
Designing a Cost-Effective Cache Replacement
Policy using Machine Learning

Subhash Sethumurugan
Electrical and Computer Engineering
University of Minnesota, Twin Cities

Minneapolis, MN 55455
Email: sethu018@umn.edu

Jieming Yin
Electrical and Computer Engineering

Lehigh University
Bethlehem, PA 18015
Email: yin@lehigh.edu

John Sartori
Electrical and Computer Engineering
University of Minnesota, Twin Cities

Minneapolis, MN 55455
Email: jsartori@umn.edu

Abstract—Extensive research has been carried out to improve
cache replacement policies, yet designing an efficient cache
replacement policy that incurs low hardware overhead remains
a challenging and time-consuming task. Given the surging
interest in applying machine learning (ML) to challenging
computer architecture design problems, we use ML as an offline
tool to design a cost-effective cache replacement policy. We
demonstrate that ML is capable of guiding and expediting the
generation of a cache replacement policy that is competitive
with state-of-the-art hand-crafted policies.

In this work, we use Reinforcement Learning (RL) to learn
a cache replacement policy. After analyzing the learned model,
we are able to focus on a few critical features that might
impact system performance. Using the insights provided by
RL, we successfully derive a new cache replacement policy –
Reinforcement Learned Replacement (RLR). Compared to the
state-of-the-art policies, RLR has low hardware overhead, and it
can be implemented without needing to modify the processor’s
control and data path to propagate information such as program
counter. On average, RLR improves single-core and four-core
system performance by 3.25% and 4.86% over LRU, with an
overhead of 16.75KB for 2MB last-level cache (LLC) and 67KB
for 8MB LLC.

I. INTRODUCTION

Caches are an important component in modern processors.
The effectiveness of a cache is largely influenced by its
replacement policy. An efficient cache replacement policy
can effectively reduce off-chip bandwidth utilization and
improve overall system performance. There is a large body
of prior work on cache replacement policies; however,
designing cost-effective cache replacement policies is still
challenging for chip designers, especially under stringent
hardware constraints.

Cost-effectiveness is becoming increasingly important, as
Moore’s Law has slowed down and Dennard scaling has
ended. A cost-effective cache replacement policy should be
able to reduce misses-per-kilo-instructions (MPKI) without
introducing significant hardware modification and storage
overhead. Commonly used Least Recently Used (LRU) and
Re-Reference Interval Prediction (RRIP) polices [12] incur
minor hardware overhead for storing the recency bits or re-
reference counters. However, these static heuristic-driven
policies are only effective for a limited class of cache
access patterns. Using program counter (PC) information,
state-of-the-art replacement policies are capable of capturing
dynamic phase changes in cache access patterns, and they
can effectively reduce the MPKI for a wide spectrum of
workloads [11], [14], [24], [30], [34]. Figure 1 compares the

TABLE I
HARDWARE OVERHEAD FOR DIFFERENT REPLACEMENT POLICIES IN A

16-WAY 2 MB CACHE

Policy Uses PC Overhead
LRU No 16KB

DRRIP [12] No 8KB
KPC [19] No 8.57KB

MPPPB [14] Yes 28KB
SHiP [30] Yes 14KB

SHiP++ [34] Yes 20KB
Hawkeye [11] Yes 28KB

Glider [24] Yes 61.6KB
RLR (this work) No 16.75KB

last-level cache hit rate among different replacement policies,
in which Belady is the theoretical optimal. Unsurprisingly, the
PC-based policies (SHiP, SHiP++, and Hawkeye) outperform
non-PC-based policies (LRU and DRRIP) in almost all
benchmarks.

Unfortunately, incorporating PC into the replacement policy
not only requires additional storage overhead but also involves
significant modifications to the processor’s control and data
path. Accessing PC at the LLC requires propagating PC
through all levels of the cache hierarchy, including widening
the data path, modifying cache architecture to store PC,
adding extra storage for PC in the Issue Queue, Reorder
Buffer (ROB) and Load/Store Queue (LSQ), and more
[19]. More costly than the overhead of implementing PC-
based policies is the fact that these changes require an
overhaul of the entire processor pipeline, which would require
significant design and verification overheads. Given the
extensive modifications required, chip manufacturers have
thus far been unwilling to implement PC-based replacement
policies, favoring instead incremental design enhancements
with similar performance/overhead tradeoffs that do not
require significant redesign and verification. For example,
for the same memory overhead of implementing SHiP++ in
LLC, a designer could implement DRRIP in LLC and also
increase L1 size by 12KB. Given that increasing L1 size
may provide similar or even better benefits without requiring
significant redesign and verification, processor manufacturers
have as yet not implemented PC-based replacement policies.
Table I summarizes the hardware overhead of different cache
replacement policies.

How can we improve the cache replacement policy without
using PC? We realized this is a difficult challenge. To answer

0
20
40
60
80
100

LL
C	
H
IT
	R
AT
E

LRU DRRIP SHiP SHiP++ HAWKEYE RLR RL BELADY
Fig. 1. LLC hit rate comparison (Belady is the theoretical optimal).

this question in a cost-effective way in terms of reducing
product development time, we turned to machine learning
for help. Machine learning is a useful tool to augment
human intelligence and expedite the chip design process,
and computer architects have been using ML to advance
computer architecture designs. There has already been work
on utilizing ML to improve branch predictors [13], memory
controllers [22], reuse prediction [28], prefetchers [35], dy-
namic voltage and frequency scaling management for network-
on-chip (NoC) [9], [36], and NoC arbitration policy [32], [33].

In this work, we explore the capability of ML in designing
a cost-effective cache replacement policy. Specifically, we use
reinforcement learning (RL) to learn a last-level cache (LLC)
replacement policy. The RL algorithm takes into consideration
a collection of features that can be easily obtained at the
LLC without modifying the processor’s control and data
path. After successfully learning a replacement policy that
achieves good performance, we analyze the learned policy by
applying domain knowledge, with the goals of distilling useful
information, verifying the important features, understanding
the relative importance of each feature, and gaining insights
into how these features interact. Guided by ML, we frame
a cost-effective cache replacement policy – Reinforcement
Learned Replacement (RLR). Overall, RLR does not require
heavy modification to the CPU microarchitecture and out-
performs LRU and DRRIP for most evaluated benchmarks.
Figure 1 compares LLC hit rate for several replacement
policies, including a policy learned by RL and our static
adaptation (RLR) based on RL.1 The performance of the RL
policy is better than LRU, DRRIP, SHiP, and Hawkeye in most
benchmarks, while it is marginally lower than SHiP++. RL
performance can be improved by including PC-based features
in the feature set, but one goal of our work is to design a
cost-effective replacement policy that does not rely on PC at
the LLC. The performance of RLR shows the effectiveness
of the insights learned from RL.

II. RELATED WORK

There has been considerable work on designing efficient
cache replacement algorithms [7], [16], [17], [20], [23], [31].
In this section, we discuss some of the related prior work.

1Due to the computational complexity of running RL simulations and the
need to look at future accesses, RL and BELADY simulations are run in
a python-based simulator; the rest of the policies use ChampSim. Further
details are explained in Section III.

Glider: Glider [24] uses a Support Vector Machine (SVM)-
based hardware predictor for cache replacement. Initially,
an offline attention-based long short-term memory (LSTM)
model is used to improve prediction accuracy. Then, the
authors interpret the offline model to gain insights and hand
craft a feature that represents a program’s control-flow history.
Then, a simple linear learning model is used to match the
LSTM’s prediction accuracy. The hardware implementation
of the policy requires a Program Counter History Register
and an Integer SVM table.
Hawkeye: Hawkeye [11] uses a PC-based predictor to
determine whether a cache line is cache-friendly or cache-
averse. On a miss, the policy first chooses to evict cache-averse
lines. If no cache-averse cache lines are found in the set, the
oldest accessed cache line is chosen for eviction.
SHiP: Signature Based Hit Prediction (SHiP) [30] replacement
policy predicts re-reference characteristics of cache lines from
a PC-based signature. SHiP has a Signature History Counter
Table (SHCT) that maintains a counter (SHCTR) for each PC
signature. Cache lines inserted by PCs with non-zero SHCTR
are assigned a Re-Reference Prediction Value (RRPV) of 2,
while other cache lines are inserted with a RRPV of 3.
SHiP++: The SHiP++ replacement policy [34] enhances SHiP
by inserting cache lines accessed by PCs with maximum
SHCTR value with a RRPV of 0, training the SHCT table
only on the first re-reference of a cache line, inserting cache
lines from writeback accesses with a RRPV of 3, assigning
a separate PC signature for prefetch accesses, and making
prefetch-aware RRPV updates on a cache line re-reference.
Counter based replacement policy: Kharbutli et al. [18]
propose a counter-based approach, where each cache line is
equipped with counters to track events such as the number
of accesses to the set between two consecutive cache line
accesses or the number of cache line accesses. When the
counter reaches a threshold, the line is eligible for replacement.
The policy also uses a PC-based prediction table to retain
counters for evicted cache lines.

All of the above policies correlate the reuse behavior of
cache lines to the PCs. However, accessing PC at the LLC
adds significant hardware overhead to the architecture. The
width of the data path must be increased to propagate PC
through all levels of the cache hierarchy. In addition, the
miss status holding registers (MSHR) also need to track
the PC information. These modifications exacerbate energy

and communication overheads. Furthermore, pipeline design
must be modified to propagate PC through all stages, as
well as adding extra storage at Load/Store Queue before
accessing the memory system. While many of the prior
works lack the justification of the hardware and processor
design/verification overhead associated with incorporating PC
in cache replacement, it is questionable whether the benefits
will outweigh the overhead and complexity. As a result, we
avoid using PC in our replacement policy.
KPC: Kill the Program Counter [19] proposes an integrated
data prefetching and replacement policy that avoids using the
PC. While our work aims to design an effective replacement
policy given an existing prefetcher, KPC designs a custom
prefetcher (i.e., KPC-P) to complement their replacement
policy. KPC-P uses prediction confidence to estimate reuse
distance for prefetched cache lines and determine the cache
level in which to insert them. The KPC cache replacement
policy (i.e., KPC-R) uses two global counters to adapt to the
dynamic program phase and decide whether to insert a cache
line in LRU (RRPV=3) or near LRU (RRPV=2) positions
in the replacement stack. KPC avoids L2 cache pollution by
not inserting prefetched lines with low prediction confidence
in L2; however, all prefetched lines are inserted in LLC.
As described in Section III-B2, we avoid cache pollution
from prefetched cache lines in LLC by evicting non-reused
prefetched cache lines sooner than cache lines from other
access types.

The following replacement policies use past accesses of a
cache line to predict its future access behavior. Each policy
predicts a cache line’s reuse characteristic using a certain
metric. On a miss, all cache lines in the accessed set are
compared using the metric, and the cache line with the farthest
reuse characteristic is chosen for eviction.
PDP: Protecting Distance based Policy (PDP) [6] protects all
lines in LLC until the number of accesses to the set (after
the line insertion or access) reaches a threshold, known as
Protecting Distance (PD). On a miss, an unprotected cache
line is evicted. If no unprotected cache lines are found, either
the cache line with the minimum number of set accesses is
evicted or the access is bypassed. A dedicated special-purpose
processor executes a search algorithm periodically to compute
the optimal threshold. Hit rates are estimated for threshold
values less than 256, and the threshold value with the best
hit rate is chosen. In our work, we derive a much simpler
method to predict reuse distance (like PD in [6]) based on
insights gained from the ML model.
EVA: The Economic Value Added (EVA) metric [4] char-
acterizes the difference between expected and average hits.
A cache line’s EVA depends on its age, and the cache line
with the lowest EVA is evicted. However, the policy does not
account for non-demand accesses, such as prefetch accesses.
These additional accesses may skew the correlation between
a cache line’s age and its EVA.
RWP: Read-Write Partitioning (RWP) [16] is a replacement
policy that dynamically partitions the cache into clean and
dirty partitions to reduce the number of read misses. On a
miss, a victim is selected from one of the partitions, based

on predicted partition size and the actual partition size in the
corresponding set.

Inter-reference Gap Distribution Replacement [27] uses
time difference between successive references of a cache line
to attach a weight to it. On a miss, the cache line with the
smallest weight is evicted. Das et al. [5] propose using a cache
line’s age (since last access) to estimate its hit probability
under an optimal replacement policy. On a miss, the line with
the lowest hit probability is evicted. Keramidas et al. [15]
combine the usage of reuse distance and PC. The policy
uses a sampler to compute reuse distances for selected cache
lines. The computed reuse distances and the PCs of load/store
instructions that accessed the selected cache lines are used to
predict reuse distances for other cache lines. On a miss, the
cache line with largest predicted reuse distance is evicted.

III. MACHINE LEARNING-AIDED ARCHITECTURE
EXPLORATION

Reinforcement Learning is a machine learning paradigm
in which an agent tries to navigate through an environment
by choosing an action from a set of allowed actions [25].
Using the suggested action, the environment moves from the
current state to the next state and meanwhile generates a
reward as a feedback to the agent. The agent trains itself to
maximize cumulative reward. In this process, the agent learns
a policy that selects the optimal action in a given state. One
way to keep track of the optimal action for a given state is to
maintain a table for all state-action pairs. However, it could
be infeasible to implement such a table when the state and
action space is large. In such a scenario, a neural network
can be used as a function approximator in lieu of a table.

RL has the potential to learn a theoretical optimal policy,
given that the effects of actions are Markovian [29]. Because
RL has the ability to adapt to dynamic changes in the
environment and handle the non-trivial consequences of
chosen actions, it is a good fit for the cache replacement
problem. We pose cache replacement as a Markov Decision
Process (MDP), where an agent makes replacement decisions.
Given a cache state, the replacement decision made by the
agent moves the cache to a new state. The agent is assigned
a reward based on how close the replacement decision is
to BELADY (optimal). In our framework, we train a neural
network using RL algorithms to learn a replacement policy.
Although the learned policy can be efficient, we do not
want to build a neural network in hardware, due to power,
area, and timing constraints. Instead, we analyze the neural
network and use the insights gained from the neural network
to derive a replacement algorithm that is feasible to implement
in hardware. In this section, we describe our simulation
framework and architecture exploration flow in detail.

A. RL-based Simulation Framework

At high level, our simulation framework consists of two
parts: trace generation and RL training. We use ChampSim [3]
from the 2nd Cache Replacement Championship (CRC2)
to generate LLC access traces. The trace file comprises a
record of 〈PC, Access Type, Address〉 for each LLC access.
Access types include load (LD), request for ownership (RFO),

TABLE II
LIST OF FEATURES CONSIDERED BY THE RL AGENT

Classification Feature Description

Access Information
offset Lower order 6 bits of accessed address
preuse Set accesses since last access to the accessed address

access type Type of access (LD, RFO, PR, WB)

Set Information
set number Set that was accessed
set accesses Total number of set accesses

set accesses since miss Set accesses since last miss to the set

Cache Line
Information

offset Lower order 6 bits of cache line address
dirty Dirty bit of the cache line

preuse Set accesses between last two accesses to the cache line
age since insertion Set accesses since cache line insertion

age since last access Set accesses since last access to the cache line
last access type Type of last access to the cache line (LD, RFO, PR, WB)
LD access count Number of load accesses to the cache line

RFO access count Number of read-for-ownership accesses to the cache line
PF access count Number of prefetch accesses to the cache line
WB access count Number of write-back accesses to the cache line

hits since insertion Number of hits to cache line since its insertion
recency Order of cache line access with respect to other cache lines in the set

Select
Victim

Agent

Cache

0x400 … 0x200

Current Access

Access	Info Set	Info Way 0

Line Info

Way 1 … Way n

State Vector

Victim WayReward

12

34

1.0

0.0

0.6

…

0.3

0x3000x100

State Way 0 Way 1 … Way n

Fig. 2. Simulation framework overview.

prefetch (PR), and writeback (WB). We use LRU as the
default replacement policy to ensure that the generated traces
are not biased towards other policies that we compare against.

The trace is fed into a Python-based cache simulator
that includes an RL agent to make replacement decisions.
The cache simulator uses the same LLC configuration as
ChampSim and populates the LLC based on the accessed
addresses. Each cache line is associated with a collection of
cache states, as described later in this section. The simulation
framework is shown in Figure 2. On a hit, the cache simulator
updates the cache states and moves on to the next access. On
a non-compulsory miss, the cache simulator interacts with
the agent to make a replacement decision 1 . Information
regarding the missed access and the accessed set is sent to the
agent in the form of a state vector 2 . The agent evaluates the
state vector and generates an output vector of n elements for
an n-way set associative cache 3 . Each element in the output

vector corresponds to a way in the cache set, and the value
represents how beneficial it is (from the agent’s perspective)
if a certain way is chosen for eviction. The cache simulator
then makes a replacement decision based on the output vector
generated by the agent; meanwhile, a numerical reward is
generated and sent to the agent for further training 4 . Below
we explain the critical components is detail.

State Vector: LLC state vector contains information required
to make a replacement decision. We segregated LLC state
into three classes of features: a) access information that
describes the current access to the cache; b) set information
that describes the set that is being accessed; and c) cache
line information that describes each cache line in the set
that is being accessed. On every LLC access, statistics of
the accessed set are updated. For example, the counter set
access is incremented on every access to the set. As another
example, the counter set access since miss is incremented
on every hit to the set and reset to zero on a miss. Similar
counters are maintained for every cache line in the set. The
cache line counters are reset in the event of an eviction
to start counting for the newly inserted cache line. Cache
lines are also augmented to store other information such as
their recency, last access type, dirty bit and other relevant
features. The entire feature list representing LLC state is
listed in Table II. Categorical features such as last access
type are one-hot encoded. Numerical features such as access
count are normalized by their respective maximum values
and represented as a fractional value between 0 and 1. The
only exception is the feature offset, for which we use a 6-bit
binary representation (assuming 64-byte cache lines). For a
16-way set associative LLC, we represent a state vector using
334 floating point values.

Agent: The agent consumes the state vector and generates
an output vector of size equal to the set associativity of the
LLC. Each value in the output vector indicates the estimated
quality of choosing the cache line in the corresponding way
as a victim. In this work, we use a neural network to estimate
the quality. After extensive exploration on neural network

architecture and hyperparameter tuning, we chose to use a
multi-layer perceptron (MLP) with one hidden layer, because
it is simple enough for interpretation but performs almost as
well as denser networks. We also found that tanh activation
for the hidden layer and linear activation for the output
layer yielded better performance than other combinations. The
neural network has 334 input neurons, 175 hidden neurons
and 16 output neurons (because of the 16-way LLC). On
every cache miss, the simulator queries the agent to select a
victim. In our simulation framework, there is only one neural
network for victim selection for all sets of the LLC. This
is similar to following a common replacement policy for all
sets. Designers can choose to use multiple agents by training
them using different combination of cache sets.
Replacement Decision: The agent returns a vector of n
values, one for each cache way (e.g., 16-element vector for a
16-way cache). The replacement decision is made by an
ε greedy approach [21], in which we choose the victim
with the maximum value with a probability of 1− ε and
randomly select a victim with a probability of ε . Random
actions explore new trajectories and expand the search space.
In our experiment, we found that an ε value of 0.1 yielded
better performance than other ε values.
Reward: The reward steers the agent towards learning a more
optimal replacement policy, so reward function must be chosen
carefully. A theoretically optimal replacement policy, such
as Belady, replaces the cache line that has the farthest reuse
distance among lines in a set. To allow the agent to learn this
behavior, a positive reward is returned when the agent makes
a good decision and evicts the cache line with the farthest
reuse distance. A negative reward is returned when the agent
evicts a cache line with a lesser reuse distance than the cache
line that is inserted in cache, since the evicted cache line
would hit sooner than the inserted cache line if retained in
cache. A neutral reward is awarded when any other cache line
is evicted. Only the optimal replacement decision is assigned
a positive reward, differentiating it from the other decisions
and allowing the agent to learn a near-optimal policy faster.
Training: For training, we use a technique called experience
replay [21]. Each replacement decision is stored as a transac-
tion in a replay memory. A transaction is represented by a
tuple of 〈state, action, next state, reward〉. A replay memory
is a circular buffer with a limited number of entries, and the
oldest transaction is overwritten by a new transaction. Instead
of using the most recent transaction, the neural network
is trained using a batch of randomly sampled transactions
from replay memory. Experience replay breaks the similarity
of subsequent training samples, which in turn reduces the
likelihood of the neural network from being directed into local
minima. In addition, experience replay allows the models to
learn the past experience multiple times, leading to faster
model convergence and reduced training time.

B. Insights from Neural Network
Neural networks have the ability to achieve better perfor-

mance by learning a favorable policy after sufficient training.
However, it is likely not cost effective to implement a neural
network in LLC due to significant power and area overheads.

Fig. 3. Heat map of neural network weights. The y-axis shows features
representing LLC state, and the x-axis shows the benchmarks used in the agent
simulation. The features with high magnitude of weights are (considering at
least three benchmarks) access preuse, line preuse, line last access type, line
hits since insertion, and line recency.

To achieve performance similar to that of a neural network
while avoiding the associated hardware overhead, we analyze
and draw insights from a trained neural network to derive a
practically implementable replacement policy.

Applications that show significant difference in LLC hit
rates between Belady and LRU replacement policies were
chosen for testing. Although state-of-the-art replacement
policies perform better than LRU in these applications,
there is still a performance gap between these policies
and Belady, which provides scope for us to improve our
policy. We use reinforcement learning to guide us through
the process. We allow a neural network to explore paths
unexplored by the contemporary replacement algorithms with
the target of closing the performance gap between Belady
and other replacement policies. After training, we analyze
neural network weights for all selected benchmarks. As stated
in Section III-A, on a LLC miss, the LLC state representing
features of missed access and the accessed set is sent as input
to the agent. Then, the agent provides a replacement decision
to be followed. To comprehend important features in the
LLC’s state that affect the agent’s decision, we compute the
average weight of each individual input layer neuron over all
neurons in the hidden layer. For cache line features, we also
compute the average across all cache ways in a set. Figure 3
shows the heat map of feature weights such that the higher
and lower magnitude weights are depicted at different ends
of the color spectrum.

Typically, a feature is more important if it has higher
magnitude weights (darker color in the heap map). Although
the heat map can help identify important features for making
good replacement decisions, it is left to us to understand why

these features are important and how they impact replacement
decisions. Ultimately, we would want to utilize these features
and derive a practical replacement policy. Implementing
the agent’s neural network directly in hardware is unlikely
practical.

The first challenge in the process of deriving our own
replacement policy is to minimize the search space and focus
only on critical features. We use hill-climbing analysis together
with machine learning to finalize our target feature set. We
started by training the agent with only one feature at a time.
After doing this for each individual feature, we select the
feature that performs the best. Then we enable this feature
with one additional feature and evaluate all such feature pairs.
We repeat the process by adding one more feature at a time
until no further performance improvement is seen. This hill-
climbing analysis yields a set of five features.

In this section, we define each of these features and discuss
the insights that we derive from them. Later, we design a
new policy based on these features that can be implemented
in hardware with acceptable overheads.

1) Preuse Distance: We define preuse distance as the past
reuse distance of a cache line. It is computed as the number
of set accesses between the last access and the current access
of the cache line. Based on the heat map, both access preuse
and line preuse features show high magnitude of weights.
Access Preuse is the preuse distance of the cache line that
is accessed by the current request. To obtain the preuse
distance for every cache access, one must keep a record
of all previously accessed addresses, refer to the record
when serving a new access, and compute its preuse distance
accordingly. Although we implement the record keeping and
lookup function in our simulation framework, doing so in
hardware can be very costly. As a result, we do not consider
this feature for our final policy.
Line Preuse refers to the preuse distance of a cache line.
To compute line preuse, we add counters for every cache
line. On a set access, the counters of all cache lines in that
set are incremented. If the access is a hit, the counter value
corresponds to its preuse distance. On a miss, a new cache line
is installed. We then reset the counter and start counting the
preuse distance of the newly inserted cache line. In Section IV,
we propose optimizations to reduce the counter overhead.

How does preuse distance contribute to the policy that the
agent learned? Recall in Section III-A that the agent tries to
learn the behavior of Belady optimal policy, i.e., replace the
cache line with the farthest reuse distance. However, reuse
distance is not provided as an input feature. Our conjecture
is that preuse distance is related to reuse distance in certain
scenarios. During a program execution, the distance between
two accesses of an address could be constant. For example,
the number of memory accesses in each iteration of a for loop
can be the same. In such a scenario, if the same address is
accessed in every iteration, its reuse distance will be constant.
However, this may not be true in the case of an LLC access
because of the filtering effect of private caches. In addition,
prefetch and writeback accesses can impact reuse distance.

To comprehend the relationship between preuse and reuse
distance at LLC, we analyze the difference between preuse

0

20

40

60

80

100

PE
RC

EN
TA

GE
	O
F	R

EU
SE
D	
LI
N
ES

Less	than	10 Between	10	&	50 Greater	than	50

Fig. 4. Difference between preuse and reuse distance for reused cache lines.

0

40

80

120

AV
G	
VI
CT
IM

	A
GE

LOAD RFO PREFETCH WRITEBACK

Fig. 5. Average victim age for each access type.

and reuse distance for every LLC access. Figure 4 shows
the percentage of reused cache lines with absolute difference
between preuse and reuse distance below 10 (i.e., |preuse
distance − reuse distance| <10), between 10 and 50, and
greater than 50. For a significant number of cache lines, we
can approximate the reuse distance using preuse distance,
as the difference between preuse and reuse distance is less
than 10 accesses. For more than 50% of the reused cache
lines, the difference between preuse and reuse distance is less
than 50 accesses. To allow these cache lines to be reused, we
can retain the cache lines for a few more accesses after their
preuse distance has been reached. We should also note that
Figure 4 shows the absolute difference between preuse and
reuse. This means that the reuse distance could be smaller
than the preuse distance, so some cache lines might be reused
before reaching their respective preuse distances.

2) Line Last Access Type: Last Access type of a cache
line is defined as the latest access’ type. To understand its
significance, Figure 5 shows the average victim age for each
access type. We accumulate the age since the last access for
each victim chosen by the RL agent and compute the average
for each access type. In almost all benchmarks, prefetch
access has the lowest average victim age. This implies that
the prefetched cache lines have the lowest cache life time,
and the agent prefers to evict them sooner than the cache
lines from other access types. However, prefetched cache lines
contribute to significant number of demand hits for a few
benchmarks, like 459.GemsFDTD, 437.leslie3d, and 429.mcf.
Therefore, we infer that the reuse distance of prefetched
cache lines is small, and it suffices to have a short cache
life time for prefetched cache lines. This ensures that non-
reused prefetched cache lines are evicted sooner, allowing
other cache lines to be reused.

0

20

40

60

80

100
PE

RC
EN

TA
GE

	O
F	V

IC
TI
M
S

0	HIT 1	HIT >	1	HIT

Fig. 6. Number of hits when a cache line is evicted.

3) Line Hits Since Insertion: Hits since insertion tells us
how many times a cache line has been accessed since it was
brought into the cache. To understand its significance, Figure 6
shows the percentage of victim cache lines that are evicted
with zero, one, and more than one hits. In all benchmarks,
more than 50% of victims have zero hits, and more than 80%
of victims have at most one hit. The insight from this analysis
is that the agent tends to evict cache lines with fewer hits.
When designing a cache replacement policy, we can mimic
this behavior by retaining cache lines that have more hits.

4) Recency: Recency refers to the relative access order
of a cache line in a set. Recency value ranges from zero
to (Set Associativity− 1); zero indicates the least recently
used cache line, and (Set Associativity−1) indicates the most
recently used cache line. For example, LRU replacement
policy replaces the cache line with recency value 0.

To understand the significance of recency, we plot the
percentage of victims evicted by the agent, segregated by
recency of the victims, in Figure 7. We observe that most
evictions occur with cache lines with a high recency value,
implying that the agent prefers to evict cache lines that are
most recently used. To comprehend this behavior, note that the
agent is rewarded positively for evicting cache lines that are
either not reused or reused later than the other cache lines in
the set. When the agent evicts a cache line with a high recency
value, it means that the older cache lines (recency value close
to 0) are reused before the newer cache lines (recency value
close to 15). For example, when two cache lines in the set
have the same reuse distance, the older cache line will be
reused before the newer cache line. So, the agent chooses
the newer cache line for eviction. Given the high percentage
of victims with high recency values in agent simulations, we
take the insight that evicting more recently accessed cache
lines has a better chance of maximizing demand hits.

C. Summary

In this section, we presented one viable way to draw insights
from an ML model for cache replacement policies. First,
we identify important features by analyzing the weights of
the agent neural network. Next, we try to understand the
behavior of each feature by looking into its relevant statistics
collected from architecture simulations. Through this ML-
based analysis, we benefit from the following:
1) Reducing exploration time: Several cache replacement
policies are built on heuristics identified from common access
patterns. New heuristics can be derived through creative and

aggressive design of experiments for the cache replacement
problem; however, this process is time consuming and limited
by a designer’s imagination. RL lets the agent perform the
heavy lifting by running simulations using different input
features. For input features that perform well, we analyze the
neural network and decipher the agent’s replacement policy.
2) Dynamically adapting policy: The RL agent adapts to
dynamic changes in access stream and handles non-trivial
consequences of chosen actions. The agent’s dynamic policy
works well for all benchmarks. Analyzing the policy helps us
capture this dynamism in a cost-effective replacement policy.
3) Rigorously confirming the importance and sufficiency of
heuristically-known features: Though we considered non-
obvious features like line address offset, set number, set
accesses after miss, etc., our ML model picked features that
heuristically have been known to be useful, such as reuse
distance and hits since insertion. In addition to identifying
features through the heat map analysis, we use hill-climbing
analysis to select a set of the most critical features, as
described in Section III-B. We also perform the analysis
on benchmarks that show significant difference in LLC hit
rate between Belady and LRU replacement policies. This
rigorous approach proves the importance of selected features.
4) New perspective on using features in a replacement policy:
By analyzing agent simulations, we identified a different
approach for using some features in our replacement policy.
For example, rather than segregating cache lines into clean
and dirty, we use a cache line’s access type to categorize it as
prefetched or not. This allows us to predict whether the cache
line will hit in the future, as described in Section III-B2.
5) Automation of feature selection: The entire process of fea-
ture selection, from agent simulation, neural network weight
analysis, to hill climbing analysis was automated. Although
in this paper we use heat map analysis for visual convenience,
the weight comparison and feature count reduction were
automated. Through this work, we show that ML is an
effective tool for tackling challenging computer architecture
design problems. An automated ML-based cache replacement
policy can match or beat state-of-the-art hand-crafted designs.

For the cache replacement problem targeted in this work,
we have the following insights. 1) Preuse distance can be
used to estimate reuse distance of a cache line, which is
essential for making good replacement decisions. This insight
is drawn from the line preuse feature. 2) Cache lines loaded
by prefetch accesses are reused within short time intervals.
This insight is drawn from the line last access type feature.
An efficient cache replacement policy can use this insight
to evict non-reused prefetched cache lines. 3) A cache line
that has been accessed multiple times is likely to be accessed
again. This insight is drawn from the line hits since insertion
feature. 5) Sometimes it is beneficial to evict the youngest
cache line. This insight is drawn from the line recency feature.

IV. REINFORCEMENT LEARNED REPLACEMENT (RLR)

We propose a replacement policy (RLR) based on insights
learned from the neural network. At a high level, RLR follows
the following rules.

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PE
RC

EN
TA

G
E	
O
F	
VI
CT

IM
S

RECENCY
459.GemsFDTD 403.gcc 429.mcf 450.soplex
470.lbm 437.leslie3d 471.omnetpp 483.xalancbmk

Fig. 7. Recency for victims in Agent simulation.

1) For a significant number of cache lines, the reuse distance
can be approximated by preuse distance.

2) The type of previous access of a cache line can be used
to predict its chance of receiving a hit.

3) Cache lines that have been accessed can be predicted to
be accessed again in the future.

4) Recently-inserted cache lines are prioritized for eviction
to allow older cache lines to be reused.

A. Replacement Algorithm

In RLR, reuse distance is predicted based on the preuse
distance of the cache lines. Cache lines with age less than
the predicted reuse distance are protected. In addition, cache
lines are prioritized based on the type of their previous access
and whether or not the cache lines have received hits. When
a replacement decision is made, the cache lines in the set are
assigned priority levels. Priority levels are computed based
on the cache line’s age, previous access, and hits. On a cache
miss, the cache line with the lowest priority will be evicted.
Age priority (Page): Each cache line is augmented with an
Age Counter that counts the line’s age in set accesses (i.e.,
how many times the set has been accessed since the last access
of the line). On a demand hit, the counter’s value represents
the preuse distance of the accessed cache line. Because we
use preuse distance to approximate future reuse distance
(Section III-B1), we predict that the cache line will be reused
after a number of set accesses equal to the preuse distance. If
the cache line is not accessed after the predicted reuse distance,
it is considered for eviction. However, maintaining registers to
store predicted reuse distance for each individual cache line
is impractical. Instead, we accumulate the preuse distances
of cache lines on demand hits and use the accumulated value
to approximate future reuse distance (RD). Cache lines are
protected from eviction until their respective ages reach RD.
RD must be chosen carefully. On the one hand, if RD is too
high, cache lines with small reuse distance might be retained
in the cache longer than necessary. On the other hand, if
RD is too low, cache lines with large reuse distance might

be evicted prematurely before reuse. Also, reuse distance
changes during application execution. Therefore, RD must
be updated periodically to adapt to application phases. In
our experiment, RD is updated for every 32 demand hits, by
averaging the aggregated preuse distance and then multiplying
by two (i.e., RD = 2×Average Preuse Distance). Recall that
for most cache lines, the preuse distance and reuse distance
are not exactly the same. Doubling the average preuse distance
can be beneficial because it allows cache lines to stay in the
cache longer. Overall, age-based priority levels are assigned
as follows.
• Priority Level 1: If Age Counter is smaller than RD, the

cache line has not yet reached the reuse distance; this
cache line might be reused in the future. Higher priority is
assigned to retain the cache line for future reuse.

• Priority Level 0: If Age Counter is greater than RD, the
cache line has already reached the reuse distance, but has
not yet been reused since last access. Lower priority is
assigned because the line might not be reused in the future.

Type priority (Ptype): Each cache line is augmented with a
Type Register, indicating whether its previous access was a
prefetch. Type-based priority levels are assigned as follows.
• Priority Level 1: If the last access type is not prefetch,

then either the cache line was not inserted by a prefetch
access, or it has been reused after insertion. We want to
keep this cache line.

• Priority Level 0: If the last access type is prefetch, it has
not been reused. When replacement is needed, we tend to
evict non-reused prefetched cache lines.

Hit priority (Phit): Each cache line is augmented with a Hit
Register that is set when the cache line is hit. The hit-based
priority levels are assigned as follows.
• Priority Level 1: If the Hit Register is 1, the cache line

has been reused. We want to keep this cache line because
the data can be accessed repeatedly in the same program.

• Priority Level 0: If the Hit Register is 0, the cache line
has not been reused. When replacement is needed, we tend

AGE	COUNTER	>	RD

HIT	REGISTER	>	0

Y N

NY

Demand hits-based Priority
Pld - Load Priority
Prfo - RFO Priority
Ppf - Prefetch Priority
Pwb - Writeback Priority

Pt +	1 Pt 8 +	Pt +	1 8 +	Pt

Priority:
0

10

Evict

Retain

Pa= 0 Pa= 8

Ph= 1 Ph= 0
HIT	REGISTER	>	0

NY

Ph= 1 Ph= 0

AGE COUNTER - Set accesses since last access to the cache line
HIT REGISTER - 1 if cache line was hit at least once, 0 otherwise
Pa – Age priority
Ph – Hit priority
Pt – Type priority (Pld = Prfo = Pwb = 1, Ppf = 0)

Fig. 8. Flowchart for priority computation in RLR.

to evict non-reused cache lines.
The priority level for each cache line is computed as a

weighted sum of the priorities described above, given by the
following equation.

Pline = 8 ·Page +Ptype +Phit

The weights are designed based on hill climbing analysis,
described in Section III-B. Agent performance was analyzed
by enabling one feature and disabling the rest. Among all the
features, preuse distance achieved the highest performance.
Therefore, we assign it the highest weight. The features last
access type and age contributed equally. Figure 8 shows the
flowchart for priority computation in RLR. The age priority of
a cache line is computed by comparing its Age Counter with
RD. If the cache line’s age is greater than RD, age priority
(Page) is set to 0, otherwise it is set to 8. The value 8 (for
Page) is chosen for two reasons. First, we give higher weights
to cache lines whose age is less than RD, with the hope
that they can be retained in the cache for a longer period
and reused in the near future. Second, multiply by 8 can
be implemented in hardware efficiently by left shifting three
times. The hit priority Phit of the cache line is computed from
the Hit Register. Phit is 1 if the Hit Register is set; otherwise it
is 0. The type priority Ptype of the cache line is computed from
the Type Register. Ptype is 0 if the Type Register indicates a
prefetch access; otherwise it is 1.

To select a replacement candidate, the cache management
policy selects the way with the lowest priority level. It is
possible that multiple ways have the same priority level. To
break ties, we use the recency information.
Recency: Each cache line has a log(Set Associativity)-bit
value indicating the relative order of access among the lines
in a set. When multiple lines have the same priority, the most
recently accessed cache line (high recency value) is evicted.
The most recently accessed cache line takes the longest time
to reach the RD value. Evicting it allows the other cache
lines to reach the RD value. If cache bypass is supported,
the cache management policy bypasses a request if no cache
line has reached an age greater than the RD value. In RLR,
recency plays an important role in victim selection. However,

tracking recency accurately for every cache line can be costly.
In Section IV-C, we describe an optimization technique to
represent recency using fewer bits.

B. Hardware Implementation
Each cache line is equipped with an Age Counter, a Hit

Regsiter, and a Type Register. The Age Counter is an n-bit
saturating counter, tracking 2n number of set accesses. When
a demand hit occurs, the cache line’s Age Counter is sent to
the Accumulator. After the number of demand hits reaches
a threshold (32 in this case), we average the accumulated
value and then double the value. The averaging circuit can
be as simple as a right shifting logic, as long as the demand
hit threshold is a power of 2. For example, to average over
25 = 32 cache hits, the accumulator value is right shift by
5. Also, the averaged preuse distance can be doubled by left
shifting 1 bit. We combine the averaging and doubling circuit
by right shifting the accumulated value by (5−1) = 4 bits.

The hardware implementation for computing RD is shown
in Figure 9. The Hit Register of a cache line is set when
it receives a hit. A Type Register is used to indicate if the
cache line’s previous access type was prefetch or not. To
estimate the hardware cost of RLR, we synthesize the design
in 32 nm technology using Synopsys Design Compiler [26].
The area, power, and latency for RLR are 84µm2, 4.6µW,
and 0.68ns, respectively. The cache line priority computation
in RLR can be done in parallel to the tag comparison (to
determine hit/miss) and does not contribute to the critical
path latency. RD computation in RLR is done when LLC is
idle or fetching data from memory, so that it is not part of
the critical path. The area overhead is negligible compared
to total processor area. For example, the area of Intel Sandy
Bridge processor with similar configuration is 216 mm2 [10].

C. Optimizations
To determine the Age Counter’s optimal size, we ran

simulations by varying the number of Age Counter bits from
2 to 8 bits per cache line. To achieve good performance
while keeping the overhead low, we chose 5 bits to represent
Age Counter. We verified that 5 bits are sufficient to cover

Average	&	
Multiply

AccumulatorRD

comp
Tag

comp

Tag Set Offset

comp

Way	0

Way	1

Way	2
compWay	3

Way 0
Way 1

Way 2

Way 3
AGE

COUNTER

Fig. 9. Hardware implementation for computing RD. On a demand hit, the
cache line’s age value is sent to the RD computation circuit.

the average preuse distance in agent simulations for most
benchmarks. In addition, we used a 1-bit Hit Register, a 1-bit
Type Register, and log(Set Associativity) bits for recency of a
cache line. In a 16-way set associative cache, this amounts to
11 bits of overhead per cache line. To further reduce overhead,
we devised two optimizations.
Age Counter Optimization: There are two ways to minimize
the overhead of the Age Counter – counting fewer events and
approximating counter value. To count fewer events, we use
Age Counter to count the number of set misses instead of set
accesses. After a hit, cache lines in a set remain unchanged.
By counting set misses, Age Counter represents the relative
age of a cache line (since its last access) rather than the
absolute age. To approximate counter value, we increment
Age Counter for every 8 set misses. This allows us to reduce
the overhead per line by 3 bits. We use a 3-bit counter per
set to count every set miss. After 8 set misses, the counter
rolls over and the line counters are incremented.
Recency Approximation: We can use the age of a cache line
to determine its recency. The most recently accessed cache
line is either hit or inserted in the cache. In both cases, the
age of the line is zero. For a hit, the age counter value is
sent to the accumulator for computing RD, then reset. On
a miss, a new line replaces a victim, and the corresponding
age counter is reset. Therefore, the most recently accessed
line can be identified by age counter value zero. In a 16-way
set associative cache, using age counter to determine recency
reduces the overhead by 4 bits per cache line. In RLR, recency
is used to break ties when multiple cache lines have the same
priority level. When multiple cache lines have the same age
counter value and the lowest priority level, we chose to evict
the cache line with the lowest way index.

In summary, after optimization, each cache line has a 2-bit
Age Counter, a 1-bit Hit Register, and a 1-bit Type Register,
totaling 4 bits of overhead per cache line. In addition, we use
a 3-bit counter per set. For a 2MB 16-way LLC with 64B
cache line, the total storage overhead of RLR is 16.75KB.

D. Multicore Extension

In a multicore system that executes different benchmarks
on separate cores, cache lines in the LLC can be segregated
based on the ids of the cores that issue the accessed
requests. Although each core (benchmark) has a different
reuse characteristic, it is challenging to predict their behavior
when accesses from all cores are mixed. This is because two

TABLE III
PARAMETERS FOR THE EVALUATED SYSTEM

Core 6-stage pipeline, 3-issue O3, 256-entry ROB
L1 I-Cache 32 KB, 8-way, 4-cycle latency, LRU
L1 D-Cache 32 KB, 8-way, 4-cycle latency, LRU
L2 Cache 256 KB, 8-way, 12-cycle latency, LRU
LLC (per core) 2 MB, 16-way,26-cycle latency
Prefetcher next-line (L1), IP-stride (L2), None (LLC)

consecutive accesses from the same core can be interleaved
by multiple accesses from other cores. However, we observe
that the access frequency of a core and its average reuse
distance have an inverse correlation. That is, a core that has
the most number of LLC accesses within a time interval also
has the smallest average reuse distance. This is because a
cache line from a core having high access frequency tends to
be reused earlier than a cache line from a core with low access
frequency. This information can be used in the replacement
policy to select a victim with large reuse distance by selecting
a cache line from a core with low access frequency.

In RLR, we assign priorities for each core. When a
replacement decision is made, each cache line in the set
is assigned a priority based on its age, hit, type and core.
The cache line with the lowest priority is chosen for eviction.
Based on our experiments, assigning core priorities based
on demand hit frequency instead of access frequency yields
better performance. For this, we maintain demand hit counters
for each core at the LLC. On every demand hit (Load or
RFO hit), the LLC demand hit counter corresponding to the
core of the cache line is incremented. Based on the number
of demand hits, each core is assigned a Priority Level (0, 1,
2, or 3). A core with more demand hits is assigned a higher
priority level. The core priorities (Pcore) are updated for every
2000 LLC accesses. In terms of overhead, the demand hit
counters contribute 12 bits per core to the overall storage
overhead. The priority level for each cache line (Pline) in a
set is computed by the following formula.

Pline = 8 ·Page +Ptype +Phit +Pcore

V. EVALUATION

A. Methodology

We implement RLR in ChampSim simulator from the 2nd

Cache Replacement Championship (CRC2). We estimate the
performance on 1-core and 4-core configurations with a 6-
stage pipeline and a 256-entry reorder buffer. The memory
system has a 3-level cache hierarchy with private L1, L2 and a
shared LLC. The complete configuration is shown in Table III.
We use SPEC CPU R© 2006 [2] and CloudSuite [8] benchmarks
for evaluation. To train the RL agent, we only used the
first 100M instructions of eight SPEC CPU benchmarks.
In evaluation, however, we also show results for 26 new
benchmarks that have not been used in training.

For SPEC CPU 2006 evaluation, we use all 1 billion
instruction traces from SimPoint [1] provided by CRC2. For
Cloudsuite benchmarks, we use all traces files provided by
CRC2. We warm the cache for 200 million instructions and
evaluate the performance for the next one billion instructions.
In 4-core simulations, we evaluate performance when four
different benchmarks are run simultaneously on separate cores.

-10

-5

0

5

10

15

20

47
3.
as
ta
r

41
0.
bw

av
es

40
1.
bz
ip
2

43
6.
ca
ct
us
AD

M

45
4.
ca
lc
ul
ix

44
7.
de

al
II

41
6.
ga
m
es
s

40
3.
gc
c

45
9.
Ge

m
sF
DT

D

44
5.
go

bm
k

43
5.
gr
om

ac
s

46
4.
h2

64
re
f

45
6.
hm

m
er

47
0.
lb
m

43
7.
le
sli
e3
d

46
2.
lib

qu
an

tu
m

42
9.
m
cf

43
3.
m
ilc

44
4.
na

m
d

47
1.
om

ne
tp
p

40
0.
pe

rlb
en

ch

45
3.
po

vr
ay

45
8.
sje

ng

45
0.
so
pl
ex

48
2.
sp
hi
nx
3

46
5.
to
nt
o

48
1.
w
rf

48
3.
xa
la
nc
bm

k

43
4.
ze
us
m
p

O
ve
ra
ll

IP
C	
SP
EE
D
U
P	
O
VE

R	
LR
U
	(%

)

DRRIP KPC-R SHiP RLR RLR(UNOPT) HAWKEYE SHiP++

Fig. 10. Performance comparison for different LLC replacement policies (SPEC2006).

-4

0

4

8

12

cassandra classification cloud9 nutch streaming Overall

IP
C	
SP
EE
DU

P	
O
VE

R	
LR
U
	(%

)

DRRIP KPC-R SHiP RLR RLR(UNOPT) HAWKEYE SHiP++

Fig. 11. Performance comparison for different policies (Cloudsuite).

We generate 100 random sets of four benchmarks from the 29
applications in SPEC CPU 2006. We use the same trace files
as in single-core simulations. However, we run the simulation
until each benchmark completes one billion instructions. If
any benchmark reaches the end of its trace, the corresponding
core continues simulating from the beginning of the trace
file. In 4-core simulations for Cloudsuite benchmarks, we run
each trace in its respective core. For the results of single-
core simulations, we use IPC speedup over LRU. The IPC
speedup of each benchmark i is measured as IPCi

IPCi,LRU
. If

a benchmark has more than one trace file, we present the
geometric mean of all IPC speedup numbers. For multicore
results, the overall performance of each workload mix is
measured as the geometric mean of IPC speedups of all
benchmarks in the mix (∏4

i=1
IPCi

IPCi,LRU
)

1
4 .

B. Experimental Results
In this section, we compare the performance of RLR against

KPC-R, DRRIP, and SHiP, as well as policies from CRC2,
including SHiP++ and Hawkeye. We obtained the source
code for these policies from the CRC2 website. We also
compare against some prior works such as EVA [4] and
PDP [6].2 Compared to LRU, we observed IPC degradation
in both EVA and PDP. For SPEC CPU 2006, EVA degrades
single-core system performance by 0.11%, and PDP degrades
performance by 3.72%, on average. The original works on
EVA [4] and PDP [6] show performance improvements with
respect to LRU and DRRIP. Considering that the margin of
difference in performance between any two LLC replacement
policies is small, the selection of instruction traces used for

2We procured EVA source code from http://people.csail.mit.edu/sanchez.
We implemented PDP as described in [6].

evaluation can have significant impact on overall results. Using
a rigorous evaluation methodology is important. Performance
discrepancies for EVA and PDP may be attributed to use of
single instruction traces, not based on SimPoints [1], that do
not fully characterize an entire application. We observed that
overall ranking of policies can change between individual
SimPoints. As such, we compute results from all SimPoints
to ensure accurate representation of benchmark behavior.

In addition to results for overhead-optimized policies, we
also present the results of RLR without overhead reduction
optimizations (Section IV-C), denoted by RLR(unopt). In the
unoptimized policy, we use a 2-bit Hit Counter, as opposed to
a 1-bit Hit Register. Each cache line has a 5-bit Age Counter,
a 2-bit Hit Counter, and a 1-bit Type Register, amounting to
10-bit overhead per cache line. For a 2MB 16-way LLC, the
total storage overhead is 40KB for the unoptimized policy.

Figures 10 and 11 show performance comparisons for SPEC
CPU 2006 and Cloudsuite benchmarks, respectively. RLR
outperforms KPC-R and DRRIP for all benchmarks. For our
evaluations, we used the IP-stride prefetching policy at L2.
Since the performance of KPC-R is improved by information
from KPC-P prefetching, we also compared KPC-R and RLR
with KPC-P as the L2 prefetching policy. In such a system,
KPC-R and RLR improve performance by 3.9% and 5.5%,
respectively, for SPEC CPU 2006. For Cloudsuite, KPC-R and
RLR improve performance by 2.46% and 3.5%, respectively.
RLR performs better than KPC-R by evicting non-reused
prefetched cache lines in LLC sooner. KPC-P avoids cache
pollution in two ways. First, low-confidence prefetches are not
inserted in L2. Second, when a prefetch access hits in LLC,
the corresponding cache line is promoted in the replacement
stack only when the prefetch confidence is higher than a
threshold. While the first method prevents cache pollution in
L2, the second method does not evict non-reused prefetched
cache lines in LLC sooner than cache lines from other access
types. RLR also outperforms SHiP for most benchmarks.
For example, in 470.lbm, prefetching does not improve IPC
significantly. RLR evicts prefetched cache lines sooner than
other cache lines, resulting in better performance compared
to SHiP. In memory-intensive benchmarks such as 429.mcf,
SHiP maximizes hit rate by ranking PCs in the order of
hit contribution and retaining cache lines fetched by highly

0

10

20

30

40
M
PK

I

DRRIP KPC-R SHiP RLR RLR(UNOPT) HAWKEYE SHiP++

Fig. 12. Demand MPKI comparison for different policies.

TABLE IV
OVERALL SPEEDUP FOR DIFFERENT REPLACEMENT POLICIES.

Policy
1-core (2MB LLC) 4-core (8MB LLC)
SPEC Cloud- SPEC Cloud-
2006 Suite 2006 Suite

DRRIP 1.50 % 1.80 % 2.63 % 1.07 %
KPC-R 2.30 % 3.07 % 5.50 % 3.80 %

RLR 3.25 % 3.48 % 4.86 % 2.39 %
RLR(unopt) 3.60 % 4.02 % 5.87 % 2.5 %

SHiP 2.24 % 2.64 % 6.33 % 3.09 %
Hawkeye 3.03 % 2.09 % 7.69 % 2.45 %
SHiP++ 3.76 % 4.60 % 7.37 % 3.89 %

ranked PCs. For a few benchmarks, like 437.leslie3d and
streaming (Cloudsuite), RLR has a larger number of LLC
demand hits (Load and RFO) compared to SHiP. However,
the trend does not reflect in IPC. This is because SHiP is
more likely to retain cache lines from PCs contributing to
IPC improvement, while RLR retains cache lines contributing
to demand hits.

Table IV summarizes performance improvement over
LRU for evaluated replacement policies for single-core and
multicore workloads. For single-core and multicore evalua-
tion, overall performance improvement is computed as the
geometric mean of IPC speedup for all evaluated workloads.
In single-core evaluations, RLR outperforms DRRIP, KPC-
R, SHiP (PC-based), and Hawkeye (PC-based) by 1.74%,
0.95%, 1.01%, and 0.22%, respectively, for SPEC CPU 2006.
In Cloudsuite, RLR outperforms DRRIP, KPC-R, SHiP (PC-
based), and Hawkeye (PC-based) by 1.65%, 0.41%, 0.84%,
and 1.39%, respectively. Figure 12 shows Misses Per Kilo-
Instructions (MPKI) for benchmarks with MPKI greater than
3. Compared to DRRIP, RLR achieves a maximum of 52%
reduction in 471.omnetpp and a minimum of 2.5% in 429.mcf.

We simulated policy variants by eliminating hit and type
priorities to evaluate their contributions to RLR’s performance.
In SPEC CPU 2006, IPC speedup over LRU reduces by 12%
when the hit register is disabled. This shows that protecting
cache lines that received at least one hit over the cache lines
that were never hit has a significant impact on performance.
When the type register is disabled, speedup reduces by 30%,
demonstrating that significant performance gains are achieved
by protecting cache lines from one access type over another.

In multicore evaluation (Figure 13), RLR outperforms
DRRIP by 2.3% and 1.32% in SPEC2006 and Cloudsuite,
respectively. Contrary to the single-core results, KPC-R
outperforms RLR by 0.64% and 1.41% in SPEC2006 and
Cloudsuite, respectively. This is because interference from
other core accesses delays the reuse of prefetched cache lines.
However, RLR allows prefetched cache lines to be reused
within short time intervals. RLR performance can be improved

Fig. 13. Performance comparison of different policies in the 4-core setup.

by considering each core’s access frequency for the eviction
of prefetched cache lines. SHiP also performs better than RLR
by 1.32% and 0.7% in SPEC2006 and Cloudsuite, respectively.
Analyzing the workloads in which SHiP outperforms RLR
reveals that in some workloads, a small percentage of
PCs account for nearly all demand hits. This application
characteristic allows any PC-based policy to protect cache
lines frequently accessed by those small percentage of PCs
while evicting cache lines brought in by other PCs. Given
the large number of LLC accesses in a multicore system, the
information brought by PCs from different cores is useful.
Though we lose some information by avoiding PC usage,
RLR captures the benchmarks characteristics through features
that can be computed readily at the LLC and achieves a
performance similar to the PC-based policies. Using KPC-
P instead of IP-stride prefetching policy, RLR outperforms
KPC-R by 0.5%, indicating that without using PC in the
memory system, RLR performs better than other non-PC
based replacement policies. Also, with RLR, we avoid the
complexity of designing and verifying a multicore system that
incorporates hardware infrastructure for accessing PC at LLC.
We have the luxury of building a standalone cache design
that can be integrated with already designed and verified
single/multi-core systems.

VI. CONCLUSION

Machine learning is useful in architecture design ex-
ploration. However, human expertise is still essential in
deciphering the ML model, making design trade-offs, and
finding practical solutions. In this work, with the goal of
designing a cost-effective cache replacement policy, we used
reinforcement learning to guide and expedite our design. We
trained an RL agent using features that are relatively easy to
obtain at the LLC. Considering the complexity in propagating
PC information to the LLC, we intentionally excluded PC
from the feature set. After training the agent neural network,
we identified important features from a large feature set by
analyzing neural network weights. Based on insights drawn
from the neural network, we successfully derived a new

replacement policy. We then optimized the proposed policy
to further reduce hardware overhead. Overall, the proposed
replacement policy outperforms DRRIP (non-PC-based policy)
and achieves comparable performance to existing PC-based
replacement policies.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable feedback. Authors would also like to thank
Yasuko Eckert and Gabriel Loh for their feedback that helped
guide this work in its early stages.

REFERENCES

[1] “SimPoint,” http://www.cs.ucsd.edu/users/calder/simpoint/.
[2] “SPEC CPU 2006,” https://www.spec.org/cpu2006/.
[3] “The 2nd cache replacement championship,” 2017. [Online]. Available:

https://crc2.ece.tamu.edu/
[4] N. Beckmann and D. Sanchez, “Maximizing cache performance under

uncertainty,” in HPCA, 2017.
[5] S. Das, T. M. Aamodt, and W. J. Dally, “Reuse distance-based

probabilistic cache replacement,” TACO, vol. 12, no. 4, 2015.
[6] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V.

Veidenbaum, “Improving cache management policies using dynamic
reuse distances,” in MICRO, 2012.

[7] V. V. Fedorov, S. Qiu, A. N. Reddy, and P. V. Gratz, “Ari: Adaptive
llc-memory traffic management,” TACO, vol. 10, no. 4, 2013.

[8] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: a study of emerging scale-out workloads on
modern hardware,” ACM SIGPLAN Notices, vol. 47, no. 4, 2012.

[9] Q. Fettes, M. Clark, R. Bunescu, A. Karanth, and A. Louri, “Dynamic
voltage and frequency scaling in nocs with supervised and reinforcement
learning techniques,” IEEE Transactions on Computers, vol. 68, no. 3,
2018.

[10] Henry, intel 32nm-22nm comparison. [Online]. Available: http:
//blog.stuffedcow.net/2012/10/intel32nm-22nm-core-i5-comparison

[11] A. Jain and C. Lin, “Back to the future: leveraging belady’s algorithm
for improved cache replacement,” in ISCA, 2016.

[12] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High
performance cache replacement using re-reference interval prediction
(rrip),” ACM SIGARCH Computer Architecture News, vol. 38, no. 3,
2010.

[13] D. A. Jiménez and C. Lin, “Dynamic branch prediction with percep-
trons,” in HPCA, 2001.

[14] D. A. Jiménez and E. Teran, “Multiperspective reuse prediction,” in
MICRO, 2017.

[15] G. Keramidas, P. Petoumenos, and S. Kaxiras, “Cache replacement
based on reuse-distance prediction,” in ICCD, 2007.

[16] S. Khan, A. R. Alameldeen, C. Wilkerson, O. Mutluy, and D. A.
Jimenezz, “Improving cache performance using read-write partitioning,”
in 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2014, pp. 452–463.

[17] S. M. Khan, Y. Tian, and D. A. Jiménez, “Dead block replacement and
bypass with a sampling predictor,” in MICRO, 2010.

[18] M. Kharbutli and Y. Solihin, “Counter-based cache replacement and
bypassing algorithms,” IEEE Transactions on Computers, vol. 57, no. 4,
2008.

[19] J. Kim, E. Teran, P. V. Gratz, D. A. Jiménez, S. H. Pugsley, and
C. Wilkerson, “Kill the program counter: Reconstructing program
behavior in the processor cache hierarchy,” 2017.

[20] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts: A new
approach for eliminating dead blocks and increasing cache efficiency,”
in MICRO, 2008.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, 2015.

[22] S. optimizing memory controllers: A reinforcementlearning approach,
“Self-optimizing memory controllers: A reinforcement learning ap-
proach,” in ISCA, 2008.

[23] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive
insertion policies for high performance caching,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 2, 2007.

[24] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to the
cache replacement problem,” in MICRO, 2019.

[25] R. Sutton and A. Barto, Reinforcement Learning. MIT Press, 1998.
[26] Synopsys, Design Compiler User Guide. [Online]. Available:

http://www.synopsys.com/
[27] M. Takagi and K. Hiraki, “Inter-reference gap distribution replacement:

an improved replacement algorithm for set-associative caches,” in
Supercomputing, 2004.

[28] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for reuse
prediction,” in MICRO, 2016.

[29] G. Tesauro, “Online resource allocation using decompositional rein-
forcement learning,” in AAAI, 2005.

[30] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr,
and J. Emer, “Ship: Signature-based hit predictor for high performance
caching,” in MICRO, 2011.

[31] C.-J. Wu and M. Martonosi, “Adaptive timekeeping replacement: Fine-
grained capacity management for shared cmp caches,” TACO, vol. 8,
no. 1, 2011.

[32] J. Yin, Y. Eckert, S. Che, M. Oskin, and G. H. Loh, “Toward more
efficient noc arbitration: A deep reinforcement learning approach,”
AIDArch 2018.

[33] J. Yin, S. Sethumurugan, Y. Eckert, C. Patel, A. Smith, E. Morton,
M. Oskin, N. E. Jerger, and G. H. Loh, “Experiences with ml-driven
design: A noc case study,” in HPCA, 2020.

[34] V. Young, C.-C. Chou, A. Jaleel, and M. Qureshi, “Ship++: Enhancing
signature-based hit predictor for improved cache performance,” in CRC,
2017.

[35] Y. Zeng and X. Guo, “Long short term memory based hardware
prefetcher: a case study,” in MEMSYS, 2017.

[36] H. Zheng and A. Louri, “An energy-efficient network-on-chip design
using reinforcement learning,” in DAC, 2019.

http://www.cs.ucsd.edu/users/calder/simpoint/
https://www.spec.org/cpu2006/
https://crc2.ece.tamu.edu/
http://blog.stuffedcow.net/2012/10/intel32nm-22nm-core-i5-comparison
http://blog.stuffedcow.net/2012/10/intel32nm-22nm-core-i5-comparison
http://www.synopsys.com/

	Introduction
	Related Work
	Machine Learning-Aided Architecture Exploration
	RL-based Simulation Framework
	Insights from Neural Network
	Preuse Distance
	Line Last Access Type
	Line Hits Since Insertion
	Recency

	Summary

	Reinforcement Learned Replacement (RLR)
	Replacement Algorithm
	Hardware Implementation
	Optimizations
	Multicore Extension

	Evaluation
	Methodology
	Experimental Results

	Conclusion
	References

