Scalable N-worst Algorithms for Dynamic Timing and
Activity Analysis

Hari Cherupalli and John Sartori
University of Minnesota
Email: {cheru007, jsartori} @umn.edu

Abstract—As the overheads for ensuring the correctness of electronic
designs continue to increase with continued technology scaling and
increased variability, better-than-worst-case (BTWC) design has gained
significant attention. Many BTWC design techniques utilize dynamic
timing and activity information for design analysis and optimization.
These techniques rely on path-based analysis that enumerates the
exercised paths in a design as targets for analysis and optimization.
However, path-based dynamic analysis techniques are not scalable and
cannot be used to analyze full processors and full applications. On the
other hand, graph-based techniques like those that form the foundational
building blocks of electronic design automation tools are scalable and can
efficiently analyze large designs. In this paper, we extend graph-based
analysis to provide the fundamental dynamic analysis tools necessary
for BTWC design, analysis, and optimization. Specifically, we present
scalable graph-based techniques to report the N-worst exercised paths
in a design for three metrics — timing criticality (slack), activity (toggle
count), and activity subject to delay constraints. Compared to existing
path-based techniques, our scalable dynamic analysis techniques improve
average performance by 977 x, 163X, and 113X, respectively, and enable
scalable analysis for a full processor design running full applications.

I. INTRODUCTION

As challenges in technology scaling have resulted in increasing
static and dynamic variations, accompanied by increasingly restrictive
design guardbands that ensure correctness even under worst-case
conditions, better-than-worst-case (BTWC) design has emerged as
a way to improve energy efficiency under average-case conditions
by relaxing conservative design constraints and either tolerating or
correcting any resulting errors [1], [2], [3], [4], [5], [6].

BTWC design techniques rely on error tolerance or correction
mechanisms to handle errors when worst-case conditions do occur.
This allows a processor to be optimized for and operated at a BTWC
operating point, potentially resulting in significant energy savings
with respect to a design that has been guardbanded for worst-case
conditions. Several BTWC design techniques exploit not only static
design information, such as timing and power characterizations, but
also dynamic information, such as activity factors that characterize
how a design is exercised by a set of target applications. Dynamic
information describes which parts of a design are most likely to be
exercised or produce errors under BTWC conditions. Such informa-
tion allows a designer to optimize for BTWC conditions and improve
design efficiency for a common case where errors are allowed

Many prior BTWC design and optimization techniques have used
path-based algorithms that enumerate the exercised paths in a BTWC
design as targets for analysis and optimization [2], [3], [4], [5],
[6], [7]. However, due to the extreme number of paths in modern
electronic designs [8], path-based analysis and optimization is inef-
ficient and in most cases infeasible, even for small designs. Due to
the large computation time and memory requirements of path-based
analysis and optimization, existing dynamic analysis and optimization
techniques have been forced to represent a full design using only
a small sample set of small design modules and to represent a
full application using only small code snippets covering a small
execution time window. This has limited their applicability in modern
semiconductor designs, which can often contain many thousands of
gates, and many orders of magnitude more paths [8].

Recent work has proposed a graph-based technique to characterize
the set of paths exercised by a workload running on a design,
demonstrating that graph-based techniques for reporting the longest
exercised path in a design are significantly faster than path-based
techniques [9]. While the authors of [9] demonstrate a scalable
technique for characterizing the longest exercised path in a design
(i.e., the dynamic critical path), BTWC design often involves analysis
and optimization of more than one dynamic critical path, as well as
paths that are both timing-critical and/or highly-exercised [2], [3],
[6], [11, [4]. For example, identification of a single dynamic critical
path can identify the threshold at which the BTWC operating region
begins, but determination of how the design behaves once in the
BTWC region and how to optimize it for operation in the BTWC
region requires identification, analysis, and optimization of multiple
exercised paths, in terms of both timing criticality and activity. As
such, a BTWC designer would be interested in having a complete
set of scalable dynamic analysis tools to characterize the timing and
activity of exercised paths in a BTWC design to report the following
information.

1. The N-worst exercised paths in terms of timing criticality: A
path that fails timing constraints in a BTWC design can only generate
an error if it is exercised (toggled). When guardbands are relaxed in
a BTWC design, the first paths to cause errors are the most timing-
critical paths. Analysis of the N-worst exercised paths in terms of
timing criticality tells a BTWC designer how much guardbands can
be relaxed before a design will produce errors and which paths will
generate errors at a particular BTWC operating point.'

2. The N-worst exercised paths in terms of toggle count (activity):
A path that fails timing constraints at a BTWC operating point causes
an error every time it toggles. The more a path is exercised by
applications running on a processor design, the more errors the path
can cause when it fails to meet timing constraints. Analysis of the
N-worst exercised paths in terms of toggle count characterizes the
paths that have the potential to cause the most errors in a BTWC
design.

3. The N-worst exercised paths in terms of toggle count (activity)
within a slack range: In a BTWC design, the objective is often
to minimize energy while keeping the error rate below a certain
acceptable threshold that can be effectively tolerated or corrected.
Identifying the activity of paths within different timing slack ranges
shows how the error rate of a design changes as guardbands are
relaxed and can also be used to produce a dynamic timing slack
distribution [5] that characterizes the error behavior of a BTWC
design at different operating points. This allows a designer to optimize
the design for minimum energy while bounding the error rate of
the design. It also allows the design to be dynamically tuned for
minimum energy when executing different applications that can
tolerate different amounts of error or using different error tolerance
techniques with different optimal error rates.

!Guardband relaxation in a BTWC design can take several forms; the
most common are voltage and frequency overscaling.

TABLE I: The scalable dynamic analysis techniques proposed in
this paper cover the set of capabilities needed to perform BTWC
design, analysis, and optimization. BTWC techniques proposed in
prior work rely on one or more of the dynamic analysis techniques
and thus would benefit from availability of scalable dynamic analysis
algorithms.

Type of Dynamic Analysis Usage in Prior

Work

N-worst exercised paths in terms of timing
criticality

N-worst exercised paths in terms of activity
within a slack range

[

(2]

[4], [
N-worst exercised paths in terms of activity | [2], [

(71 [

[3]

[

The dynamic analysis algorithms described above encompass the
fundamental techniques needed for BTWC design, analysis, and
optimization. Table I lists several prior works on BTWC design,
analysis, and optimization that rely on each type of dynamic analysis.
Scalable dynamic analysis techniques would enable these and other
BTWC techniques to be applied to full processor designs and full
applications.

In this paper, we present scalable graph-based algorithms that per-
form the dynamic analysis routines described above. Our techniques
are fully-automated and can be integrated into existing electronic
design automation (EDA) tools to analyze full processors and full ap-
plications. Furthermore, our techniques significantly reduce analysis
time and memory requirements with respect to path-based analysis,
which must enumerate all exercised paths in order to identify the N-
worst exercised paths for a given type of analysis. Such an approach
incurs huge overheads in terms of runtime and memory usage, even
when N = 1. Our scalable algorithms, on the other hand, can be
used iteratively, where each additional iteration incurs only a small
incremental cost to identify the N'*" worst exercised path in a design.
As such, the overhead of our techniques scales linearly with V.

Our paper makes the following contributions.

e We present novel graph-based dynamic analysis algorithms to
compute the N-worst exercised paths for the following metrics: (1)
timing slack, (2) toggle count / rate, (3) toggle count within a slack /
delay range.” These algorithms comprise a complete set of analyses
needed for BTWC design, analysis, and optimization. To the best
of our knowledge, these are the first graph-based dynamic analysis
techniques that perform N-worst analysis for exercised paths.

e We show that our techniques are scalable and can analyze large
designs. Whereas prior techniques relied on analysis of a small subset
of design modules and small application snippets to represent full
designs and applications, our techniques can analyze full processors
and full applications. Furthermore, compared to existing path-based
techniques, our techniques reduce analysis time significantly, even
for large values of N. We demonstrate speedups of up to 4364 x,
and average speedups for our algorithms are 977X, 163x, and
113x, respectively, with respect to path-based dynamic analysis.
The performance benefits of our techniques increase as processor
or application complexity increase.

II. RELATED WORK

Most previous works that perform dynamic timing and activity
analysis for BTWC design and optimization use path-based tools.
Blueshift [6] is a BTWC design methodology that uses path activity

2We use the terms activity, toggle count, and toggle rate in this paper to
describe dynamic activity analysis, based on the context. Similarly, we use
timing slack and delay when describing dynamic timing analysis.

information to adjust path timing constraints and reduce the error rate
of a frequency-overscaled BTWC design. Eval [| 1] proposes micro-
architectural techniques that improve the power and performance of
a processor by allowing variation-induced errors. Eval relies on the
VATS model [12], which computes the dynamic slack distribution
of a processor for a given workload. Power-aware slack redistri-
bution [3] uses path timing criticality and toggle rate information
to apply path-based optimizations that improve power and area
efficiency in a voltage-overscaled design. Recovery-driven design [1],
[2] optimizes a BTWC design for a specific target error rate. The
approach uses path-based activity and timing analysis to identify
the paths in a design that cause the most and least errors. Based
on this characterization, recovery-driven design applies path-based
optimizations to each path, such that error-prone paths are afforded
more timing slack and paths that rarely cause errors are afforded less
timing slack. Work on optimizing the processor microarchitecture of
a BTWC design [4] leverages dynamic timing and activity analysis
to guide architectural optimizations that manipulate the timing error
rate behavior of a design and increase the effectiveness of timing
speculation. Compiler-based software optimizations have also been
applied to improve the energy efficiency of timing speculative proces-
sors based on path-based dynamic timing and activity information [5].
Dynamic timing and activity information have also been used in non-
timing-speculative designs to identify a BTWC minimum voltage
or maximum frequency at which a specific application can safely
execute on a processor without causing errors [10].

The BTWC design techniques described above rely on path-based
timing and activity analysis, and many of the techniques also perform
path-based optimizations. These techniques involve enumeration of
the exercised paths in a design and are not scalable, due to the extreme
number of paths in electronic designs [8]. As a result, application and
evaluation of these techniques are limited to small modules and small
analysis time windows. In addition to not being able to handle full
designs or applications, module sampling methodologies ignore paths
between modules and those that cross module boundaries.

Since path-based techniques are not scalable, some works em-
ploy alternative techniques that either produce inexact results or
perform redundant work. One branch of work estimates error rate
by performing multiple delay-annotated gate-level simulations at
different (voltage, frequency) operating points [7], [13], [14]. In
contrast, our graph-based technique captures the dynamic timing and
activity information of an application, processor pair in a single gate-
level simulation, and error rates at different operating points can be
computed with little additional effort by recomputing gate delays
and performing STA. One work proposes a clustered timing model
to capture the dynamic delay distribution of a processor [15]. The
approach requires manual analysis of a design’s architecture and
produces inexact results because of architectural approximations. In
contrast, our graph-based algorithms, like other EDA routines, are
automated, architecture-independent, and do not introduce artificial
approximations that degrade accuracy.

Recent work on graph-based dynamic analysis [9] proposes a
technique for identifying the longest exercised path in a design (i.e.,
the dynamic critical path) without enumeration of all exercised paths.
However, the methods presented in [9] cannot be used to perform
the dynamic timing and activity analyses discussed in Section I —
the N-worst dynamic analysis algorithms that would provide the
essential information needed for many BTWC design, analysis, and
optimization techniques. In this paper, we expand upon the foundation
of graph-based dynamic analysis to create a complete set of scalable
EDA routines needed for BTWC design.

III. PRELIMINARIES

Before explaining our dynamic analysis algorithms, we define
some constructs used in their derivation. Although the constructs can
be applied to graph theory in general, we apply them in the specific
context of a gate-level netlist for a digital design.

G — Graph of the design containing gates (vertices) and
nets (edges), i.e., the gate-level netlist of the design.

p(G) — Set of all paths in the graph G.

g(G) — Setof all gates (vertices) in the graph G. (Note that
we use the terms gate and vertex interchangeably
in this paper.)

f(G@) — Set of path endpoints (flip-flops, clock gates, etc.)
in the design represented by graph G. Note that
f(G) is a subset of g(G), i.e., we consider all path
endpoints as gates.

Di — A particular path.

gi — A particular gate.

Definition 1. Path: A set of gates {ga, v, ..., gn} of a graph G is
a path if (1) an ordered sequence containing all the gates in the set
can be formed such that each gate in the sequence is driven by the
previous gate and (2) only the first and last gates of the sequence
belong to f(G).

Definition 2. Toggled gate: A gate is toggled in a particular cycle
when the net driven by the gate changes values in that cycle.
Definition 3. Toggled Path: A path is toggled in a particular cycle if
all the gates in the path toggle in that cycle.

Definition 4. Non-Toggled Path: A path is non-toggled in a particular
cycle if at least one gate in the path does not toggle in that cycle.
Definition 5. Gate-set: A gate-set is any vertex-induced sub-graph of
the graph G. (A vertex-induced subgraph is a subgraph defined by a
set of vertices that contains all the edges between those vertices.)
Definition 6. Toggled-set: A gate-set containing all the toggled gates
of G and no non-toggled gates of G for a given time stamp is a
toggled-set.

Definition 7. Unique Toggled-set (UT): Given a set of toggled-
sets representing per-cycle active gates from one or more gate-level
simulations on the same design, a toggled-set that remains after
uniquifying the set of toggled-sets is called a unique toggled-set
um [9].

Definition 8. Unique Non-Includible Toggled-set (UNIT): Given a set
of toggled-sets representing per-cycle active gates from one or more
gate-level simulations on the same design, a unique toggled-set that is
not a subset of any other toggled-set is called a unique non-includible
toggled-set (UNIT) [9].

Definition 9. UT / UNIT Membership Array: The UT / UNIT
membership array for a gate is a bit vector that describes which
UTs / UNITs the gate belongs to. The length of the bit vector equals
the number of UTs / UNITs extracted from the gate-level simulation,
and each bit position represents one UT / UNIT. A ‘1’ in a position
indicates that the gate belongs to that UT / UNIT.

The set of toggled sets corresponding to each cycle of execution
for an application characterizes the activity of all gates and paths in a
design for that application. UTs and UNITs characterize the activity
of an application more efficiently, since they reduce the number of
toggled-sets necessary to characterize all unique activity generated
by the application executing on the design [©].

IV. N-WORST ALGORITHMS FOR DYNAMIC TIMING AND
ACTIVITY ANALYSIS

In this section, we present scalable graph-based algorithms to
compute the N-worst paths exercised by a workload executing on a
design for the three metrics described in Section I. These automated

algorithms can be incorporated into EDA tools for BTWC design,
analysis, and optimization.

A. N-worst exercised timing-critical paths

Algorithm 1 computes the N-worst exercised paths in a design in
terms of timing criticality. In other words, among all the paths in a
design that are exercised by an application, Algorithm 1 computes
the N longest paths in decreasing order of delay (increasing slack).
In a BTWC design, the first paths to cause errors when guardbands
are relaxed (e.g., though voltage or frequency overscaling) are the
exercised paths with the longest delay (least timing slack). All
exercised paths with negative timing slack at a given operating point
(voltage, frequency) produce errors. This algorithm can be used to
identify the paths that fail first in a BTWC, as well as the point at
which paths begin to fail.

Algorithm 1 begins by creating data structures that characterize
the activity of gates in the design, using an activity file captured
during simulation of an application (e.g., a VCD). First, a toggled-set
is generated for each time stamp in the activity file, characterizing
the activity observed at that time stamp. Then, uniquification and
subsetting of the toggled-sets produces the UNITs for the application,
and each UNIT is assigned a unique index. The indexed list of UNITs
is used to generate a UNIT membership array for each gate (or pin or
net) in the design.’ Next, two data structures are created to explore
along exercised paths in the design to identify the N-worst paths. One
structure is a min-heap of path segments that orders the path segments
based on their timing slack. Secondly, a list is created to store fully
explored paths in order of decreasing timing criticality as they are
discovered. With these data structures initialized, Algorithm 1 begins
to iteratively identify the N-worst exercised critical paths, as follows.

First, all design endpoints (such as flip-flops and output ports)
are inserted into the heap. Each exercised endpoint represents the
terminus of a potential exercised path in the design, since the smallest
non-empty path segment is a single gate or port. The key value for
each endpoint (path segment) is the minimum slack of any path
through that endpoint (path segment). At this point, the algorithm
begins iterating on the heap. In each iteration, the top path segment,
i.e., the path segment with the least timing slack, is popped from the
heap. If the path segment is a full path, it is appended to the list of
explored paths as the next worst path in order of timing criticality. If
the path segment is not a full path, each fanin gate (or net or pin) of
the gate at the extendible end of the path segment (the end furthest
from the endpoint) is added to the path segment to produce a new
path segment. The UNIT membership array of each new path segment
produced is computed by performing a bitwise AND of the UNIT
membership arrays of the original path segment and the newly added
gate. This operation works because the UNIT membership array for
the new path segment is only active in cycles when the original path
segment and the newly added gate are both active. If, the sum of
the values of the UNIT membership array is non-zero, the new path
segment belongs to at least one UNIT. If a path segment belongs to
at least one UNIT, it was exercised by the application in at least one
cycle, so the path segment is pushed onto the heap for future analysis,
using the minimum slack of any path through the path segment as its
sorting key in the heap. The algorithm keeps iterating over the path
segments in the heap in this way until the number of explored paths
equals N.

Figure 1 illustrates an iteration of computation for Algorithm 1, in
which path segment P1 — the segment through which the minimum-
slack path passes — is popped from the top of the heap and expanded
through its fanin gates (G5 and G6). The bitwise AND of G5 and

3While we describe our analysis routines in terms of gates, the analysis
is also equally valid for pins or nets.

Algorithm 1 Pseudocode to report the N-worst exercised paths sorted
by timing criticality

Procedure Find_Nworst_Exercised_Timing_Critical_Paths(N, netlist, VCD)

1. U < Generate_UNITs(netlist, VCD)

. U < Index_UNITS(U)

. for all Gate g € netlist do

ug < genUNITMembershipArray(g, U) // bit vector indicating g’s membership
in each UNIT

5. end for

6. H < 0 // min_heap of path segments, minimizes on timing slack

7

8

W

. P < 0 /] set of explored paths
. for all Path Endpoint e € netlist do

9. e.key < min slack of any path containing e
10. H.push(e)
11. end for

12. while size(P) < N do
13. p < H.pop() // Path Segment with worst slack
14. if p is a full path then

15. P.append(p)
16. continue
17. end if

18. up < getUNITMembershipArray(p) // member vector for Path Segment p
19. for all g € fanin(p) do

20. ug < getUNITMembershipArray(g) // member vector for Gate g
21. ts < scalar_product(ug, up)

22. if t; > 0 then

23. // this path segment toggled at least once

24. s < p.prepend(g) // new path segment with g added to p
25. us < ug&uy, // bitwise &

26. H.push(s)

27. end if

28. end for

29. end while

G5 Path Segment P1
G4
UNITS - [01101] G3 g2 O
G6
UNITs - [10010]
UNITs - [10000]
Path Segments UNITs

P1: <G1-G2-G3-G4> : [10010]

HEAP]

Fig. 1: Our graph-based N-worst algorithms expand exercised path
segments through their fanin gates to identify exercised paths. Ex-
pansion is ordered by a heap that targets a particular N-worst metric.

P1’s UNIT membership vectors yields a vector of all Os. This means
that there are no exercised paths through the expanded path segment
(P1 4+ Gb5), so it is discarded. The segment P1 + G6, on the other
hand, belongs to one UNIT. Since it is exercised, the extended path
segment is pushed back onto the heap.

Our subsequent algorithms follow the same structure of tracing
from a path endpoint and using a heap to sort relevant path segments
based on a metric. Due to space constraints, we only explain the
places where the subsequent algorithms diverge from the algorithm
described above. However, we do present the full pseudocode for
each algorithm.

B. N-most active paths

Algorithm 2 reports the N most active paths in a design for an
application, i.e., the N-worst exercised paths in terms of toggle count.
Among all the exercised paths in a design, Algorithm 2 identifies the
N paths that toggle the most times, in decreasing order of path toggle

count. The toggle rate of a path determines its error rate when the
path has negative slack. Thus, this algorithm can be used to identify
the paths that have the potential to produce the most errors when
guardbands are relaxed such that timing constraints for the paths are
not met.

The algorithm for finding the most active paths is similar to
that for finding the most timing-critical paths. Instead of ordering
explored path segments based on their timing slack using a min-heap,
Algorithm 2 uses a max-heap that orders path segments based on the
activity of a path segment. Another difference is that determining
path toggle rates requires using UTs instead of UNITs, since the
set of UNITs for an application do not retain all unique toggles for
the application’s toggled-sets [9]. For example, if one toggled-set is a
subset of another, it is not stored in the set of UNITs, and thus, the set
of UNITs cannot maintain the number of times the gates in a UNIT
have toggled. A UT membership array, on the other hand, can retain
the number of toggles for each toggled-set by using a companion
array that stores the number of times each toggled-set is encountered
during uniquification of toggled-sets.*

Algorithm 2 Pseudocode to report the N-worst exercised paths in
terms of toggle count/rate

Procedure Find_Nworst_Active_Paths(N, netlist, VCD) // N is number of paths
U < Generate_UTs(netlist, VCD)

. T « getToggleRatesOfUTs(U)

. U <+ Index_UTs(U)

. for all Gate g in netlist do

ug < genUTMembershipArray(g, U) // bit vector indicating g’s membership in
each UT

6. end for

7. H < max_heap of path segments. / Maximizes on path segment activity

8. P < 0 // set of explored paths

9. for all Path Endpoint e do

10. H.push(e)

11. te < scalar product(u., T)

12. end for

13. while size(P) < N do

14. p < H.pop() / Path Segment

15. if p is a full path then

ISAIE I S

16. P.append(p)

17. continue

18. end if

19. for all g € fanin(p) do

20. ug < getUTMembershipArray(g) // Gate g

21. up < getUTMembershipArray(p) // Path Segment p
22. s < p.prepend(g) // generate new path segment s
23. us — ug&uy // bitwise &

24. ts <— scalar product (us, T') // toggle rate of this path segment
25. if ts > 0 then

26. H.push(s)

27. end if

28. end for

29. end while

C. N-most active paths in a slack range

While identifying the most active paths in a design may be
interesting for several application-specific and BTWC analyses and
optimizations, in an overscaling scenario, only the active paths with
negative slack cause errors. Thus, it is useful not only to identify
the most active paths in a design but also the most active paths with
timing slack in a particular range. For example, the most active paths
with the least timing slack will be the paths that cause the most errors
as the design is scaled past its critical operating point. As another
example, this analysis routine can be used to create the dynamic
timing slack distribution [5] for a design — a histogram showing the
sum of toggle rates for the paths within each range of timing slack.

4UNITs characterize design activity using fewer toggled-sets and thus
have lower overhead in terms of analysis time and memory usage. However,
UNITs do not retain toggle count information, while UTs do.

The dynamic timing slack distribution describes how the error rate of
a design changes as guardbands are relaxed or overscaling changes
the operating point of a design. This information can also be used
to determine the optimal operating point for a BTWC design that
minimizes energy while meeting a particular error constraint. It can
also be used to determine how to apply optimizations to reshape
the dynamic slack distribution to optimize a design for a particular
target error rate. Algorithm 3 reports the N-worst active paths within
a timing slack range, i.e., the N most toggled paths in decreasing
order of toggle count within a specified timing slack range.

Algorithm 3 Pseudocode to report the N-worst exercised paths in
terms of activity, within a slack range

Procedure Find_Nworst_Active_Paths(N, netlist, VCD, Spyin, Smaz) // num paths,
min_slack, max_slack

1. U <+ Generate_UTs(netlist, VCD)

. T < getToggleRatesOfUTs(U)

U < Index_UTs(U)

. for all Gate g in netlist do

ug < genUTMembershipArray(g, U) // bit vector indicating g’s membership in
each UT

6. end for

7. H < max_heap of path segments. / Maximizes on path segment activity

8. P < 0 // set of explored paths

9. for all Path Endpoint e do

10. H.push(e)

11. te <— scalar product(u., 7))

12. end for

13. while size(P) < N do

14. p < H.pop() // Path Segment

15. if p is a full path then

16. P.push(p)

17. continue

18. end if

19. for all g € fanin(p) do

20. s < p.prepend(g) // generate new path segment s

21. Ssmin < getLowestTimingSlackThrough(s) // slack of longest path

through segment s

22. Ssmax < getHighestTimingSlackThrough(s) // slack of shortest path
through segment s

23. if [Ssmins Ssmaz] N [Smin, Smaz] # 0 then

24. ug < getUTMembershipArray(g) /| Gate g

25. up — getUTMembershipArray(p) // Path Segment p

26. us — ug&uy, // bitwise &

217. ts <— scalar product (us, T') // toggle count of this path segment

28. H.push(s)

29. end if

30. end for

31. end while

The algorithm uses UT membership arrays instead of UNIT
membership arrays, in order to capture toggle rate information, as
described in Section IV-B. Explored path segments are sorted by
activity using a max-heap. One addition to Algorithm 2 is that when
expanding the maximum-activity path segment popped from the heap,
an expanded path segment is only inserted into the heap if there
exists a path in the design, through the path segment, with slack
in the specified slack range. This can be checked using minimum
and maximum node slacks through the fanin gate added to the path
segment, obtained from the critical path method (CPM) [16]. If the
minimum and maximum node slacks intersect the specified range of
path slacks, it is possible for a path to exist through the expanded
path segment that has delay within the specified slack range. Such a
path segment is inserted into the heap for further analysis. However,
this does not guarantee that there exists a toggled path through
the segment with slack in the specified range. After tracing further
down the path segment and refining the range of node slacks for
the segment, it may be determined that none of the paths through the
segment intersect the desired slack range, at which point the segment
can be discarded.

D. Correctness Proof

In this section, we prove that our algorithms generate the N-worst
paths for their respective metrics. Due to space constraints, we only
present the proof for Algorithm 1; however, all the algorithms follow
a similar structure and have similar proofs that can be derived from
the proof for Algorithm 1.

Theorem 1. Algorithm 1 reports the exercised (toggled) timing
critical paths in increasing order of timing slack (decreasing order
of timing criticality).

Proof. We prove the theorem in two parts: (1) the reported paths are
exercised, and (2) paths are reported in decreasing order of timing
criticality.

Reported paths are exercised: For each path segment popped
from the heap, all the gates in the segment belong to at least one
common UNIT, since only segments with at least one non-zero
UNIT membership vector element are pushed onto the heap. UNIT
membership implies that all the gates in a segment toggled together in
at least once cycle. Therefore, for any path popped from the heap, all
the gates in the path must have toggled together in at least one cycle.
Thus, the path is exercised (toggled), by definition (see Section III).
Paths reported in decreasing order of timing criticality: Suppose
that P is a path with slack S popped from the top of the heap.
The longest path through P (P is also a path segment) is P itself.
Now, let p1 be any path segment remaining in the heap, H, and let
the longest path through p; be P; with slack Si. Since the heap
orders path segments based on the minimum slack of the longest
path through a path segment, it follows that S < Sp, and hence P is
the longest path among all the paths that can be reported using path
segments in H.

Since all path endpoints are pushed onto H, and all paths must
contain an endpoint, the path segments in H can be used to generate
all possible paths in the design. Thus, no exercised paths can be
missed. O

V. METHODOLOGY

We verity our techniques with experiments on a silicon-proven
processor — openMSP430 [17]. Designs are synthesized, placed, and
routed with TSMC 65GP library (65nm), using Synopsys Design
Compiler [18] and Cadence EDI System [19] assuming worst-
case operating conditions. Gate-level simulations are performed by
running full benchmark applications from Table II on the placed
and routed processor using Synopsys VCS [20]. Activity information
is read from the VCD file generated from gate-level simulation.
Timing analysis is performed with Synopsys PrimeTime [21]. Ex-
periments were performed on a server housing two Intel Xeon ES5-
2640 Processors with 8-cores each, 2 GHz operating frequency,
and 64 GB RAM. We implemented our algorithms in C++. For
comparison against path-based DTA, we implemented the path-based
tool from [2]. Benchmarks dhrystone_4mcu and dhrystone_v2.1 are
available in [17]. All other benchmarks are taken from [22].

VI. RESULTS

To demonstrate the efficiency and scalability of our graph-based
techniques for dynamic timing and activity analysis, we compare
them against the state-of-the-art path-based dynamic analysis tech-
nique [2]. However, head-to-head comparison against path-based
analysis presents a challenge, due to the significant time and memory
requirements of path enumeration used in path-based analysis [9]. In
fact, attempting to perform path-based dynamic analysis on a full
processor, even a small embedded processor, proved impossible. Due
to the huge number of exercised paths in a processor, even for a small
processor running an application with low activity, our server (with

TABLE II: Benchmark Descriptions

mult Integer Multiplication
tea8 8-bit Tiny Encryption Algorithm
binSearch Binary Search

rle Run-Length Encoding Algorithm

intAVG Integer Average
inSort Insertion Sort
tHold Threshold Cross Detection

div Integer Division and Outputing
intFilt FIR Lowpass Integer Filter
dhrystone_v2.1 Dhrystone Benchmark
dhrystone_4mcu | Dhrystone Benchmark for MCUs

TABLE III: As the number of exercised paths increases with the
length of the execution time window, path-based analysis time grows
and becomes unreasonable, even for a relatively short time window.
Analysis time for our scalable graph-based algorithms remains low,
since they efficiently explore exercised paths.

Time Analysis Time (s)
Window Path-

(cycles) based | Alg. 1 | Alg.2 | Alg. 3
250 26.3 2.0 1.9 2.2
500 35.6 1.9 1.7 2.2
1000 54.7 2.0 1.9 2.3
5000 348.0 2.2 6.7 9.1
10000 645.0 2.2 6.3 8.7
30000 2268.6 2.5 12.9 18.7
50000 | 10255.9 2.3 17.1 25.4

many cores, large caches, and 64 GB of RAM) ran out of memory
and could not complete the path-based analysis.

Since path-based dynamic analysis of full processors and full
applications is not possible, in order to perform a head-to-head
comparison, we were forced to resort to the same approach that
has been used in all prior works involving path-based dynamic
analysis; namely, use a small sample processor module to represent
the processor and a small sequence of instructions to represent the
application [1], [2], [3], [4], [5], [6], [!1]. Thus, we compare the
runtime of our scalable dynamic analysis algorithms against that of
path-based analysis by analyzing only the execution unit module
of openMSP430 over a limited time window of execution. Also,
for the path-based technique, we only report the time required for
enumeration of exercised paths, omitting the time required to select
the N-worst paths for a given metric. For our algorithms, we report
the entire runtime for identification of the N-worst paths.

Table III compares the analysis time of our scalable N-worst
algorithms against that of path-based analysis for fixed NV (N = 25k)
and variable execution time window length (in cycles). As the
length of the time window grows, path-based analysis time increases
significantly, as does the gap between path-based and graph-based
analysis time. The reason for this trend is that as an application
executes for a longer period of time, more paths are exercised, and
the time to perform path enumeration grows dramatically. However,
graph-based analysis efficiently expands exercised path segments to
identify the N-worst paths without any path enumeration. Due to
the massive number of paths exercised in a processor design, even
over a relatively short time window, path-based analysis time quickly
becomes prohibitive. For example, for an execution time window of
50k cycles, path-based analysis takes almost three hours, whereas
scalable dynamic timing analysis to report the N-worst exercised
timing paths takes under three seconds. While analysis time for our
scalable algorithms does increase slightly for larger time windows,

1000

© Alg. 1 (Timing) aBep
" ;
= % so0 HAIg. 2 (Activity) \
= ©
- M Alg. 3 (Activity in Timing Range) \Is09
2T 600 \
3 O N
T s \
§- T 400 |-
% % 295
o X E
200 160 X \
R ‘ 10374
sun pas zax gk | @m |EE |

0 —=— -)
1000 5000 10000 30000
Simulation cycles (Time window)

250 500 50000

Fig. 2: Our graph-based dynamic analysis algorithms achieve signifi-
cant speedups with respect to path-based analysis. Speedups increase
with increasing processor size or application runtime. (Results are
shown for N=25k.)

since there are more exercised path segments to explore and manage
in the heap, our graph-based approach explores them efficiently, and
analysis time remains low.

Figure 2 shows the speedup achieved by our scalable dynamic
analysis algorithms with respect to path-based analysis, for different
execution time windows. Even for the smallest of time windows,
the speedup is significant. As the time window grows larger, the
speedup becomes extreme. For example, for a time window of 50k
cycles, Algorithms 1, 2, and 3 achieve speedups of 4364 %, 599 x, and
404 x, respectively. Note that these results are only for the processor’s
execution unit module executing over a limited time window. The
speedups would increase for a full processor and application, or as
the complexity of the processor or application increase. Furthermore,
the analysis times for our scalable techniques stand to improve signif-
icantly further in a parallel computing environment. As the length of
the time window increases, the most time-consuming operation in our
analysis techniques is computing the UNIT / UT membership vectors
through bitwise AND operations (see Section IV). Since these AND
operations are embarrassingly parallel, and the amount of parallelism
is large (number of AND operations equals the number of UNITs /
UTs, which is O (number of execution cycles)), execution time should
easily improve by a factor close to the number of parallel compute
units in a parallel processor, which is several hundred to thousand in
modern data-parallel architectures [23].

Figure 3 compares analysis time of graph- and path-based tech-
niques for a fixed execution time window of 10k cycles and varying
number of reported paths (N). Path-based analysis time to report the
N-worst paths is large even for a small value of N, since path-based
analysis requires enumeration of all exercised paths, independent of
the value of N. For graph-based analysis, on the other hand, analysis
time is low and grows gradually with increasing N, since our scalable
graph-based analysis computes the N-worst paths iteratively and only
incurs a small incremental overhead to identify each additional path.
Figure 4 shows the same data as Figure 3, excluding path-based
analysis so the trends for different types of N-worst analysis can
be distinguished.

Our final set of results demonstrates the capability of our scalable
graph-based dynamic analysis algorithms to analyze a full processor
and full applications. This full level of analysis, which is expected
for commercial EDA tools is possible only for graph-based analysis,
not for path-based analysis, due to the massive number of paths
in modern designs [8]. Table IV shows dynamic analysis time for
the full applications in Table II executed on the full openMSP430
processor. Our scalable algorithms complete dynamic analysis, even
for large applications. Furthermore, note that analysis times can likely
be reduced significantly with data-parallel processing, as described
above. Also note that analysis time does not always increase with
application execution time. One reason for this is that the number

—Path Based
— -Timing

----Activity in Timing Range

700 —Activity

600
500
-
= 400
V]
£ 300
(=
200
100

0 50000 100000 150000
Num of reported paths (N)

200000

Fig. 3: Analysis times of our scalable algorithms increase gradually,
proportional to the number of reported paths. Path-based analysis
time includes a large constant overhead for enumerating all exercised
paths, independent of the number of reported paths. (Results are
shown for a time window of 10k cycles.)

50
""" Activity in Timing Range

0 Timing T
B3p —Activity
Q
£ 20
'—

10

0

0 50000 100000 150000
Number of reported paths (N)

200000

Fig. 4: Closer look at Figure 3, excluding path-based analysis to
show the trends in analysis time for scalable N-worst algorithms as
N increases.

of UNITs / UTs necessary to analyze an application may not always
correlate to the number of simulation cycles, since some applications
have more repetitive behavior than others, resulting in fewer unique
toggled-sets. Also, in some cases, graph-based analysis time may
actually decrease with more exercised nets, since exploration of
exercised path segments leads to fewer dead ends, so the N-worst
paths are identified with fewer iterations of accessing the heap.

VII. APPLICABILITY TO ADVANCED TIMING ANALYSIS
TECHNIQUES

Since our dynamic analysis techniques (Algorithm 1 and Algo-
rithm 3) are based on traditional timing analysis methodologies, they
can be extended to perform advanced timing analysis techniques

TABLE IV: Our scalable dynamic analysis algorithms enable anal-
ysis of full applications on a full processor.

Sim. Time Analysis Time (s)
Benchmark (eycles) (AT [AIZ 2 | Ale3
mult 147 26 27 40
tea8 4191 90 923 2682
binSearch 4723 100 188 436
rle 5848 148 457 1394
intAVG 12308 85 2535 4094
inSort 28813 83 1734 5915
tHold 28870 114 3640 6661
div 68301 77 734 1244
intFilt 222495 238 1130 7334
dhrystone_4mcu 332977 116 1644 6275
dhrystone_v2.1 478429 100 575 2076

such as variation-aware analysis and multiple input switching (MIS).
Below, we list some advanced timing techniques that can be incor-
porated into our algorithms. Note that Algorithm 2 is unaffected by
any type of timing analysis, since it considers only toggle rates and
not on circuit. So, discussion below applies only to Algorithm 1 and
Algorithm 3.

Removing graph-based pessimism: Since our techniques are in-
spired by graph-based STA, they inherently incorporate the pessimism
of graph-based analysis. This is a well-known issue in traditional
STA, that has been addressed by using path-based analysis for the
critical paths reported by graph-based STA to remove the pessimism.
The same approach can be applied on the paths reported by our
techniques to accurately report the slack of the dynamic critical paths.
Note that previous works that performed path-based analysis [1], [2],
[31, [4], [5], [6] do not suffer from graph-based pessimism; however,
they would unnecessarily perform timing analysis on a large number
of non-critical paths over a large number of redundant toggled-sets,
while our techniques report the N-worst critical paths in decreasing
order of criticality without enumerating any paths.

Rise and fall toggled-sets: Our results in Section VI were generated
by considering both rise and fall transitions simply as toggles,
rather than differentiating the two. Note that previous works on
dynamic analysis also did not differentiate between rising and falling
transitions [1], [2], [3], [4], [5], [6]. However, in some circumstances,
differentiating rising and falling toggles could provide more accurate
timing analysis. However, this does not significantly affect the number
of UNITs or UTs [9].

Multiple input switching: If more than one input of a gate switches
at the same time, the delay of the gate can be different than in the
single input switching scenario traditionally assumed for STA. Our
graph-based analysis can perform more accurate timing analysis that
accounts for multiple input switching, since we can track the value of
each pin in the design from the VCD file and determine when multiple
inputs of the same gate toggle with similar arrival times/windows.
This would require us to annotate the gates with delay values per
UNIT or UT, generating a delay vector for each gate that is of the
same length as the UNIT / UT membership vector. This array can
be used to compute the longest delay of any path segment among all
the UNITs or UTs it belongs to.

False paths due to controlling inputs: If an input to a gate toggled
to a controlling value, any other inputs that toggled to a non-
controlling value can be marked as false. If multiple inputs of a
toggled gate toggled to a controlling value in the same cycle, the
slower transitioning path(s) can be considered false path(s). This is
because the fast path toggles the gate’s output first, precluding the
effect of any slower path’s toggle. The arrival times of the input pins
of the toggled gate can be used to identify which controlling input
arrives first, and the path(s) through the other pin(s) can be marked
as false. Since the number of gates with multiple input switching is
small, the overhead of checking the above conditions is negligible.
Note that analysis of controlling inputs would likely have significantly
higher overhead for path-based techniques, since the same gate would
be analyzed multiple times (once per toggled path it is in). Since
variations may affect which input arrives first to a gate, we did
not mark false paths due to fast-arriving controlling inputs for our
analysis.

Statistical Static Timing Analysis, Multi-Mode, Multi-Corner,
and On-Chip Variation Analyses: Since SSTA can be graph-based
and can also be applied incrementally [24], [25] our algorithms,
which are inspired by graph-based STA, can be extended to SSTA.
On-chip variation analyses such as parametric on-chip variation
analysis [26] are inherited from SSTA. Having both graph-based and
path-based versions, these analyses can also be incorporated into our
techniques. MMMC techniques involve re-running timing analysis

for various modes at various corners, which can easily be performed
with our approach.

Crosstalk Analysis: Timing analysis tools such as PrimeTime [21]
incorporate crosstalk analysis into STA. Since our techniques are
inspired by STA, our algorithms can also handle crosstalk analysis.
For each UNIT or UT, we can perform crosstalk analysis to capture
the exact delays of the nets and then generate a delay vector with the
same dimensions as the UNIT / UT membership vector. This vector
can be used while tracing path segments, and the delay of a path
segment can be computed as its longest delay among all the UNITs
or UTs it belongs to.

VIII. CONCLUSION

As variability increases with continued CMOS scaling, BTWC
design has become an increasingly-popular technique to improve
energy efficiency. Dynamic analysis techniques used in prior work
on BTWC design are based on path-based analysis that involves
enumeration of the exercised paths in a design; however, such
techniques are not scalable due to the massive number of paths
in modern CMOS designs — even small designs. In this paper, we
presented a suite of scalable graph-based dynamic analysis techniques
that encompass the core functionalities needed for BTWC design,
analysis, and optimization. Compared to existing path-based tech-
niques, our scalable dynamic analysis techniques for timing, activity,
and timing-constrained activity analysis improve performance by
977x, 163x, and 113x, on average, and enable scalable analysis
for full processor designs and full applications.

REFERENCES

[1] Andrew B Kahng, Seokhyeong Kang, Rakesh Kumar, and John Sar-
tori. Recovery-driven design: a power minimization methodology for
error-tolerant processor modules. In Proceedings of the 47th Design
Automation Conference, pages 825-830. ACM, 2010.

Andrew B Kahng, Seokhyeong Kang, Rakesh Kumar, and John Sartori.
Recovery-driven design: Exploiting error resilience in design of energy-
efficient processors. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 31(3):404—417, 2012.

Andrew B Kahng, Seokhyeong Kang, Rakesh Kumar, and John Sartori.
Slack redistribution for graceful degradation under voltage overscaling.
In Design Automation Conference (ASP-DAC), 2010 15th Asia and South
Pacific, pages 825-831. IEEE, 2010.

John Sartori and Rakesh Kumar. Exploiting timing error resilience in
processor architecture. ACM Transactions on Embedded Computing
Systems (TECS), 12(2s):89, 2013.

[5] John Sartori and Rakesh Kumar. Compiling for energy efficiency on
timing speculative processors. In Design Automation Conference (DAC),
2012 49th ACM/EDAC/IEEE, pages 1297-1304. IEEE, 2012.

Brian Greskamp, Lu Wan, Ulya R Karpuzcu, Jeffrey J Cook, Josep
Torrellas, Deming Chen, and Craig Zilles. Blueshift: Designing proces-
sors for timing speculation from the ground up. In High Performance
Computer Architecture, 2009. HPCA 2009. IEEE 15th International
Symposium on, pages 213-224. IEEE, 2009.

[7] Jing Xin and Russ Joseph. Identifying and predicting timing-critical
instructions to boost timing speculation. In Proceedings of the 44th An-
nual IEEE/ACM International Symposium on Microarchitecture, pages
128-139. ACM, 2011.

A Hakan Baba and Subhasish Mitra. Testing for transistor aging. In
VLSI Test Symposium, 2009. VTS’09. 27th IEEE, pages 215-220. IEEE,
20009.

[9] Hari Cherupalli and John Sartori. Graph-based dynamic analysis:
Efficient characterization of dynamic timing and activity distributions.
In Computer-Aided Design (ICCAD), 2015 IEEE/ACM International
Conference on, pages 729-735. IEEE, 2015.

Hari Cherupalli, Rakesh Kumar, and John Sartori. Exploiting dynamic
timing slack for energy efficiency in ultra-low-power embedded sys-
tems. In Computer Architecture (ISCA), 2016 43th Annual International
Symposium on. IEEE, 2016.

Smruti Sarangi, Brian Greskamp, Abhishek Tiwari, and Josep Torrellas.
Eval: Utilizing processors with variation-induced timing errors. In
Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International
Symposium on, pages 423-434. IEEE, 2008.

2

[3

=

[4

=

[6

—

[8

[t}

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

Smruti R Sarangi, Brian Greskamp, Radu Teodorescu, Jun Nakano,
Abhishek Tiwari, and Josep Torrellas. Varius: A model of process
variation and resulting timing errors for microarchitects. Semiconductor
Manufacturing, IEEE Transactions on, 21(1):3-13, 2008.

Abbas Rahimi, Luca Benini, and R Gupta. Application-adaptive guard-
banding to mitigate static and dynamic variability. Computers, IEEE
Transactions on, 63(9), Sept 2014.

Koushik Chakraborty, Brennan Cozzens, Sanghamitra Roy, and Dean M
Ancajas. Efficiently tolerating timing violations in pipelined micro-
processors. In Proceedings of the 50th Annual Design Automation
Conference, page 102. ACM, 2013.

Omid Assare and Rajesh Gupta. Timing analysis of erroneous systems.
In Proceedings of the 2014 International Conference on Hardware/Soft-
ware Codesign and System Synthesis, page 7. ACM, 2014.

Robert B Hitchcock Sr. Timing verification and the timing analysis
program. In Proceedings of the 19th Design Automation Conference,
pages 594-604. IEEE Press, 1982.

O Girard. Openmsp430 project. available at opencores.org, 2013.
Synopsys. Design Compiler User Guide.

Cadence. Encounter Digital Implementation User Guide.

Synopsys. VCS/VCSi User Guide.

Synopsys. PrimeTime User Guide.

Bo Zhai, Sanjay Pant, Leyla Nazhandali, Scott Hanson, Javin Olson,
Anna Reeves, Michael Minuth, Ryan Helfand, Todd Austin, Den-
nis Sylvester, et al. Energy-efficient subthreshold processor design.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
17(8):1127-1137, 2009.

Pascal microarchitecture. https://en.wikipedia.org/wiki/Pascal_(microarchitecture),

2017.

Chandramouli Visweswariah, Kaushik Ravindran, Kerim Kalafala,
Steven G Walker, and Sambasivan Narayan. First-order incremental
block-based statistical timing analysis. In Proceedings of the 41st annual
Design Automation Conference, pages 331-336. ACM, 2004.

Jin Wook Kim, Wook Kim, Hyoun Soo Park, and Young Hwan Kim.
Incremental statistical static timing analysis with gate timing yield
emphasis. In Circuits and Systems, 2008. APCCAS 2008. IEEE Asia
Pacific Conference on, pages 1016-1019. IEEE, 2008.

Ayhan Mutlu, Jiayong Le, Ruben Molina, and Mustafa Celik. A para-
metric approach for handling local variation effects in timing analysis. In
Design Automation Conference, 2009. DAC’09. 46th ACM/IEEE, pages
126-129. IEEE, 2009.

