
1

Graph-based Dynamic Analysis: Efficient Characterization of
Dynamic Timing and Activity Distributions

Hari Cherupalli and John Sartori
University of Minnesota

Email: {cheru007, jsartori}@umn.edu

Abstract— In light of increasing energy overheads required to
guarantee correctness as variations increase with continued technology
scaling, better-than-worst-case (BTWC) design has become a hot topic.
Several BTWC design techniques utilize dynamic information like path
activity when optimizing a design and rely on path-based analysis to
determine the dynamic slack distribution of a workload running on a
processor and subsequently optimize a design. In this paper, we show
that path-based techniques are not scalable, due to the enormous number
of paths in modern designs, and can also result in incorrect results.
We propose a graph-based technique for performing dynamic timing
and activity analysis of a workload on a processor that addresses the
limitations of path-based techniques. Our tool has significantly lower
runtime and memory requirements than path-based tools. Consequently,
we can perform analysis for larger designs over longer time windows in a
shorter amount of time. We also propose two optimizations that improve
the performance of our tool.

I. INTRODUCTION

As challenges in technology scaling have resulted in increasing
static and dynamic variations, along with increasingly restrictive
design guardbands that ensure correctness even in the worst case,
researchers have introduced better-than-worst-case (BTWC) design
techniques that relax conservative design constraints, possibly at the
expense of less than perfect correctness, in order to improve energy
efficiency under average conditions [1], [2], [3], [4], [5], [6].

BTWC design techniques rely on error tolerance or correction
mechanisms to handle errors when worst case conditions occur,
allowing a processor to be optimized for and operated at a BTWC
condition, potentially resulting in significant energy savings. Several
BTWC design techniques exploit not only static design information,
such as timing and power characterizations, but also dynamic infor-
mation, such as activity factors, that describe how a design is used.
Dynamic information describes which parts of a design are most
likely to be exercised or to produce errors under BTWC conditions.
Such information allows a designer to optimize for BTWC conditions,
where errors may occur, and make a design more efficient in the face
of errors. Since these techniques are used only for design optimization
and not for timing closure, they do not require worst-case inputs for
the simulated benchmarks.

Several BTWC design techniques have been proposed that exploit
dynamic information characterizing the activity of paths in a design
to perform optimizations and improve energy efficiency in variation-
affected designs [2], [3], [4], [5], [6], [7], [8]. A study of dynamic
analysis-based design techniques reveals that all such techniques
rely on path-based analysis and optimization methodologies. The
distinguishing characteristic of these path-based methodologies is that
the paths (or the exercised paths) in a design must be enumerated,
individually analyzed, and optimized.

However, due to the very large number of paths in modern
designs [9], path-based analysis and optimization become onerous
and in most cases infeasible, even for small designs. Consequently,
previously-proposed dynamic analysis and optimization techniques
have been limited to working with only small design modules over
small analysis time windows, due to the large computation time and
memory requirements of path-based analysis and optimization [2],

[3], [4], [5], [6], [10]. This has limited their applicability in modern
semiconductor designs, which can often contain thousands of gates,
and many orders of magnitude more paths [9]. An additional conse-
quence of this module-based approach is that paths between modules
and paths that span multiple modules are ignored during analysis
and optimization. Since it does not consider the full design, module-
based analysis and optimization may produce incorrect or suboptimal
results.

In this paper, we propose a novel dynamic analysis technique
that is designed around graph-based, rather than path-based, analysis.
Our approach leverages the observations that a set of gates in a design
maps to a unique set of paths in the design (see Section III). Thus,
we can characterize the exercised paths in a design by identifying and
analyzing the exercised gates. We propose a novel methodology that
leverages the speed and memory benefits offered by commercial static
timing analysis (STA) engines to quickly characterize the dynamic
critical path distribution of a design for a particular workload. Our dy-
namic analysis tool can also characterize path activities for the design.
Graph-based analysis significantly outperforms path-based analysis
(by 105.6x in our experiments), and we present two optimizations that
further improve the performance and reduce the memory footprint of
our technique, also discussing the tradeoffs between the approaches.
We demonstrate that our graph-based dynamic analysis technique can
efficiently analyze large designs over large time windows, even full
processor designs, without ignoring parts of the design such as cross-
module paths.
Our paper makes the following contributions.
• We propose a graph-based dynamic timing and activity analysis

tool 1 that reduces computation time and memory footprint
compared to previously-proposed path-based analysis tech-
niques. To the best of our knowledge, this is the first non-
path-based dynamic analysis methodology.

• Whereas path-based techniques are limited to analyzing small
subsets of modules over small time windows (using consider-
able computation time and memory resources to do so), we
demonstrate that our tool can process large designs over large
time windows, even full processor designs over full benchmark
runs.

• We propose optimizations that improve the performance of our
dynamic analysis tool. Uniquification-based dynamic analysis
reduces effort by 76.6%, and analysis based on Unique Non-
Includible Toggled-sets (UNITs) reduces the effort by 83.9%

• We demonstrate up to 136.6x (105.6x, on average) speedup
in runtime compared to a path-based analysis tool (even for
a small design module over a small time window) and show
that the benefits of our approach improve considerably with
increasing design size or analysis time window.

II. RELATED WORK

Previous works that perform dynamic timing and activity analysis
and optimization use path-based tools. [6] proposes a BTWC design

1Our automated tool is available for download at
http://www.ece.umn.edu/users/jsartori/tools.html

2

methodology that uses path activity information to adjust path timing
constraints and minimize errors for a frequency overscaled design.
[8] proposes micro-architectural techniques that trade-off variation-
induced errors for power and performance of a processor. They
rely on the VATS model [7] which computes the dynamic slack
distribution of a processor for a workload. [3] proposes power-
aware slack redistribution where paths are optimized based on timing
criticality and toggle rate to improve power and area efficiency
under voltage scaling. [1], [2] propose a recovery-driven design
methodology for optimizing a design for a specific target error rate.
The methodology relies on path-based activity and timing analysis,
and resizes gates to optimize a design on a path-by-path basis. [4]
proposes architectural optimizations to manipulate timing error rate
behavior and increase the effectiveness of timing speculation. [5]
proposes compiler techniques that improve the energy efficiency of
timing speculative processors.

The above BTWC techniques all rely on path-based timing and
activity analysis, and many of the techniques also perform path-based
design optimization. These techniques involve enumeration of paths
and are not scalable, due to the extreme number of paths in electronic
designs [9]. As a result, application and evaluation of these techniques
are limited to small modules and small analysis time windows. In
addition to not being able to handle full designs, module sampling
methodologies ignore paths between modules and those that cross
module boundaries.

Since path-based techniques are not scalable, other works em-
ploy alternative techniques that either produce inexact results or do
redundant work. [10], [11], [12] run multiple gate-level simulations
at different operating points for error rate computation. In contrast,
our technique captures the path profile of a workload (or instruction
sequence) in a single gate-level simulation, and the error rates
at different operating points can be computed significantly faster
by recomputing gate delays and performing STA. [13] proposes a
clustered timing model to capture the dynamic delay distribution of a
processor. Their approach requires manual analysis of the architecture
and produces inexact results because of architectural approximations.
In contrast, our technique is not only architecture independent, but it
also does not introduce any approximations that degrade accuracy.

III. PRELIMINARIES

Before explaining our dynamic analysis techniques, we define
some terms and derive the necessary theorems to support our method-
ology. The theorems in this section are applicable to graphs in general.
We, however, apply them to the context of a gate-level netlist of a
digital design.

A. Definitions

Given a design’s gate-level netlist, we define the following :

G → Graph of the design containing gates and nets.
p(A) → Set of all paths in the graph A.
g(A) → Set of all gates (vertices) in the graph A. (Note that

we use the terms gate and vertex interchangeably
in the paper.)

f(A) → Set of path endpoints (flip-flops, clock gates, etc.)
of the design represented by graph A. Note that
f(A) is a subset of g(A), i.e., we consider all path
endpoints as gates.

pi → A particular path.
gi → A particular gate.

Definition 1. Path: A set of gates {ga, gb, ..., gn} of a graph A can
be considered a path if (1) an ordered sequence containing all the
gates in the set can be formed such that each gate in the sequence

is driven by the previous gate and (2) only the first and last gates of
the sequence belong to f(A).
Definition 2. Toggled gate: A gate is toggled in a particular cycle
when the net that the gate is driving has changed values in that cycle.
Definition 3. Toggled Path: A path is toggled in a particular cycle if
all the gates in the path have toggled in that cycle.
Definition 4. Non-Toggled Path: A path is non-toggled in a particular
cycle if at least one gate in the path has not toggled in that cycle.
Definition 5. Gate-set: A gate-set is any vertex-induced sub-graph of
the graph G. (A vertex-induced subgraph is a subgraph defined by a
set of vertices that contains all the edges between those vertices.)
Definition 6. Toggled-set: A gate-set containing all the toggled gates
of G and no non-toggled gates of G for a given time stamp is a
toggled-set.

B. Theorems

Theorem 1: A toggled-set of a design’s graph G contains all the
toggled paths in G and does not contain any non-toggled paths.

Proof: We prove both parts of the theorem by contradiction. Let
A be a toggled-set of graph G containing all toggled gates for a
particular analysis time stamp.
Completeness: Suppose there exists path p1 = {g1, ..., gn} in p(G)
such that p1 has toggled but p1 /∈ p(A). This implies that at least
one of the gates g1, ..., gn does not belong to g(A).
Let gk /∈ A, which implies gk has not toggled, since A, by definition,
contains all toggled gates and no non-toggled gate.
This leads to a contradiction that path p1 has not toggled, from the
definition of a non-toggled path.
Exclusivity: Suppose path p2 = {gm, gm+1, ..., gm+l} is a non-
toggled path such that p2 ∈ p(A). By definition of a non-toggled
path, at least one gm, gm+1, ..., gm+l has not toggled. This is a
contradiction, since A contains only the toggled gates of G.

Note that the exclusivity clause of Theorem 1 assumes that (1)
a net in a digital design is connected to the output pin of only one
gate, and (2) every toggled input of a gate contributes to the toggle
of the gate’s output. The first assumption does not hold if the net is
driven by multiple tri-state buffers. The second assumption does not
hold for tri-state buffers driving multi-driven nets and multiplexers,
which are considered as cells in certain cell libraries. It also does not
hold in a case where a fast-arriving controlling input renders later-
arriving toggles at other inputs ineffective. Since exceptions to these
assumptions do not affect completeness, a toggled-set always com-
pletely characterizes the set of toggled paths. Section VII discusses
techniques to maintain exclusivity even in these exceptional cases.

Theorem 2: Let A & B be two gate-sets of a design’s graph G.
If g(A) ⊆ g(B) then p(A) ⊆ p(B).

Proof: Let path p1 be a path {gr, gr+1, ..., gr+s} such that p1 ∈
p(A) and p1 /∈ p(B)
This implies at least one of gr, gr+1, ..., gr+s does not belong to
g(B), say gt.
Now, gt ∈ g(A) and gt /∈ g(B).
But g(A) ⊆ g(B), which is a contradiction, since all elements in
g(A) must also be in g(B).

Corollary 1: If two toggled-sets A & B of a graph G have the
same set of vertices (gates), then they have the same set of paths.
This follows directly from Theorem 2.

C. Examples

We illustrate the above theorems with an example for each
theorem. Consider the circuit in Figure 1. The ports A through F
can be replaced with any of the legal endpoints for a path, such
as flip-flops, clock-gates, etc. This circuit has 9 paths, as listed and
indexed below.

3

Fig. 1. An example circuit to illustrate Theorem 1 and 2.

1) A, c, D
2) A, a, c, D
3) A, a, d, E

4) B, a, c, D
5) B, a, d, E
6) B, b, d, E

7) B, b, F
8) C, b, d, E
9) C, b, F

To illustrate Theorem 1, let us assume that in a particular cycle
ports A, C, D, E, F and gates b, c, d have toggled. This means that
paths 1, 8, and 9 have toggled. However, any path containing gate a
(paths 2,3,4 and 5) will not be considered in the sub-graph.

To illustrate Theorem 2, consider two different cycles. In one
cycle, ports B, C, E, F and gates b, d have toggled while in another
cycle, ports B, C, E, F and gates a, b, d have toggled. Clearly, the
first set {B, C, E, F, b ,d} is a sub-set of the second set {B, C, E,
F, a, b ,d}. Now the paths of the first set are {6, 7, 8, 9} while the
paths of the second set are paths {5, 6, 7, 8, 9}. I.e., first set of paths
is a subset of the second set.

IV. GRAPH-BASED DYNAMIC ANALYSIS

In this section, we present our graph-based approach to dynamic
analysis. We first present the basic technique, followed by two
optimizations that improve performance by eliminating redundant
work.

Theorem 1 implies that a set of gates that toggle during a time
stamp and the nets that they drive (a toggled-set) identify the set of
all toggled paths for that time stamp, i.e., the toggled-set contains all
the toggled paths and no non-toggled paths. As such, we can perform
dynamic timing analysis (DTA) for a design by identifying the gates
that toggle at a particular time stamp, ignoring all paths that do not
pass through one of the toggled gates, and performing timing analysis
(STA) on the vertex-induced subgraph defined by the toggled gates
using a conventional CAD tool. The following steps describe our
methodology.

1) Perform gate-level simulation for a workload on the design
and generate a VCD file.

2) For each time stamp in the VCD file:
a) Read the toggled nets, mark the toggled gates (i.e., the

gates driving the toggled nets) and generate a toggled-
set.

b) Run STA on the vertex-induced sub-graph defined by
the toggled gates (the toggled-set).

Marking and unmarking of gates for the purposes of timing
analysis is achieved in commercial CAD tools such as PrimeTime [14]
using the commands reset_path and set_false_path, re-
spectively. We first unmark all gates from timing analysis using
set_false_path on every gate in the design and then mark the
toggled gates using reset_path. The pseudocode for our graph-
based dynamic analysis algorithm is presented in Algorithm 1. While
our dynamic analysis algorithms are presented for finding the dynamic
critical path of a workload, they can apply dynamic (i.e., activity-
based) analysis corresponding to any kind of static analysis that can
be done using a commercial STA tool such as PrimeTime [14] (e.g.,
statistical STA, on-chip variation analysis, crosstalk, etc.). Some of
these analyses are discussed in Section VII.

The method presented above can perform dynamic analysis (such
as finding the dynamic critical path distribution) over any time
window of interest, from a single cycle up to full application or

multiple application runs. As we will demonstrate in Section VI,
our graph-based dynamic analysis techniques achieve significant
performance benefits over previously-proposed path-based techniques.
Nevertheless, we observe that our graph-based approach affords even
further opportunities for performance improvement, based on the
following two observations.

1) The set of paths corresponding to a set of toggled gates is
unique (see Corollary 1). I.e., two toggled-sets containing the
same set of toggled gates also contain the same unique set of
toggled paths.

2) A toggled-set that includes all the gates (i.e., is a superset) of
another toggled-set also includes all its paths (see Theorem 2).

Based on these observations, we propose the following optimizations.

1) Uniquification of the toggled-sets (Section IV-A).
2) Unique Non-Includible Toggled-sets (UNITs) identification

(Section IV-B).

Algorithm 1 Pseudocode for Basic Graph-based DTA

Procedure FindDynamicCriticalPath()
1. Read netlist and initialize PrimeTime Tcl socket interface;
2. Open VCD File;
3. foreach Time stamp of activity t in the VCD do
4. Mark all gates as not toggled; // using set_false_path
5. Read Toggled nets
6. foreach Toggled net n do
7. Infer Toggled gate g that drives net n
8. Mark gate g as toggled // using reset_path
9. end for

10. St ← FindCriticalSlack() // using report_timing
11. if St < Smin then
12. Smin ← St

13. end if
14. end for

A. Uniquification of Toggled-sets

Since the set of toggled paths corresponding to a toggled-set
is unique, dynamic analysis only needs to be performed once per
unique toggled-set. Thus, we can avoid redundant work by storing and
analyzing only the unique toggled-sets, instead of the toggled-sets for
every time stamp. If the same toggled-set is observed at multiple time
stamps, analysis (e.g., STA) of the toggled-set need not be repeated.
Algorithm 2 describes uniquification-based dynamic analysis.

While toggled-sets need not ever be repeated when a workload is
executed on a processor, intuition argues that repetition of toggled-
sets is likely to be common, even frequent, given that real workloads
exhibit significant repetition of instruction and data use. Indeed,
processors are designed with structures like caches precisely to take
advantage of instruction and data reuse. Consider, for example,
executing the loop in Listing 1. The jump instruction is executed
to the same location 499 times, and the code in the loop body is
executed in each of the loop’s 500 iterations. The jump instruction,
for example, excites the same paths in several stages of the processor
(e.g., same decoding, same execution, etc.) each time it executes.

mov #500 , r5 ; l oop 500 t i m e s
mov #0 , r4 ; i n i t i a l i z e loop c o u n t e r
l oop :

. . . ; l oop body
i n c r4 ; i n c r e m e n t loop c o u n t e r
cmp r5 , r4 ; compare wi th loop l i m i t
j l l oop ; jump i f c o u n t e r < l i m i t

Listing 1. Assembly code for a simple loop.

Leveraging uniquification of toggled-sets to eliminate redundant
work requires all unique toggled-sets to be stored before running

4

DTA on each set. This increases the memory footprint of our tool.
However, the additional memory requirement is negligible, even for
long time windows, compared to the memory requirements of path-
based techniques.

Algorithm 2 Pseudocode for Uniquification-based DTA

Procedure FindDynamicCriticalPath()
1. // Toggled-set Uniquification
2. Read netlist and initialize PrimeTime Tcl socket interface;
3. Open VCD File;
4. Initialize List C // C is the set of all unique toggled-sets
5. foreach Time stamp of activity t in the VCD do
6. Read Toggled nets
7. foreach Toggled net n do
8. Infer Toggled gate g that drives net n
9. C ← insert(g) // C is the set of toggled gates for the current cycle

10. end for
11. if C /∈ C then
12. C ← insert(C)
13. end if
14. end for
15. // Dynamic Timing Analysis
16. foreach C ∈ C do
17. Mark all gates as not toggled; // using set_false_path
18. foreach g ∈ C do
19. Mark gate g as toggled ; // using reset_path
20. end for
21. St ← FindCriticalSlack() // using report_timing
22. if St < Smin then
23. Smin ← St

24. end if
25. end for

B. Unique Non-Includible Toggled-sets (UNITs) Identification

In this section, we present another optimization that can improve
the performance of DTA. When performing DTA for unique toggled-
sets, it is not necessary to analyze any toggled-set that is a subset
of another toggled-set. This is because, as stated in Theorem 2, if a
gate-set A is a subset of another gate-set B, then the paths of A are
also a subset of the paths of B. Thus, analyzing B will inherently
involve complete analysis of A.

For an example of how UNITs may improve the efficiency of
DTA, consider again the code in Listing 1. The paths exercised during
an increment of r4 from 127 to 128 (0b1111111 + 1) are a superset
of the paths covered during an increment from 31 to 32 (0b11111
+ 1), since the former increment executes the same instruction but
toggles more bits than the latter. Identification of UNITs can reduce
the execution time and memory requirements of our DTA tool (see
Section VI). Algorithm 3 describes UNITs-based dynamic analysis.

During UNITs identification, we only store the Non-Includible
Toggled-sets, that is, the toggled-sets that are not subsets of any
other toggled-sets. We use a data structure called the SetTrie [15]
to perform fast subset and superset operations. We briefly explain the
data structure below. Complete details can be found in [15].

1) SetTrie: A SetTrie is a data structure that is similar to the Trie
data structure used for text searching. The Trie is designed for efficient
substring searches while the SetTrie is designed for efficient subset
and superset searches. Unlike Trie, SetTrie requires the elements of
the universal set to be indexed. Element indices are inserted into the
SetTrie such that a traversal path from the root to a leaf corresponds
to a set of elements that is stored in the SetTrie. For example, the
SetTrie in Figure 2 stores the following sets.

1) {1, 3, 7}
2) {1, 3, 8}

3) {1, 2, 5}
4) {3, 7, 9}

5) {3, 8, 9}

The original SetTrie [15] allows for any internal node to also act
as the last element in the set, by using a flag for each node. We do
not need this feature, since UNITs require that we only insert a new
set if a superset does not already exist in the SetTrie.

-1

1 3

3 2

7 8 5

7 8

9 9

Fig. 2. A SetTrie data structure used for fast superset lookups.

To insert a set, we first check if there already exists a superset of
the set being inserted. If this is the case, we do not perform insertion.
If the check reveals no superset, we traverse down the tree while
the path of traversal matches exactly with the set being inserted and
create new nodes after the first point of deviation to accomodate the
set being inserted. The exact algorithms for insert and existsSuperset
can be found in [15].

Note that after a new set has been inserted, we would also like to
delete all the subsets of the new set. However, due to the exponential
complexity of the getAllSubsets function [15], we use a different
strategy. If a set is inserted successfully into the SetTrie, we store a
copy of the set in a separate list. Once all the sets have been inserted
(VCD file parsing has been completed) we check if there exists a
proper superset for each toggled-set stored in the separate list. If so,
we delete the toggled-set from the list of UNITs. For this purpose,
we enhance the existsSuperset function [15] to existsProperSuperset.
Note that we do not iterate over the entire list of toggled-sets again.
The number of toggled-sets remaining after initial insertion is less
than or equal to the number of unique toggled-sets (see Section IV-A)
and hence is significantly less than the number of parsed time stamps
(see Table III).

After removal of all sets that have a proper superset, we are left
with a set of Unique Non-Includible Toggled-sets (UNITs). These
UNITs cover all the toggled paths of a workload. There may still exist
redundancy between the UNITs, i.e., these sets may have a significant
number of paths in common. However, elimination of this redundancy
would require a path-based analysis which can be resource expensive,
both in terms of time and memory.

C. Toggle Rate of Paths

Path-based analysis and optimization techniques in previous
works also determine and utilize the toggle rates of paths for power
and performance optimizations [1], [2], [3], [4], [5], [6]. Since these
techniques rely on path-based analysis, they enumerate paths and
count the number of times each path has been toggled.

Although we do not enumerate paths due to the high overheads
involved, our technique still allows for an efficient approach to finding
path toggle rates. Namely, the toggle rate of a path can be found
by summing the toggle rates of all the unique toggled-sets the path
belongs to. A path belongs to a toggled-set if the set of gates in
the path is a subset of the set of gates in the toggled-set. Thus, the
getAllSupersets function of a SetTrie [15] containing all the unique
toggled-sets can be used to determine which unique toggled-sets a
path belongs to. The toggle rate of a unique toggled-set can easily
be determined by maintaining a counter for each unique toggled-set
during VCD parsing. Each time a toggled-set is encountered at a time
stamp, the counter for the set is incremented, indicating that all the
paths in the toggled-set have toggled at that time stamp.

A tradeoff exists between uniquification of toggled-sets and
UNITs. UNITs produces (sometimes significantly) fewer toggled-sets

5

to analyze than uniquification and can perform analysis faster (see
Section VI). However, UNITs discards information about the subsets
that have been merged into a superset, and thus it is not possible to
determine path toggle rates from UNITs-based analysis. I.e., a UNIT
may encompass the information for more than one unique toggled-
set, so determining the toggle rate of each unique toggled-set is not
possible for a UNIT.

One way to get the benefits of both methods (activity analysis
possible with uniquification and increased efficiency of UNITs) is
to maintain unique toggled-sets information for activity analysis and
perform subsetting on the unique toggled-sets and use UNITs-based
timing analysis on the dynamic critical paths. Note that we do not
need to enumerate and analyze all the toggled paths as in path-based
analysis. E.g., we can focus only on the critical/near-critical paths
reported by our DTA methodology.

Algorithm 3 Pseudocode for UNITs-based DTA

Procedure FindDynamicCriticalPath()
1. // UNIT Identification
2. Read netlist and initialize PrimeTime Tcl socket interface;
3. Open VCD File;
4. Initialize SetTrie Cst
5. Initialize List C
6. foreach Time stamp of activity t in the VCD do
7. Read Toggled nets
8. foreach Toggled net n do
9. Infer Toggled gate g that drives net n

10. C ← g // C is the set of toggled nets for the current cycle
11. end for
12. if ¬existsSuperSet(Cst, C) then
13. Cst ← insert(C)
14. C ← insert(C)
15. end if
16. end for
17. foreach C ∈ C do
18. if existsProperSuperSet(Cst, C) then
19. C ← delete(C)
20. end if
21. end for
22. // Dynamic Timing Analysis
23. foreach C ∈ C do
24. Mark all gates as not toggled; // using set_false_path
25. foreach g ∈ C do
26. Mark gate g as toggled ; // using reset_path
27. end for
28. St ← FindCriticalSlack() // using report_timing
29. if St < Smin then
30. Smin ← St

31. end if
32. end for

V. METHODOLOGY

We verify our techniques with experiments on a silicon-proven
processor – openMSP430 [16]. Designs are synthesized, placed, and
routed with TSMC 65GP library (65nm), using Synopsys Design
Compiler [17] and Cadence EDI System [18] assuming worst-case
operating conditions. Gate-level simulations are performed by running
full benchmark applications from Table I on the placed and routed
processor using Synopsys VCS [19]. Activity information is read from
the VCD file generated from gate-level simulation. Timing analysis
is performed with Synopsys PrimeTime [14]. Experiments were
performed on a server housing two Intel Xeon E5-2640 Processors
with 8-cores each, 2 GHz operating frequency, and 64 GB RAM.
We implemented our algorithms in C++. For comparison against
path-based DTA, we implemented the path-based tool from [2].
Benchmarks dhrystone 4mcu, dhrystone v2.1 and coremark v1.0 are
available in [16]. All other benchmarks are taken from [20].

VI. RESULTS AND ANALYSIS

To illustrate the benefits of our graph-based analysis over path-
based analysis, we compare the computation time (in seconds) for

TABLE I. BENCHMARK DESCRIPTIONS

mult Integer Multiplication
tea8 8-bit Tiny Encryption Algorithm

binSearch Binary Search
rle Run-Length Encoding Algorithm

intAVG Integer Average
inSort Insertion Sort
tHold Threshold Cross Detection

div Integer Division and Outputing
intFilt FIR Lowpass Integer Filter

dhrystone v2.1 Dhrystone Benchmark
dhrystone 4mcu Dhrystone Benchmark for MCUs
coremark v1.0 Coremark Benchmark

TABLE II. COMPUTATION TIMES (SECONDS) FOR PATH-BASED DTA
AND THE PROPOSED TECHNIQUES AT DIFFERENT LENGTH OF TIME

WINDOWS (CYCLES)

time window (cy-
cles) 5 25 50 125 250 375 500

Path-based DTA 135 1455 1516 1527 5054 5105 5326
Basic DTA 8 21 38 81 159 248 341
Uniquified DTA 7 13 15 17 41 42 44
UNITs DTA 7 13 15 16 37 37 39

each technique to perform dynamic timing analysis of the processor.
This involves running a benchmark on the processor, characterizing
all the toggled paths in the design, and finding the critical timing path
among the toggled paths.

When we attempted to run the path-based tool [2] for the full
processor and a benchmark with relatively low activity (div), we
observed that after two hours of computation our server (with 64
GB of RAM) ran out of memory and was only able to analyze paths
for a time window of 25 cycles in the VCD file. For a benchmark
with higher activity (coremark v1.0) and thus more toggled paths,
the path-based tool was not even able complete analysis for one cycle
before running out of memory.

Due to the high memory and computation time requirements
of path-based analysis, we could only perform a comparison for a
processor module (not the full processor). Note that previous works
that use path-based analysis are likewise limited to analyzing only
small modules [1], [2], [3], [4], [5], [6], [8]. Table II compares the
runtime of path-based DTA for the execution unit of openMSP430
and the div benchmark against our three approaches described in
Section IV. Figure 3 shows the performance data for our approaches
normalized to that of path-based analysis. Table II and Figure 3
show data for different time windows of execution (in cycles),
demonstrating that even for a single module the performance benefit
of graph-based analysis is significant (up to 136.6X, 105.6X on avg.)
and increases for larger time windows. Note that even for single-
module analysis over these short time windows the computation time
of path-based analysis quickly becomes unreasonable. While it can
be seen that UNITs is faster than uniquification-based DTA, the next
set of results makes a more convincing case for UNITs.

The next set of results compares the performance benefits offered

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

5 25 50 125 250 375 500

Ex
e

c.
 t

im
e

s
n

o
rm

al
iz

e
d

 t
o

 p
at

h

D
TA

Cycles of simulation

Basic DTA Uniquified DTA UNITs DTA

Fig. 3. Execution times for graph-based DTA normalized to path-based DTA.

6

TABLE III. NUMBER OF TOGGLED-SETS IDENTIFIED FOR ANALYSIS
BY EACH DTA APPROACH.

Benchmarks Basic DTA
toggled-sets Unique toggled-sets UNITs

mult 147 74 73
tea8 4191 1704 1579
binSearch 4723 925 764
rle 5848 2318 1372
intAVG 12308 4704 1849
inSort 28813 5762 3333
tHold 28870 10016 5508
div 68801 6594 3387
intFilt 222495 8559 6547
dhrystone 4mcu 332977 12773 2908
dhrystone v2.1 478429 4703 2818
coremark v1.0 980930 180695 108379

0

20

40

60

80

100

%
 r

e
d

u
ct

io
n

 in
 t

o
gg

le
d

-s
e

ts

Benchmarks

Unique toggle-sets UNITS

Fig. 4. Percentage reduction in the number of toggled-sets due to Uniquifi-
cation and UNITs.

by our two DTA optimizations for full processor analysis and full
application execution of the benchmarks in Table I. I.e., the analysis
time window spans the full execution of the benchmark on the
full processor. Note that this full level of analysis, which would
be expected of a commercial CAD tool, is enabled by our graph-
based analysis approach and is not possible for path-based analysis.
Execution time profiling (e.g., gprof) revealed that the time taken
to unmark all gates, mark all toggled gates, and report the critical
timing path is approximately the same for any given toggled-set, and
on average, these steps consume over 90% of total analysis time.
Thus, the primary performance benefit of our optimizations comes
from reduction of the number of toggled-sets that must be analyzed.
Table III shows the number of toggled-sets identified for analysis
by basic graph-based DTA (Algorithm 1), uniquification-based DTA
(Algorithm 2), and UNITs-based DTA (Algorithm 3). Figure 4 shows
the percentage reduction in the number of toggled sets for the two
optimized DTA techniques, relative to basic graph-based DTA.

Table III and Figure 4 demonstrate significant reduction in
toggled-sets for both uniquification and UNITs. Uniquification re-
duces toggled-sets by up to 99.0%, 76.6% on average, and UNITs
reduce toggled-sets by up to 99.4%, 83.9% on average. While all
benchmarks benefit from UNITs over uniquification, benchmarks
such as div, rle, intAVG, tHold, dhrystone v2.1, dhyrstone 4mcu
and coremark v1.0 benefit significantly, showing 50.35% average
reduction for UNITs relative to uniquification. Note that for the larger
benchmarks (dhrystone v2.1, dhrystone 4mcu and coremark v1.0)
the benefit of UNITs over uniquification is hard to distinguish in
Figure 4 (percent reduction metric), since both approaches result in
very significant reduction of toggled-sets compared to basic graph-
based DTA. Table III, however, provides the absolute results which
show significant differences in the number of toggled sets.

VII. APPLICABILITY TO ADVANCED TIMING ANALYSIS
TECHNIQUES

Since our dynamic analysis techniques are based on traditional
timing analysis methodologies, they can easily be extended to ad-

vanced timing analysis techniques such as variation-aware analysis
and multiple input switching (MIS). Below, we list some advanced
timing techniques that can easily be incorporated in our graph-
based dynamic analysis approach. Note that other dynamic analysis
approaches [1], [2], [3], [4], [5], [6] have not considered the advanced
timing analysis techniques discussed below; however, we mention
them here for completeness and to describe how they can be easily
integrated into our approach. We also discuss how to handle scenarios
where the assumptions in Section III are not valid (e.g., compound
cells and false paths due to controlling inputs).
Removing graph-based pessimism: Since our technique leverages
the benefits of graph-based STA for dynamic analysis, it inherently
incorporates the pessimism of graph-based analysis. This is a well-
known issue in traditional STA which has been addressed by using
path-based analysis for the critical paths reported by graph-based
STA to remove pessimism. The same approach can be applied on the
UNITs of a benchmark to accurately report the slack of the dynamic
critical paths. Also, such analysis can be restricted to the UNITs with
near-critical slack (only 8.09% of UNITS, on average, where near-
critical means:
slackUNIT ≤ slackdynamic critical path + 10% × clock period),
so the cost of path-based analysis is significantly reduced by only
analyzing the near-critical exercised paths, rather than all exercised
paths (in the case of previous dynamic analysis techniques). Since
they rely on path-based analysis, previous works [1], [2], [3], [4],
[5], [6] do not suffer from graph-based pessimism; however, they
would unnecessarily perform timing analysis on a large number of
non-critical paths over a large number of redundant toggled-sets.
Compound cells: Some cells provided by a cell library are compound
cells, such as a 2:1 MUX. For compound cells, it may be the case
that a path through the cell can be considered as a false path, even
though all gates on the path toggled. For example, if both the inputs
of a MUX toggle, the path through one input can be marked as false,
based on the value of the select pin. Similarly, the input to a tri-state
buffer is marked as false if its enable pin is OFF. This functionality
is easily incorporated in our analysis by tracking toggled pins rather
than toggled gates. The rest of the analysis remains the same. Toggled
pins completely and exclusively characterize all the toggled paths, and
our optimizations are still valid on the new toggled-sets that consider
toggled pins instead of gates.
Rise and fall toggled-sets: Our results in Section VI were generated
by considering both rise and fall transitions simply as toggles,
rather than differentiating the two. Note that previous works on
dynamic analysis also did not differentiate between rising and falling
transitions [1], [2], [3], [4], [5], [6]. However, in some circumstances,
differentiating rising and falling toggles could provide more accurate
timing analysis. For completeness, we re-evaluated our results in
Table III by differentiating rising and falling sets for pins, as well as
false path marking for compound cells, and observed that the results
only change by 3%, at the most, compared to basic DTA for any
benchmark.
Multiple input switching: If more than one input of a gate switches
at the same time, the delay of the gate can be different than in the
single input switching scenario traditionally assumed for STA. Our
graph-based analysis can easily perform more accurate timing analysis
that accounts for multiple input switching, since we can track the
value of each pin in the design from the VCD file and determine
when multiple inputs of the same gate toggle with similar arrival
times/windows.
False paths due to controlling inputs: If an input to a gate toggled
to a controlling value, any other inputs that toggled to a non-
controlling value can be marked as false. If multiple inputs of a
toggled gate toggled to a controlling value in the same cycle, the

7

slower transitioning path(s) can be considered false path(s). This is
because the fast path toggles the gate’s output first, precluding the
effect of any slower path’s toggle. The arrival times of the input pins
of the toggled gate can be used to identify which controlling input
arrives first, and the path(s) through the other pin(s) can be marked
as false. Since the number of gates with multiple input switching is
small, the overhead of checking the above conditions is negligible.
Note that analysis of controlling inputs would likely have significantly
higher overhead for path-based techniques, since the same gate would
be analyzed multiple times (once per toggled path it is in). Since
variations may affect which input arrives first to a gate, we did
not mark false paths due to fast-arriving controlling inputs for our
analysis.
Statistical Static Timing Analysis, Multi-Mode, Multi-Corner, and
On-Chip Variation Analyses: Since SSTA can be graph-based and
also be applied incrementally [21], [22] our method, which is based
on pruning a design then applying STA, can easily incorporate SSTA.
On-chip variation analyses such as Parametric On-chip Variation
analysis [23] are inherited from SSTA. Having a graph-based and
path-based version these analyses are easily incorporated into our
methodology. MMMC techniques involve re-running timing analysis
for various modes at various corners, which can easily be performed
with our approach.
Crosstalk Analysis: Crosstalk analysis can easily be included in
our methodology, since transitions (rise/fall) and values on nets and
pins for crosstalk analysis can be excluded/included using commands
such as set_si_delay_analysis and set_case_analysis
provided by PrimeTime [14].

VIII. CONCLUSION

In this paper, we show that path-based dynamic analysis tools
used by existing BTWC techniques to analyze timing and activity
information do not scale to larger designs or analysis time windows.
We propose a novel graph-based dynamic analysis methodology
that is not only scalable but also significantly faster than previous
tools. Also, our methodology is easily integrated with industry-
standard CAD tools. We further improve our methodology with
two optimizations – uniquification of toggled-sets and Unique Non-
Includible Toggled-sets (UNITs) and discuss their trade-offs. Our
results demonstrate 105.6x speedup compared to path-based DTA
and 93.8%, 96.9% average reduction in analyzed toggled-sets for
uniquification and UNITs, respectively.

ACKNOWLEDGMENT

This research has been supported by the National Science Founda-
tion and the Semiconductor Research Consortium. The authors would
like to thank Pranav Kumar Cherupalli and Sri Harsha Vadlamani for
discussions on timing analysis techniques.

REFERENCES

[1] Andrew B Kahng, Seokhyeong Kang, Rakesh Kumar, and John Sar-
tori. Recovery-driven design: a power minimization methodology for
error-tolerant processor modules. In Proceedings of the 47th Design
Automation Conference, pages 825–830. ACM, 2010.

[2] Andrew B Kahng, Seokhyeong Kang, Rakesh Kumar, and John Sartori.
Recovery-driven design: Exploiting error resilience in design of energy-
efficient processors. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 31(3):404–417, 2012.

[3] Andrew B Kahng, Seokhyeong Kang, Rakesh Kumar, and John Sartori.
Slack redistribution for graceful degradation under voltage overscaling.
In Design Automation Conference (ASP-DAC), 2010 15th Asia and
South Pacific, pages 825–831. IEEE, 2010.

[4] John Sartori and Rakesh Kumar. Exploiting timing error resilience in
processor architecture. ACM Transactions on Embedded Computing
Systems (TECS), 12(2s):89, 2013.

[5] John Sartori and Rakesh Kumar. Compiling for energy efficiency on
timing speculative processors. In Design Automation Conference (DAC),
2012 49th ACM/EDAC/IEEE, pages 1297–1304. IEEE, 2012.

[6] Brian Greskamp, Lu Wan, Ulya R Karpuzcu, Jeffrey J Cook, Josep
Torrellas, Deming Chen, and Craig Zilles. Blueshift: Designing proces-
sors for timing speculation from the ground up. In High Performance
Computer Architecture, 2009. HPCA 2009. IEEE 15th International
Symposium on, pages 213–224. IEEE, 2009.

[7] Smruti R Sarangi, Brian Greskamp, Radu Teodorescu, Jun Nakano,
Abhishek Tiwari, and Josep Torrellas. Varius: A model of process
variation and resulting timing errors for microarchitects. Semiconductor
Manufacturing, IEEE Transactions on, 21(1):3–13, 2008.

[8] Smruti Sarangi, Brian Greskamp, Abhishek Tiwari, and Josep Torrellas.
Eval: Utilizing processors with variation-induced timing errors. In Mi-
croarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International
Symposium on, pages 423–434. IEEE, 2008.

[9] A Hakan Baba and Subhasish Mitra. Testing for transistor aging. In
VLSI Test Symposium, 2009. VTS’09. 27th IEEE, pages 215–220. IEEE,
2009.

[10] Jing Xin and Russ Joseph. Identifying and predicting timing-critical
instructions to boost timing speculation. In Proceedings of the 44th An-
nual IEEE/ACM International Symposium on Microarchitecture, pages
128–139. ACM, 2011.

[11] Abbas Rahimi, Luca Benini, and R Gupta. Application-adaptive
guardbanding to mitigate static and dynamic variability. Computers,
IEEE Transactions on, 63(9), Sept 2014.

[12] Koushik Chakraborty, Brennan Cozzens, Sanghamitra Roy, and Dean M
Ancajas. Efficiently tolerating timing violations in pipelined micro-
processors. In Proceedings of the 50th Annual Design Automation
Conference, page 102. ACM, 2013.

[13] Omid Assare and Rajesh Gupta. Timing analysis of erroneous systems.
In Proceedings of the 2014 International Conference on Hardware/Soft-
ware Codesign and System Synthesis, page 7. ACM, 2014.

[14] Synopsys. PrimeTime User Guide.
[15] Iztok Savnik. Index data structure for fast subset and superset queries.

In Alfredo Cuzzocrea, Christian Kittl, DimitrisE. Simos, Edgar Weippl,
and Lida Xu, editors, Availability, Reliability, and Security in Infor-
mation Systems and HCI, volume 8127 of Lecture Notes in Computer
Science, pages 134–148. Springer Berlin Heidelberg, 2013.

[16] O Girard. Openmsp430 project. available at opencores.org, 2013.
[17] Synopsys. Design Compiler User Guide.
[18] Cadence. Encounter Digital Implementation User Guide.
[19] Synopsys. VCS/VCSi User Guide.
[20] Bo Zhai, Sanjay Pant, Leyla Nazhandali, Scott Hanson, Javin Olson,

Anna Reeves, Michael Minuth, Ryan Helfand, Todd Austin, Den-
nis Sylvester, et al. Energy-efficient subthreshold processor design.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
17(8):1127–1137, 2009.

[21] Chandramouli Visweswariah, Kaushik Ravindran, Kerim Kalafala,
Steven G Walker, and Sambasivan Narayan. First-order incremental
block-based statistical timing analysis. In Proceedings of the 41st
annual Design Automation Conference, pages 331–336. ACM, 2004.

[22] Jin Wook Kim, Wook Kim, Hyoun Soo Park, and Young Hwan Kim.
Incremental statistical static timing analysis with gate timing yield
emphasis. In Circuits and Systems, 2008. APCCAS 2008. IEEE Asia
Pacific Conference on, pages 1016–1019. IEEE, 2008.

[23] Ayhan Mutlu, Jiayong Le, Ruben Molina, and Mustafa Celik. A
parametric approach for handling local variation effects in timing
analysis. In Design Automation Conference, 2009. DAC’09. 46th
ACM/IEEE, pages 126–129. IEEE, 2009.

