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Abstract— Timing speculation has been proposed as a tech-

nique for maximizing the energy efficiency of processors wit
minimal loss in performance. A typical implementation of
timing speculation involves speculatively reducing the Jtage
of a processor to a point where errors are possible but rare,
and employing an error recovery mechanism to ensure correct
functionality. This allows significant energy savings witha small
recovery overhead.

Previous work on timing speculation has either explored the
benefits of customizing the design methodology for a partidar
error resilience mechanism or has attempted to understandte
benefits from error resilience for a particular processor design.
There is no work, to the best of our knowledge, that attempts
to understand the benefits of co-optimizing microarchitectire
and error resilience.

In this paper, we present the first study on co-optimizing
a processor pipeline and an error resilience mechanism. We
develop an analytical model that relates the benefits from
error resiliency to the depth of the pipeline as well as its
circuit structure. The model is then used to determine the
optimal pipeline depth for different energy efficiency metrics
for different error resilience overheads. Our results dema-
strate that several interesting relationships exist betwen error
resilience and pipeline structure. For example, we show tha
there are significant energy efficiency benefits to pipelinig
an architecture for an error resiliency mechanism vs error
resiliency-agnostic pipelining. As another example, we shw that
benefits from error resiliency are greater for short pipelines
than long pipelines. We also confirm that the benefits from
error resiliency are higher when the circuit structure is such
that error rate increases slowly on reducing input voltage &
a circuit optimized for power where a slack wall exists at the
nominal operating point. Finally, we quantify the difference in
benefits from error resiliency for irregular vs regular work loads
and show that benefits from error resiliency are higher for
irregular workloads. Our analytical results were validated using
a cycle-accurate simulation-based model.

I. INTRODUCTION

understand the benefits of co-optimizing microarchitextur
and error resilience.

In this paper, we present the first study on co-optimizing
a processor pipeline and an error resilience mechanism. We
develop an analytical model that relates the benefits from
error resiliency to the depth of the pipeline as well as
its circuit structure. Our model builds upon Hartstein and
Puzak’s model for optimizing pipeline depth considering
both power and performance [8]. We have added a model
for voltage overscaling to enhance power savings and then
modeled different relationships between voltage oveisgal
and timing error rate. Also, we model different overheads fo
error recovery. The overhead of error recovery may either be
fixed or depend on the length of the processor’s pipeline. The
new model allows us to optimize both the pipeline depth and
operating voltage for a given error recovery mechanism.

Our results demonstrate that several interesting relation
ships exist between error resilience and pipeline strectur
We show that not only can the optimal pipeline depth be
significantly different when error resilience is taken into
account, but that different error resilience mechanisnss (a
reflected by their recovery overhead) impact the architectu
differently. We additionally explore the importance of eth
architectural and workload parameters on the effects of err
resilient designs. Finally, we demonstrate that optingjzm
architecture without considering error resiliency resuh
sub-optimal energy efficiency benefits. We explain why this
is the case and show that optimal architectures should take
error resilience mechanisms into consideration.

Section Il discusses related work. Section Ill describes ou
analytical model that relates the impact of error resileeand
voltage overscaling to the structure of a processor’s pipel
Section IV discusses our simulation and analytical method-

Timing speculation [1] has been proposed as a techniqadogy. Section V presents results and analysis. Section VI
for maximizing energy efficiency of processors with minimaksummarizes and concludes.
loss in performance. A typical implementation of timing

II. RELATED WORK

speculation involves speculatively reducing the voltafa o
processor to a point where errors are possible but rare, andTiming speculation and voltage overscaling have been
employing an error recovery mechanism to ensure correstudied extensively to improve yield and to reduce proaesso
functionality. This allows significant energy savings wéh power consumption. However, previous work focuses on
small recovery overhead. studying the benefits from such approaches fogieen

Previous work on timing speculation has either exploredrocessor design [1], [6], [9], [10] or understanding the
the benefits of customizing the design methodology for bBenefits from a custom design methodology for a given error
particular error resilience mechanism [2], [3], [4], [5] loas resilience mechanism [2], [3], [4], [5]. We attempt to under
attempted to understand the benefits from error resilienstand the interaction between a processor’s pipelinetsiteic
for a particular processor design [1], [6], [7]. There isand the effectiveness of an error resilience mechanism when
no work, to the best of our knowledge, that attempts tapplied to it.



Optimal pipelining has also been studied significantlymust stall/lbubble when a hazard occurs. Because it is a
Hrishikesh et al. [11] determined that the optimal logicttep fraction of the pipeline stages, the non-busy time is weidht
per pipeline stage is 6 to 8 FO4 delays when consideby p in addition to the clock period /ifs.
ing performance only. Hartstein and Puzak built on power The power equation, derived from Srinivasan et al's
models from Srinivasan et al. [12] to develop an analyticalork [12] includes three components: dynamic power, leak-
model that determines the optimal pipeline depth for metricage power, and a latch growth factor. Dynamic power is
that consider both power and performance [8]. We buildepresented byP;, the average dynamic energy/cycle per
on Harstein and Puzak’s model to develop a model thdtch (note that these units are not in watts), weighted by
determines the optimal pipeline depth for processors thitte clock gating factorfey and the frequency. The clock
tolerate voltage overscaling-induced timing errors. gating factor is 1 when no clock gating is performed, and

The closest work is by de Kruijf et al. [13] who developless than 1 for different degrees of clock gating. féy
a performance/power model for understanding the effectivealue of 0.3 is considered to be an aggressively clock gated
ness of timing speculation for different process technieleg design.R represents the average leakage power per latch in
power designs, and error recovery techniques. Their work @nergy/second or watts. Because both these power values are
focused on understanding the efficiency of timing speculger latch, they are weighted by the average number of latches
tion for a given architecture. We attempt to understand th@er stageN,_. The latch growth component of the system
benefits of co-optimizing a processor’s pipeline and circuiaccounts for the superlinear growth in latches as pipeline
structure and error resilience strategy. depth increases, argued by Srinivasan et al in [12]. This is
represented by, the latch growth factor.

By accounting for workload variation in hazards and ILP
A. Baseline and architectural variation in delays and power consumptio

First, we consider the analytical model developed by HarEquation 1 is able to optimize the number of pipeline stages
stein and Puzak [8] for optimizing a processor pipeline fofor particular architectures based on an energy efficiency
a metric that considers power and performance (Mgfg)c metric.

IIl. THEORY

B. Modeling Voltage Overscaling and Error Resilience

Metricpp = 1/((T/Ni)™Pr) (1) , ,
o . The key to modeling voltage overscaling and error re-
This is composed of the following two parts: silience is accounting for the power and reliability impact
of overscaling and the performance impact of error recovery
T/Ni = 1/(fsa) + (1iNnp) /s () The magnitude of voltage overscaling directly determihes t
and power savings and the timing error rate. The error rate,rgive
an error recovery mechanism and the associated recovery
Pr = (fegfsPy+R)NLP" 3) cost, determines the performance penalty.

The performance cost of error recovery can be modeled

where m in Equation 1 is the exponential weighting for gs:
delay in the energy efficiency metric[ /N;, defined in
quatioq 2, is the average CPI of the system, d&hd . Terr /NI = yeep(To/Ny) (5)
defined in Equation 3, is the average power consumption.
Following [8]'s example, we usm= 3 for our studies unless Whereye is the average number of pipeline stages delayed by
mentioned otherwise. error recoveryp is the number of pipestages for that design,

Common to both Equations 2 and 3 are theand fs € is the average number of errors per cycle (the error rate),
variables.p represents the pipeline depth of the process@dTo/Ni is the CPI of the system described in Equation 2.
and is varied in the optimization procedsis defined as the When the cost of error recovery is independent of the total

operating frequency, and is derived from: number of pipestages, the performance cost of error regover
can be modeled as:
fs=1/(to+tp/P) 4)
wheret, is the latch delay and, is the logic delay of the Terr/Ni = yee(To /Ny ) (6)

full pipeline. _ wherec is a constant. The overhead of error recovery calcu-
The CPI equation is composed of two parts, the busy timgieq as above can then be added to the CPI in Equation 2.

and the non-busy time. The busy time is simply the frequency,a new performance (CPI) equation that accounts for the
weighted by the superscalar width factayrepresenting the o\ arhead of error recovery is:

average amount of ILP per cycle for a workload. The non-
busy time uses a single variabls,, defined as the fraction T/N = 1/(fa

. : . . = + (yaN fs+ Terr /N 7
of all instructions which might cause hazards. These hazard /N /(1) + () / fs+ Ter /N 0
include mispredictions, structural hazards, data depmrale To model the impact of voltage overscaling on processor
stalls, etc.y, is the average performance penalty factor fopower and reliability, we introduce a voltage overscaling
hazards. It represents the fraction of pipeline stageswhidactor, f,. We scale the dynamic power quadratically with



all timing paths can be equally divided when pipelining (all

previous works on optimal pipelining depth make the same
Critical Path =— assumption)'
L P1 L IV. METHODOLOGY
P2 Our analytical model requires data on dynamic and static
power per latch (note that we make the assumption that all
— ‘ power is consumed in latches, the same assumption made in
all previous work on optimal pipelining). Because we do not

have actual gate-level data available to use as paramaters i
our model, we rely on data from an architecture-level power

[~ Critical Path === === Critical Path === simulator (Wattch [15]) that is coupled with a cycle-ac¢ara
L P4 L P1 L processor simulator (SMTSIM [16]) simulating an Alpha
core. The dynamic power estimates are derived as an average
P2 =— P2 =— over 8 randomly-chosen SPEC2000 benchmarks [17], listed

in Table | when run for 100 million instructions after fast-

forwarding them to the Early Simpoints [18]. We assume
that leakage power is 30% of the total power at the nominal
voltage. We do not consider clock gating, and we assume

n = 1.3, based on [12]. Our power formula, therefore, is the
Fig. 1. The effect of pipelining on the slack of a design (thghtighted following
portion denotes the path slack). When a logic stage is pipalithe absolute
length of the timing paths, and therefore the amount of sfzmkstage, is

P2 Slack before
P2 Slack after

reduced. This causes more errors for a given absolute iedLiot voltage. Pr = (fs(Psim/ fsim) fu? + (.3Psim/.7) fv) pt3 (12)
voltage. Leakage power is scaled linearly with voltage. OuvherePsim is the dynamic power reported by the simulator
new power model is as follows: at the nominal voltage andsi, is the frequency at which
that power was reported.
Pr = (fegfsPy fu2+ R fy)N_p" (8) For validating our analytical model and confirming the

) ) ) conclusions we drew from the analytical model, we per-
For modeling the relationship between error rate anghme further experiments using a modified version of SMT-
vol'_[age overscaling, we assume that a slack Wall e>_<|sts aiwv [16] coupled with power estimates from Wattch [15].
which the error rate explodes [14], [3]. The relationship ca o, modifications allowed us to vary the frequency, opegatin
then be modeled by: voltage Vqq), insert errors at a particular rate per cycle, and
) w control the error recovery penalty. To model error recoyery
e=min(L, (1~ fv)/(1-vo))") ©)  we simply penalize the system fgg x p cycles (orye x €
wheree is the error ratef, is the voltage overscaling factor cycles when the recovery penalty is fixed). To change the
(0< f, <1, f, =1 corresponds to the nominal voltage); length of the simulated pipeline, we added extra stages to
is the normalized voltage at which the slack wall is reachefe front end of the simulated processor. This ensures that
(0< Vo, < 1), andw is the exponential relating how steeply thethe increased length of the pipeline affects the overhead of
errors increase on overscaling. A smallvalue corresponds hazards. In addition, Wattch does not account for power
to a relatively smooth increase in error rate as voltage @owth due to pipeline depth. We assumed the same latch
reduced. growth exponent of) = 1.3 as in our analytical model, and
Note thatv, depends on the length of the pipeline. Thisscaled our power accordingly. Our validation experiments
is because the amount of available voltage slack decreadégre run using the same SPEC2000 binaries in Table I. We
as the length of the pipeline is increased. Figure 1 illtstra fast-forwarded to the Early SimPoint [18] of each benchmark

this effect. We model the dependencevgfon the length before beginning error injection simulations.

of the pipeline using the following equation: Table | describes the benchmarks we used in our sim-
ulations. The benchmarks were chosen randomly, with five
Vo =1—(1—Vop) * (Pp/P)¥ (10) floating point and three integer benchmarks. The Base IPC is

) ) the IPC of the benchmark when simulated on the minimal 8
wherevy, is the normalized slack wall voltage for the basestage pipeline supported by the simulator without congiger
pipeline, py is the base pipeline depth (we assume thgrrors (no timing speculation). Table Il presents our SMASI

traditional 5 stage pipeline as the baseline in our experiettings, while Lastly, Table 11l presents our power segin
ments), k controls how quickly the error rate grows with for \Wattch.

the number of pipestages, am is the current pipeline

depth. Effectively, as the pipeline depth gets deeper than t V. RESULTS AND ANALYSIS

base pipeline depth, the amount of available voltage slackIn this section, we analyze the relationship between the
decreases proportionally. Note that the equation assumaés tbenefits from error resilience and pipeline, circuit, and



TABLE |

SPEC2000 Benchmarks Employed

Effect of voltage overscaling for y, = 0.11, k=1, w=1

0.18 T T T
e=0.000 ——

Benchmark | Description Base IPC e Sigjggé o

SPECFP [ ~,_ 6-0080 -

applu Parabolic / Elliptic Partial Differential Equa; 0.307 o %\\ |

tions - x;\'\\

art Image Recognition / Neural Networks 0.44 BrETE e . e

equake Seismic Wave Propagation Simulation 0.331 Bg *

swim Shallow Water Modeling 0.302 % Seg . 1

wupwise Physics/Quantum Chromodynamics 0.649 s = |

SPECINT o

bzip Compression 0.837 e

crafty Game Playing: Chess 0.719

vpr FPGA Circuit Placement and Routing 0.293 1
TABLE Il o 1
SMTSIM Parameters 0.09 ‘ ‘ ‘ ‘
| Core | | 5 10 15 20 25 30
Pipeline depth
Number of instructions simulated 100 Million Effect of voltage overscaling for y, = 0.11, k=1, w=4
Instruction order |n_-order 019 T T ey —
Number of threads Single Threaded €=0.001 -
0.18 |- B e T €=0.005 % |
Number of stages 8+ e * x o ez002s -
L1 Spiit /D Cache O e ey 6o |
Size 32KB T o T
ASSOC 4-Way = R
Miss Penalty 8 cycles B \
L2 Cache 2 o b
Size 2MB 9 T
Assoc 4-way ® o 1
Miss penalty 40 cycles S
L3 cache
Size 4MB 1
Assoc 4-way
Miss penalty (to memory) 255 ps 1
O'15 io is éo 2‘5 30
workload characteristics. We also present results from our Pipeline depth
validation eXperi ments. Effect of voltage overscaling for y, = 0.11, k=1, w=8
0.22 T T T
. . . e=0.000 ——
A. Exploring the Interaction between Error Resilience, ez0001
Pipelining, Circuit Structure, and the Metric for Energy Y S S0 -
Efficiency o R T
- x o **

We begin by exploring the benefits from error resilience o - S —— 1
when voltage is overscaled to allow errors which are then : //*%JW\E.\\\:E g
assumed to be tolerated using suitable error tolerance-meclky ot g \+\j: 1
anisms (the recovery penalty is considered while evalgatin * o .
energy efficiency). Figure 2 illustrates the benefits of rerro 014 | R

™ . . . . 2]
resilience for pipelines of different lengths and for diéfat
error rates. The figures also illustrate the sensitivity to  oxnf 1
the voltage vs error rate relationship. From top to bottom,
the figures correspond to a more gradual voltage vs error o1 - - - - . -

rate relationship (the voltage can be reduced further befor Pipeline depth

reaching the same error rate).

Fig. 2. Error resiliency benefits can be substantial, ancclsely tied to

Figure 2 confirms the conclusion from the previous studigaeth the length of the pipeline and the relationship betweear rate and

that there can indeed be significant error efficiency benefi

gltage scaling. The figures show error resiliency benefitdftierent error
e vs voltage scaling relationships. From top to bottaml,4,8.

from introducing error resilience into a design. We observe
up to 30% benefits relative to a processor that is not allowed

to produce errorsg= 0).

TABLE Il
Wattch Parameters
Wattch Parameter Value
Process Technology 65nm
Vdd (nominal) 1.5V
Vth 7V
Dynamic Power vs Voltage relationship v f

We also observe that the benefits of error resilience are
strongly dependent on the relationship between voltage and
error rate. When the voltage vs error rate relationship is
steep, the benefits diminish as the error recovery timesstart
outweighing the power benefits of voltage overscaling. Note
that the voltage vs error rate relationship is largely dexla
by the timing slack distribution of the design, which in turn
is affected by microarchitectural choices as well as théydes



methOdOlOgy_ Effect of voltage overscaling for y, = 0.11, k=0, w=8
: . 0.35 . : ,
Figure 2 also demonstrates that the benefits of error

resilience are strongly tied to the number of pipestages. Th el 2 °
figure shows that the optimal length of the pipeline (i.e., 03 o i ¥xi§§¥

the one that maximizes energy efficiency) when errors are g ‘”ﬁﬁ
allowed is shorter than the optimal length of the pipeline .| & ~ e S|
when no errors are allowed. This relates to two aspectsmi . * :

of error resilience: the time spent recovering from errors,
and the relationship between path slack and the number of °?[~
pipestages. For error recovery mechanisms in which regover ’ N L

time is proportional to the length of the pipeline, shorter ;| T T
pipelines see reduced recovery time than longer pipelines /

for the same error rate. Similarly, for architectures whose
available path slack is strongly dependent on the lengtheof t oy 10 5 2 2 %
pipeline, as modeled by Equation 10, shorter pipelinesvallo Pipeline depin
greater voltage overscaling before hitting the slack wall.

To further confirm the dependence of error resiliency bene-
fits on the slack distribution and the number of pipestages, w
studied the impact on energy efficiency benefits of pushing
the slack wall closer to the nominal voltage at different
rates when the number of pipestages is increased. Figure
3 shows the results. The topmost figukes 0, represents an &
architecture in which path slack is independent of the numbe &
of pipestages. As the length of the pipeline is increased,
the performance improves proportionally with the frequenc
change, increasing the energy efficiency until the pointrethe
the hazard and error recovery time, in addition to the power
increase from latch growth, outweigh the performance im- ‘ ‘ ‘ ‘
provement. For architectures in which path slacks areljight s 10 1 - 2 » %0
coupled with the length of the pipelin& £ 1 or k= 2) the
slack wall is hit sooner as the length of the pipeline incesas 0.22 o
decreasing the energy efficiency benefits. 20008 %

Finally, we observed the benefits from error resiliency for ozr £200
other energy efficiency metrics. As expected, the greatest
error resiliency benefits are seen for the energy efficiency gy o Feeni
metrics dominated by power (lower values of). The 016 D/D/’/”/D/:;D = |
m= 1 curve sees the greatest error resiliency benefit anﬁa B *o
has the shortest optimal pipeline (pipelining only impeve ® o Beg
the performance portion of the metric, not the power). For G
performance-dominated energy efficiency metrics, the-opti
mal pipelines are long, and therefore, the power benefits fro
voltage overscaling are outweighed by the error recovery
overheads. Long pipelines also have reduced path slack, o

Effect of voltage overscaling for y, = 0.11, k=1, w=8

Effect of voltage overscaling for y, = 0.11, k=2, w=8

0.1

L L L L
10 15 20 25 30

further reducing the benefits of error resilience. Figure 4 ) Pipeline depth
demonstrates the benefits of error resiliency for the BY®S  Fig. 3. Error resilient designs see greater benefits fromtehgipelines
metric asm is varied. as the available path slack decreases faster due to pigeliRrom top to

bottom, k=0,1,2
B. Exploring the Benefits of Co-optimization

The previous results show the sensitivity of energy efmind. These figures illustrate the energy efficiency gaias th
ficiency of error resilient designs to various architediuracan be had from co-optimizing the architecture with error
circuit, and modeling parameters. We now consider theesiliency. Note that co-optimization, in this case, siynpl
following question: how important is it to reconsider thecorresponds to identifying the optimal pipeline depth arel t
architecture when introducing an error resilience medrani corresponding operating voltage forgéven error resilience
into a design? mechanism.

Figures 5 and 6 compare the benefits of error resiliency for For small error recovery penalties, where the largest gains
an architecture that was optimized without error resiljeimc  from error resiliency are achieved, we observe significant
mind against an architecture designed with error resijiemc benefits from re-architecting the processor with error re-



Effect of voltage overscaling for varying energy effiency metrics
18 T T T

Normalized BIPS™/W (relative to baseline)
2}
o
Normalized BIPS3W (relative to baseline)

02

5 10 15 20 25 30
Optimal pipeline depth

Fig. 4. Benefits of error resiliency improve for energy eéficty metrics
dominated by power. The figure shows the benefit of errorieesy for
m=1,2,3,4 (BIPS/W).

siliency in mind. In fact, we observe gains greater than 15%.
The gains from co-optimization diminish as the optimal erro
rate decreases, which has the effect of moving the optimal
pipeline lengths closer to that of the baseline (i.e., théwg
pipeline when no errors are allowed).

We also observe that the benefits of co-optimization are
strongly dependent on the relationship between error rate;
and voltage. From top to bottom, Figure 5 shows decreasingg
steepness of the voltage vs error rate curve. The lower the
voltage before hitting a certain error rate, the higher the
optimal error rate, and therefore the greater the benefita fr
co-optimization.

The benefits of co-optimization are also closely linked
to the sensitivity of path slack to pipeline length. Figure
6 illustrates the advantages of co-optimization as the path
slack moves from being independent of pipeline length to
decreasing rapidly as the length of the pipeline increasesg
(k=0 to k= 2). The increased benefit can be attributed to
the path slack’s sensitivity to the pipeline length causing
optimal architectures to have shallower pipelines. In gahne
the greater the reduction in the optimal pipeline lengthnvhe
error resiliency is considered, the greater the benefit from.
co-optimization.

C. Validation

We used the cycle accurate simulation-based methodology
described in Section IV to validate our analytical modehiro
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Section I1l. Our validation experiments were performeagsi Fig. 5. The benefit of re-optimizing an architecture depestgsngly on
8 randomly selected SPEC2000 benchmarks from both tife@ error rate vs voltage relationship. Architectures ting of circuits

integer and floating point suites. Here, we focus on twi
benchmarks that illustrate the accuracy of our results and
show how optimizing for two different workloads affects

aeeing fewer errors at a particular voltage (bottommostdigwill see the
most benefits from re-optimization.

error resiliency benefits. These results assume the folpwi PENefits have a strong dependence on the pipeline length for

parametersy, = 0.11, k=1, andw = 8.

CRAFTY. The error resiliency benefits are maximized when

Figure 7 shows the error resiliency benefits for the SwiMhe pipeline has 8 stages, the minimum number of stages

and CRAFTY benchmarks.

supported by the simulator. This is significantly different

The results confirm that significant energy efficiency ben’om the optimal pipeline length of 14 when no errors are
efits are indeed possible from error resiliency. SWIM sees fjlowed.
to 171% improvement in energy efficiency, while CRAFTY The SWIM benchmark is significantly more memory
sees up to 80% gain. Also, we observe that error resilien®gensitive, and therefore has a shorter optimal pipelina tha



Effect of Voltage Overscaling for k=1, w=8, swim Effect of Voltage Overscaling for k=1, w=8, crafty
0.007

Error rate = 0.000 —+— Error rate = 0.000 —+—

® Error rate = 0.001 -~ . Error rate = 0.001 — *—-

Error rate = 0.002 ------ 0.055 Error rate = 0.002 ---%---
0.006 | ' Error rate = 0.005 & ] . Error rate = 0.005 &
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Fig. 7. Simulated results demonstrating the benefits ofr egsiliency for two benchmarks, SWIM (left) and CRAFTY (nig).

CRAFTY. In fact, the optimal pipeline depth is the minimumparticular error resilience mechanism [2], [3], [4], [5] loas
of 8 even when no errors are allowed. We observe that ttedtempted to understand the benefits from error resilieoice f
benefits from error resilience are indeed higher for SWIM particular processor design [1], [6], [7]. There is no work
than CRAFTY (171% versus 80%), despite the fact that atb the best of our knowledge, that attempts to understand
other architectural parameters are the same. This confirie benefits of co-optimizing microarchitecture and error
our previous conclusion that error resiliency benefitsease resilience.
when the optimal architecture is a shorter pipeline, asés th In this paper, we presented the first study on co-optimizing
case when designing for irregular workloads. a processor pipeline and an error resilience mechanism.
Lastly, the CRAFTY results illustrate the need for co-We developed an analytical model that relates the benefits
optimization. As can be seen, the energy efficiency gairfsom error resiliency to the depth of the pipeline as well
from error resilience are only 34% over the baseline wheas its circuit structure. The model was used to determine the
operating at the optimal non-error resilient pipeline tlept optimal pipeline depth for different energy efficiency niegr
If the architect were to co-optimize the architecture wittfor different error resilience overheads.
the error resilience mechanism, therefore reconsidetieg t Our results demonstrated that several interesting rekatio
pipeline depth, the energy efficiency could be as high as 80%hips exist between error resilience and pipeline strectur
over the baseline. Note that in both these results, the aptinFFor example, we showed that there are significant energy
pipeline depth is the minimal one. This is not always the casefficiency benefits to pipelining an architecture for an erro
and depends on the systems, particularly the error recovessiliency mechanism vs error resiliency-agnostic pipeg.
penalty {&), sensitivity of slack to pipeline deptlkk)( Due As another example, we show that benefits from error
to space restrictions we only present one case. Furthermoresiliency are greater for short pipelines than long pipesi
due to the limitations of our simulator, we were not able tdVe also confirmed that the benefits from error resiliency
evaluate systems with less than 8 pipeline stages. Ourefutuare higher when the circuit structure is such that error
work will involve a more adaptable simulation framework. rate increases slowly on reducing input voltage vs a circuit
Figure 8 summarizes the results for all 8 SPEC bencloptimized for power where a slack wall exists at the nominal
marks investigated and compares benefits to the pipeliggerating point [14], [3]. Finally, we quantified the diféerce
depth. On average, we see a 136% energy efficiency gdin benefits from error resiliency for irregular vs regular
from error resiliency, 25% of which is due to co-optimizingworkloads and showed that benefits from error resiliency are
the pipeline depth and error resiliency mechanism. In additgher for irregular workloads.
tion, we confirm that those systems designed for the shortestOur study demonstrates considerable promise for an ap-
pipeline depths (those points highest on the pipeline depptoach to processor architecture that considers the error
scale), see the largest benefits from voltage overscatisge resilience mechanism.
error resiliency. These are the benchmarks that correspond ACKNOWLEDGEMENTS
to the lowest base IPC from Table I, and are those that are )
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