. 5. The simulated EM results for input distributions. A 24-bit signed
ETAIIM adder is simulated in the analysis. 20 bits are used for the fractional
part, and the MSB guard block size k takes on values from one to four. For
simplicity, both operands are assumed to have the same standard deviation.

Figure 5 shows that EM values change with respect to both
the standard deviations of input values and hardware configuration
(k). Based on the results, we construct lookup tables to model the
error metric of approximate modules instead of using analytical
expressions. Modeling with lookup tables is preferred since it is
difficult to derive an analytical expression if input values are not
uniformly distributed.

Figure 7 illustrates our EM formulation. To estimate the output
EM (EMZ), we consider intrinsic EM values (EMin) which are gen-
erated by the approximate module itself, and propagated EM values
(EMA, EMB) which come from the previous stages. We propose
a lookup table (LUT)-based approach to consider different input
distributions. The lookup tables for different hardware configurations
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EMin TABLE
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Hardware 
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overall EM by regression‐
based formula 
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Fig. 6. (a) Our proposed approach for error estimation, and (b) the lookup
tables in the pre-characterized libraries for EMin and ST DZ .

are merged to become the pre-characterized library. We construct two
types of lookup tables, as illustrated in Figure 6(b). The EMin and
ST DZ tables respectively contain (intrinsic) EM values and output
standard deviations with respect to the input standard deviations.

Our LUT-based approach can be divided into three steps as
described in Figure 6(a).

Step 1: Value distribution propagation in the circuit topology. We
generate statistical properties with pre-characterized libraries. To
obtain the statistical property of each node in the circuit, we traverse
all the nodes in the circuit in a topological order from primary inputs
to a primary output. During the traversal, we look up the statistical
property (standard deviation) from a pre-characterized table (ST DZ),
and annotate the standard deviation values at all nodes. The results
in the upper-left plot in Figure 8 demonstrate the feasibility of this
approach.

Step 2: EM estimation for approximate modules. With standard
deviations of the internal nodes, we estimate EM values using a
pre-characterized table (EMin) for each internal node. The lookup
table, EMin, is characterized by simulating EM values as shown in
Figure 5. We generate the LUTs for different approximate modules to
estimate intrinsic error metric (EMin), which is generated by modules
themselves without input errors. By combining Steps 1 and 2, we can
estimate the EMin of each node in any circuit topology.

Step 3: Error composition with EMs of each approximate
module. With the generated EMs (EMin) of each approximate
module, we apply a regression approach to find the composed EM
values in the primary output. The error rate (ER) can be computed by
multiplying pass rate (1-ER), and the composed ER is generated with
Equation (9), where ERZ is the composed ER, ERA and ERB are the
propagated ERs to the inputs in Figure 7, ERin is an intrinsic ER,
and α{in,P} are regression coefficients. Other EMs (ES, ARES, MSE,
SNR and MAXE) are amplitude-based error metrics, and we generate
the composed EM from Equation (10), where α{in,P,C} are regression
coefficients. These composition rules are developed for adders, and
their generalization to multiplication and other arithmetic operations
is a subject of future work.

ERZ = 1−10αC · (1−ERin)αin · ((1−ERA) · (1−ERB))αP (9)

EMZ = αinEMin +αP(EMA +EMB)+αC. (10)
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Fig. 7. EM estimation at a given node (approximate module) considering
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Fig. 8. Estimated ST DA or ST DB and EMin values obtained from lookup
tables. The x-axes are simulated values and y-axes are estimated values. The
red lines show the ideal estimations and the blue dots show the estimated
results from our proposed method.

To verify the correctness of our table lookup method in Step 2, we
estimate the standard deviation (STD) and EMin as shown in Figure 8.
We test with 10 combinations of hardware configurations and 10
combinations of different input distributions (Gaussian distribution
with different standard deviations). Figure 8 shows the correlations
between the estimated and simulated STD/EM values from all internal
nodes. The results show that we can obtain correct STD values from
the lookup table with the topology traversal. With the estimated STD,
we observe correct estimation for EMin (ER and ES). We find that
ARES results are less accurate compared to the results of ER and
ES. This is because ARES measures error relative to input data. If
the magnitude of input data is small (near zero), the range of the
ARES value will be large. In such a context, accurate estimations are
difficult, given the limited number of grids in the lookup table.

Table II shows our regression results for improved EM estima-
tions. The upper part (a) of the table shows regression coefficients
derived with different hardware configurations. The lower parts of
the table show (b) the estimation inaccuracy and (c) the absolute
estimation inaccuracy, as defined in Equation (11) and (12), where
Rc and Re are the simulated and estimated results, respectively. The
two inaccuracy metrics are shown for both “without regression” and
“with regression” cases.

Estimation inaccuracy = |Rc −Re|/|Rc| (11)

Absolute estimation inaccuracy = |Rc −Re| (12)

Without regression, we report the results with αIN = αP = 1 and αC
= 0 for the coefficients in Equations (9) and (10); this is a pessimistic
assumption (i.e., that there are no overlap effects from the composi-
tion). To obtain the coefficients in Equation (9) and (10), we simulate

a single approximate adder with different operating conditions, which
we model by changing the input distributions (Gaussian distributions
with zero mean and different standard deviations), and applying
artificial errors. The artificial errors are also assumed to have Gaussian
distributions with zero mean and different standard deviations. Using
(i) the EMA, EMB, and EMZ measured from the simulation, as well
as (ii) the EMin values obtained from lookup tables, we generate
the regression coefficients using the linear regression toolbox in
Matlab [20].

After obtaining the regression coefficients, we apply them in EM
estimations and report the two inaccuracy metrics of EM results. We
observe from Table II that the regression coefficients help improve
absolute inaccuracy of estimated ER, ES, ARES and SNR. However,
the absolute inaccuracy slightly increases for MSE, and increases over
50% for MAXE. One possible reason could be that the data points
that dominate MAXE are outliers for linear regression. Compared to
absolute inaccuracy, the benefit of regression for estimation inaccu-
racy degrades for ES, MSE, and MAXE. This is because the linear
regression applied to Equation (10) implies minimizing |Rc−Re|, and
|Rc| in the denominator of Equation (11) is not considered. Improving
the regression model to address both inaccuracy metrics mentioned
above is one of our ongoing works.

TABLE II. (A) REGRESSION COEFFICIENTS DERIVED WITH DIFFERENT

HARDWARE CONFIGURATIONS, (B) ESTIMATION INACCURACY WITH AND WITHOUT

REGRESSION, AND (C) ABSOLUTE ESTIMATION INACCURACY WITH AND WITHOUT

REGRESSION.
Regression Parameters

ER ES ARES MSE SNR MAXE
αIN 1.03E+00 1.00E+00 2.42E-02 1.00E+00 3.46E-01 9.40E-01
αP 1.26E+00 9.98E-01 9.76E-01 1.00E+00 7.15E-02 7.98E-01
αC -5.85E-03 5.74E-08 -5.92E-03 -5.55E-09 -1.27E+00 8.65E-05

Estimation Inaccuracy
w/o Reg. 4.15E-02 7.77E-02 8.38E+02 1.08E-01 1.35E+02 1.28E-01

with Reg. 7.40E-03 5.55E-01 2.09E+02 4.44E+04 4.04E-01 1.88E+01
Absolute Inaccuracy

w/o Reg. 4.01E-02 2.90E-05 1.09E+01 2.24E-07 2.96E+03 9.37E-04
with Reg. 7.17E-03 2.71E-05 1.46E-01 2.90E-07 1.31E+01 1.52E-03

IV. EXPERIMENTS AND RESULTS

To evaluate the accuracy and performance of our EM estima-
tion approach, we perform several experiments. (For pessimistic
evaluation, we use estimation inaccuracy in Equation (11) in this
section unless otherwise specified.) First, we demonstrate that our
approach can be applied to a four-tap finite impulse response (FIR)
filter. In the FIR experiment, the accuracies of six error metrics are
evaluated. Second, we use multiply-accumulator (MAC) circuits with
different sizes to compare the accuracy and runtime between our
approach and the interval-based approach. Finally, we evaluate the
accuracy of estimated results for randomly-generated topologies. In
the experiments, we use 64-bit ETAIIMs with different k parameters.
The adders are assumed to have 60 fractional bits.

FIR filter. To demonstrate that our approach is applicable to realistic
computation circuits, we estimate EMs for the FIR filter design
illustrated in Figure 9(a). Lookup table characterization for each
error metric and standard deviation is performed for 12×12 different
combinations of standard deviations (20, 2−2,... 2−22). For each entry
in the tables, we use 90K samples to obtain standard deviations and
EMs. The runtime for building this set of lookup tables is 1.37 hours
on a 2.8GHz Intel Xeon E5-2640 Linux workstation with 128GB of
memory. With our lookup tables, we implement the flow in Figure 6
with Matlab [20].

Table III shows inaccuracy results of the estimations for each EM.
We assume that the constant multipliers are accurate, and the adders



in the FIR filter are approximate modules. In the second column
(error type), “IN” means an intrinsic EM value generated by the
approximate modules themselves, and “P” means a propagated EM
value composed from the EMs in previous stages. Based on the results
in Table III, our approach provides accurate EM estimations for ER,
ES, MSE and MAXE metrics. For the same testcase, the inaccuracies
of the interval-based approach are 17.6% and 60.2% for ER and ES,
respectively.
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Fig. 9. Configuration of (a) FIR filter and (b) multiply-accumulator (MAC)
circuits used in the experiments.

TABLE III. ESTIMATION INACCURACY OF A FOUR-TAP FIR FILTER SHOWN IN

FIGURE 9(A).
Estimation Inaccuracy

Net Type ER ES ARES MSE SNR MAXE
NET9 IN 0.3% 6.4% 17.0% 6.4% 19.1% 0.0%

NET10 IN 1.3% 2.6% 61.9% 3.3% 10.7% 0.0%
NET11 IN 1.0% 6.3% 419.6% 6.2% 6.1% 0.0%
NET11 P 13.4% 5.8% 692.3% 5.8% 436.4% 0.7%

MAC circuits. We test the accuracy and runtime of our approach
against the interval-based approach for the MAC circuits shown
in Figure 9(b), which are the general case of the FIR filter. We
use 280 MAC circuits, having 14 different levels and 20 different
configurations (parameters of each adder, constant values Ci, and
input distributions).1 We estimate EMs for the MAC circuits using our
approach and the interval-based approach. Figures 10 and 11 show
correlation plots for ER and ES, respectively. For ER, we observe
that our approach achieves 1.28× better accuracy than the interval-
based approach with 8.4× faster runtime. For ES, we observe that
the estimated results from the interval-based approach are clamped to
-2−20 on the right end. This is due to the saturation issue mentioned
in Section III-A. For the same testcases, our approach is not affected
by the saturation problem because the estimates of ES are interpolated
or extrapolated from the lookup tables.

We evaluate runtime and accuracy for increasing circuit com-
plexity by increasing the number of circuit levels in Figure 9(b).
Figure 12(a) shows how runtime scales with circuit complexity. We
observe that the runtime of error composition increases linearly for
both our approach and the interval-based approach. Our approach
is 8.4× faster than the interval-based approach. Figure 12(b) shows
inaccuracy results. Our approach demonstrates improved accuracy
compared to the interval-based approach, especially for the ES metric.
The inaccuracy is reduced by 3.75× compared to the interval-based
approach excluding saturation.2

Randomly generated topologies. To study the accuracy of EM
estimation with respect to the size and topology of testcases, we

1Note that the multipliers are assumed to be accurate, so they only change
the distribution of data but do not increase the number of errors.

2Note that when the number of nodes is small (the left side of the figure),
the magnitude of estimation errors tends to be large relative to the magnitude
of data, and the inaccuracy of the interval-based approach is very high due to
the saturation issue.
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Fig. 10. Comparison of ER metrics between our approach and the interval-
based approach.
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Fig. 11. Comparison of ES metrics between our approach and the interval-
based approach. The inaccuracy on the right side is (2×109).

(a) (b)

Fig. 12. Comparison of (a) runtime for error composition and (b) inaccuracy
of EM estimation for the MAC circuits with different testcase sizes. Our
average inaccuracy improvement against the interval-based approach is 3.75×
excluding saturation.

use randomly generated testcases as in [11]. We use the following
three components to generate the random testcases; (1) primary inputs
(PI) with different standard deviations, (2) adders with different
hardware configurations, and (3) arbitrary connections among adders
and constant multipliers. We generate 50 artificial testcases with
different numbers of nodes (adders or constant multipliers). The
number of nodes ranges from 10 to 30 with a step size of five. The
accuracy results for each EM are plotted in Figure 13. We evaluate the
estimated results from our approach with the regression coefficients
generated from the model in Section III-B. In the plot, inaccuracy
results from 10 different topologies are averaged for each circuit size.

For randomly generated circuits, we observe that ER, ES, MSE
and MAXE show relatively accurate results with 4.18%, 8.30%,
12.2% and 12.9% inaccuracy, respectively. Moreover, the accuracy
does not degrade as circuit complexity (number of nodes) increases.
The estimates of ARES and SNR are inaccurate (1.28×103 and
1.35×102). Inaccuracy in these metrics arises because they measure
error relative to input data, and accurate estimation is difficult, as
we have discussed in Section III-C. Methods that would accurately
handle their composition are obvious directions for our future work.



V. CONCLUSIONS

We propose an approach for output quality estimation of approx-
imate designs. Our LUT-based approach characterizes the statistical
properties of approximate hardware modules and a regression-based
technique improves the accuracy of EM estimation. With our compo-
sition approach, we achieve 1.36× and 8.4× runtime improvements
for library characterization and error composition, respectively. We
also achieve 3.75× accuracy improvement for ES compared to [9]
[10] on a set of MAC circuits. We also demonstrate that our ap-
proach is applicable to general designs using the randomly generated
testcases with up to 30 nodes in the configuration.

Our ongoing work seeks to improve the accuracy of EM esti-
mation for relative error metrics (e.g., ARES and SNR). We will
also extend our approach to other approximate modules, including
multipliers. In addition, we are working to develop a synthesis
flow for approximate circuits using our EM estimation approach.
We further anticipate broadening our current studies to include
more approximate arithmetic units and different input distributions.
Currently, we assume that the input distributions are given; however,
different applications have different distributions. Our follow-on work
will seek (1) approaches that track the change of input distributions
and reconfigure the hardware during runtime, in order to adapt the
distributions such that error metric requirements are maintained; and
(2) approaches that construct error metrics by decomposing arbitrary
distributions into combinations of some basis distributions.
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EMs min. avg. max.

MSE 9.61E‐02 1.22E‐01 2.00E+00

ARES 2.00E+00 1.28E+03 8.97E+01

MAXE 4.92E‐02 1.29E‐01 2.00E+00

SNR 2.00E+00 1.35E+02 5.36E+01

ES 5.97E‐02 8.30E‐02 2.00E+00

ER 1.31E‐01 4.18E‐02 2.00E+00

Minimun/average/maximum 
inaccuracy for #nodes = 30

EMs min. avg. max.

ARES 2.00E+00 1.28E+03 8.97E+01

SNR 2.00E+00 1.35E+02 5.36E+01

MAXE 4.92E‐02 1.29E‐01 2.00E+00

MSE 9.61E‐02 1.22E‐01 2.00E+00

ES 5.97E‐02 8.30E‐02 2.00E+00

ER 1.31E‐01 4.18E‐02 2.00E+00

Fig. 13. Comparison of inaccuracy with respect to the number of nodes in
randomly generated circuits.
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