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Abstract

Since the onset of pipelined processors, balancing the
delay of the microarchitectural pipeline stages such that
each microarchitectural pipeline stage has an equal delay
has been a primary design objective, as it maximizes in-
struction throughput. Unfortunately, this causes significant
energy inefficiency in processors, as each microarchitec-
tural pipeline stage gets the same amount of time to com-
plete, irrespective of its size or complexity. For power-
optimized processors, the inefficiency manifests itself as a
significant imbalance in power consumption of different mi-
croarchitectural pipestages.

In this paper, rather than balancing processor pipelines
for delay, we propose the concept of power balanced
pipelines – i.e., processor pipelines in which different de-
lays are assigned to different microarchitectural pipestages
to reduce the power disparity between the stages while
guaranteeing the same processor frequency/performance.
A specific implementation of the concept uses cycle time
stealing [19] to deliberately redistribute cycle time from
low-power pipeline stages to power-hungry stages, relax-
ing their timing constraints and allowing them to operate at
reduced voltages or use smaller, less leaky cells. We present
several static and dynamic techniques for power balancing
and demonstrate that balancing pipeline power rather than
delay can result in 46% processor power reduction with no
loss in processor throughput for a full FabScalar processor
over a power-optimized baseline. Benefits are comparable
over a Fabscalar baseline where static cycle time stealing
is used to optimize achieved frequency. Power savings in-
crease at lower operating frequencies. To the best of our
knowledge, this is the first such work on microarchitecture-
level power reduction that guarantees the same perfor-
mance.

1 Introduction

Conventional wisdom states that the throughput of a pro-

cessor pipeline is maximized when the total latency of the

pipeline is divided evenly between all the stages. As long as

instruction pipelining has been used to increase the through-

put of processors, balancing the delay of the microarchitec-

tural pipeline stages has been a primary objective. How-

ever, faced with growing concerns about escalating power

density and the need for energy efficiency, we challenge

the traditional paradigm of delay balanced microarchitec-

tural pipelines. We observe that pipeline delay balancing

is one of the factors that adds to the considerable pressure

on processor power. This is because each microarchitec-

tural pipeline stage in a delay balanced processor gets the

same amount of time to complete, irrespective of its size

or complexity, causing significant energy inefficiency. For

example, a simple data marshaling stage like Dispatch (in

FabScalar [5]) has lower area, complexity, and power than

a large, complex stage like Issue or Execute. In spite of

this natural variance in complexity and area, all stages are

expected to finish evaluating in the same amount of time,

and more complex logic must be implemented with larger,

more leaky cells and expanded topologies that further in-

crease power, thereby exacerbating the energy inefficiency.

For power-optimized processors (i.e., processors where

circuit and design-level optimizations reclaim all timing

slack to save power), the energy inefficiency of delay bal-

ancing manifests itself as a significant imbalance in power

consumption of different microarchitectural pipestages –

some simple stages consume a small amount of power,

while other stages are very power hungry. In fact, a survey

of several power-optimized processor pipelines (see Sec-

tion 2) reveals that the extent of power imbalance can be

enormous for such processors (1-2 orders of magnitude be-

tween the least power microarchitectural pipeline stage and

the highest power pipestage), pointing to significant energy

inefficiency.

We propose to abandon the traditional paradigm of de-

lay balanced pipelines in favor of power balanced pipelines.

We observe that since the ratio of power between pipeline

stages is uneven, donating cycle time to a power-hungry

stage from a lower power stage will result in processor

power savings, even though processor frequency remains

the same. Extra cycle time donated to a power-hungry

stage enables voltage or area reduction. Although the volt-

age or area of the low-power, time donor stage increases,

the power trade is uneven, resulting in a net power sav-

ings for the processor. Thus, by opportunistically creating

slack in simple, low-power stages and consuming the slack

in complex, high-power stages, we propose to balance the

power consumption of pipeline stages (i.e., reduce disparity

in their power comsumption) and significantly reduce total

processor power for the same guaranteed performance.

In this paper, we demonstrate benefits of pipeline power



balancing for a processor baseline that is optimized for

power for a given timing target as well as for a processor

baseline where cycle time stealing is used to maximize fre-

quency by donating time from fast stages to slow stages.

Note that power balancing is not a metric of optimization, it

is a conceptual technique with several possible implemen-

tations (discussed in Section 3). Power efficiency is indeed

the metric of optimization. We use power balancing to re-

duce power while guaranteeing the same frequency, thereby

significantly improving power efficiency.

This work on power balanced pipelines makes the fol-

lowing contributions.

• We observe that there can be significant imbalance in

the power consumption of different microarchitectural

pipestages of power-optimized processors. The ratio

between the power consumption of the least power mi-

croarchitectural pipeline stage and the highest power

pipestage can be as high as 1-2 orders of magnitude.
• We propose the concept of power balanced microar-

chitectural pipelines, demonstrating anlytically that

deliberately unbalancing delays of microarchitectural

pipestages to reduce the disparity in the power con-

sumption of different stages can significantly reduce

the total power of a processor without affecting pro-

cessor throughput. To the best of our knowledge, this

is the first such work on micrarchitecture-level power

reduction that guarantees the same performance.
• We present static and dynamic techniques based on

cycle time stealing for implementing including a new

design flow for design-level power balancing, a static

voltage assignment technique that balances power at

test time, and a dynamic power balancing technique

that performs power balancing at runtime.
• We quantify the benefits of different power balanc-

ing implementations for a FabScalar processor [5] in

terms of power reduction and evaluate the sensitiv-

ity of benefits to the number of available voltage do-

mains, the operating frequency, and the workload. We

demonstrate 46% power savings for a power balanced

pipeline, compared to a conventional delay balanced

power-optimized pipeline, when both operate at maxi-

mum frequency. Power savings are higher when com-

pared against a FabScalar baseline that uses cycle time

stealing to maximize operating frequency. Power sav-

ings increase at lower frequencies. For processors and

workloads that exhibit significant dynamic behavior,

dynamic power balancing increases power savings by

up to 10% over static power balancing.

2 Motivation

As discussed in the previous section, the power con-

sumption of delay balanced processor pipeline stages

can vary significantly, potentially resulting in unneces-

sary power overheads for the processor. Figure 1 shows

the average power breakdown (for a workload of SPEC

benchmarks) into the stages of the baseline FabScalar [5]

pipeline that we used in our experiments. The power break-

down is based on a full design-level layout and evalua-

tion of processor RTL. The design-flow attempts to min-

imize the power for the processor for a given timing tar-

get. The data demonstrate that power consumption varies

from 0.3% of total processor power in the Dispatch stage

to almost 40% in the Fetch stage. Such disparate power

consumption between stages is due to the fact that all

stages are allowed the same evaluation time, irrespective

of their complexities. We observed similarly large power

imbalance between different microarchitural pipestages for

several other cores (OpenSPARC T1, OpenRISC, IVM,

Rigel, OpenMIPS, etc.) that we studied. Figure 3 shows

the average power breakdown into stages for the power-

optimized Rigel [9] (left), OpenMSP430 [17] (middle), and

OpenSPARC T1 [14] (right) pipelines. Power imbalance

ranges from 1-2 orders of magnitude for these cores.

Considering our observation that there is a signifcant im-

balance in the power consumption of different pipestages of

processors, we propose a new approach to microarchitec-

tural pipeline balancing based on the relative complexity of

each stage, whereby cycle time is redistributed to the stages

that can benefit from it the most. This can be illustrated

with a simple example in which a simple, low-power stage

(Slo, with power Plo) donates a fraction of its cycle time

to a complex, high-power stage (Shi, with power Phi). As

a result of this exchange, the voltage of Shi (Vhi) can be

decreased by ∆Vhi, and the voltage of Slo (Vlo) must be in-

creased by ∆Vlo. In order for this trade to reduce power, the

net change in power for the pipeline must be less than zero,

i.e., ∆Phi + ∆Plo < 0. Equation 2 describes the change in

total stage power (∆Ptotal = ∆Pleak +∆Pdyn) that results

from voltage scaling.
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We substitute the expanded expression for ∆P into the

inequality describing a trade that reduces total power to ob-

tain Equation 3. For simplicity, let us assume that the initial

voltages are equal for each stage (Vhi = Vlo = V ), as would

be the initial condition for the pipeline.
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Figure 1: Delay balanced pipeline stages are typically

unbalanced in power consumption. On average, the

most power-hungry stage in the FabScalar pipeline con-

sumes over two orders of magnitude more power than

the least power-hungry stage.
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Figure 2: Although both pipelines have the same total delay, the power

balanced pipeline consumes less power than the delay balanced pipeline.

Note that reducing the height of a tall bar (reducing the power of a high-

power stage) has a significantly larger effect on total power than increasing

the height of a short bar (increasing the power of a low-power stage).
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Figure 3: Power imbalance is common in many processor pipelines (even simple, in-order pipelines). On average, the ratio of power

consumption between the most power-hungry stage and the least power hungry stage is over 150 for the Rigel pipeline (left) and over 30

for the OpenMSP430 (middle) and OpenSPARC T1 (right) pipelines.

If we assume that |∆Vhi| ≈ |∆Vlo| (a reasonable as-

sumption if voltage remains in the “linear” region of the

delay vs. voltage curve (see Section 4)), the condition for a

power-saving trade becomes even simpler (Equation 4).
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The simplified condition for a power-saving trade nicely

illustrates the main intuition behind microarchitectural

power balancing; namely, that power balancing typically re-

sults in processor power savings for the same performance

when the power of the time stealing pipeline stage is greater

than the power of the time donating stage. The greater the

power differential between the two pipeline stages, the more

power is reduced when cycle time is redistributed from the

low-power stage to the high-power stage. Figure 2 illus-

trates the main insight behind pipeline power balancing.

Note that since delay and power can be traded by ad-

justing the timing constraints of pipeline stages at design

time, multiple voltages are not required in a power balanced

pipeline. However, multiple voltage domains increase

power savings. Note also that not all delay and power trades

are allowed within the framework of microarchitecture-

level cycle stealing, as some trades do not preserve cor-

rectness or instruction throughput. In general, an allowable

trade involves two stages that participate in a common mi-

croarchitectural loop and keeps the total latency of all loops

the same before and after trading. There are several other

practical issues to consider in the implementation of power

balancing. We discuss these in detail in Section 4.

3 Power Balancing: Implementations

In the previous section, we motivated and laid the

groundwork for power balanced pipelines. In this section,

we discuss different static and dynamic power balancing

implementations based on cycle time strealing as well as

their corresponding design overheads. We formulate the

pipeline power balancing problem as an optimization in

which cycle time is re-distributed from low-power stages

to high-power stages, enabling power reduction in the high-

power stages at the expense of power increase in the low-

power stages, while preserving processor throughput and

minimizing total processor power.

3.1 Static Power Balancing

The best power balancing strategy for a pipeline is deter-

mined by the relative amount of power consumed in each

pipeline stage. Stages with high power relative to others

steal cycle time from stages with relatively low power con-

sumption. Dynamic fluctuations in the absolute power con-

sumption of the stages do not matter, as long as the relative



power breakdown remains roughly the same. For proces-

sors in which the relative power breakdown between stages

remains fairly constant for different programs and program

phases, a static power balancing approach does well at re-

ducing total power, while keeping implementation overhead

low. For example, processors in which the utilization of

each stage depends on the utilization of the other stages

(e.g., in-order processors) are well-suited for static power

balancing. Static power balancing can be performed ei-

ther at design time, or after manufacturing, at test time.

The implementations and design considerations for these

approaches are discussed below.

3.1.1 Design-Level Power Balancing

Pipeline power balancing can be incorporated into the

design-level implementation of a processor. We propose

a novel design flow for design-level power balancing that

takes as input the hardware description (RTL) for a pipeline,

the desired operating frequency (f ), and the number of al-

lowable voltage domains (NV ), chooses the implementa-

tion and voltage for each microarchitectural pipeline stage

such that processor power is minimized and the throughput

target is met, and performs synthesis, placement, and rout-

ing (SPR) to implement the power balanced pipeline. Since

design-level power balancing changes how the processor is

synthesized, benefits over a delay balanced pipeline can be

in terms of both power and area reduction.

To arrive at the minimum-power implementation for a

power balanced processor pipeline, the optimization heuris-

tic first implements each processor pipeline stage for a range

of possible timing constraints, and selects the minimum-

power implementation of each stage that meets timing

(1/f ). Then, the heuristic performs cycle stealing between

the stages to reduce power by selecting lower power ver-

sions of high-power stages and selecting higher power ver-

sions of low-power stages to satisfy cycle stealing con-

straints. The power and delay of a stage can be varied either

by choosing an implementation with a different timing con-

straint or choosing a different voltage for the currently se-

lected implementation (or both). Since design-level power

balancing is performed only once at design time, an exhaus-

tive algorithm (Algorithm 1) can be used to evaluate all pos-

sible design choices and select the pipeline implementation

with minimum power. After implementations are chosen

for each stage, final layout is performed for the processor,

including clock tree synthesis for the optimized cycle steal-

ing strategy.

Algorithm 1 begins by defining a range of datapoints

(implementation, voltage pairs) that are valid for each

stage, based on the constraints of the loops that the stage

participates in. Cycle time stealing constraints can be boiled

down to a requirement that as long as all loops have non-

negative slack, the design can be implemented. Each recur-

sive call in the algorithm is associated with a stage in the

pipeline. A call to the recurse function passes on the stage

configurations that have already been selected, along with

the amount of slack available to each loop, given the choices

that have been made for this specific implementation path.

A path is pruned when no combination of voltage and/or

timing constraints can be chosen for the current stage such

that all loops still have non-negative slack. If a path reaches

the final stage and is able to choose a datapoint that satisfies

all loops, it calculates power savings and saves the data, if

it is the best implementation found so far. The algorithm

is complete when all paths have been completed or pruned.

We were able to reduce runtime significantly by initially us-

ing a coarse voltage step granularity to identify the ranges

of datapoints that allow for the most savings, then focus-

ing in on the datapoints at successively finer granularities in

subsequent calls to the algorithm.

Algorithm 1 Exhaustive Power Balancing Algorthm

1. find valid datapoints(stage, loop data);
2. for each datapoint ∈ valid datapoints do

3. update stages(stage data copy, datapoint);
4. update loops(loop data copy, datapoint);
5. if stage = NUM STAGES then

6. calculate power and save(stage data copy);
7. else

8. recurse(stage + 1, stage data copy, loop data copy);
9. end if

10. end for

An interesting case for design-level power balancing is

demonstrated when NV = 1. In this case, the design re-

quires no additional hardware support for multiple voltage

domains or post-silicon cycle time adjustment. All cycle

stealing is performed by optimizing the timing constraints

of the stages during SPR and adjusting the evaluation times

of the stages in clock tree synthesis. Thus, power is reduced

with respect to a delay balanced pipeline without any sig-

nificant implementation overheads. This is especially ben-

eficial when the number of allowable voltage domains is

limited.

3.1.2 Post-Silicon Static Voltage Assignment

Rather than using a new design flow to create a power

balanced pipeline, power balancing can also be achieved

through post-silicon static voltage assignment. With this

approach, the processor is designed as normal, and the volt-

ages and delays of the stages are selected at test time to

balance the power of the pipeline and reduce total power.

To enable post-silicon voltage assignment and delay adapta-

tion, support for dynamic voltage scaling (DVS) or multiple

voltage domains and tunable delay buffers [10] is incorpo-

rated into the design. Once the power balancing strategy is

chosen, inputs to delay and voltage select lines are set or

fuses are burned to finalize the cycle time stealing strategy

for the chip.

To determine the most efficient power balancing config-

uration for a chip, the power and delay of each stage is char-

acterized over the range of possible voltages during testing.

An optimization similar to the one described in Algorithm 1



(with only one implementation per stage) is performed to

select the cycle stealing and voltage assignment strategy

that minimizes total power.

Note that post-silicon static power balancing can also

be used to overcome inefficiencies caused by process vari-

ations. While previous works used cycle stealing to re-

balance delay and minimize throughput degradation caused

by process variations [19, 11], we seek to intentionally un-

balance delay in order to balance power consumption and

reduce total power for the same guaranteed performance.

The hardware overheads associated with post-silicon

static voltage assignment can be reduced by limiting the

number of voltage domains, or even by implementing the

cycle stealing and voltage assignment strategy at design

time. In this scenario, static voltage assignment could be

viewed as a limited case of design-level power balancing

that only considers a single implementation of each stage,

optimized for the target frequency of the processor.

Post-silicon static voltage assignment may increase test-

ing time if an exhaustive power balancing algorithm is used.

However, the time required to find a suitable power balanc-

ing strategy can be reduced to negligible levels by using an

optimization heuristic. For example, Algorithm 2 describes

a fast power balancing heuristic that performs gradient de-

scent to approach the minimum power configuration. First,

all stages are set to the maximum voltage, such that delay

is minimized. Then, for each stage, we calculate the poten-

tial power savings of reducing the voltage to the minimum

value such that all loops constraints are met. We follow the

direction of steepest descent by reducing the voltage by a

small amount (vstep=0.01V ) on the stage that has the high-

est potential power savings. Gradient descent continues un-

til no stage can reduce its voltage without breaking a loop

constraint. This heuristic avoids local minima by comput-

ing the total potential power savings for a stage, rather than

the savings for a small change in voltage. This prevents the

heuristic from choosing stages that present significant sav-

ings in the short run but consume too much delay in the

process. This also prevents the heuristic from getting stuck

due to noise in the characterization data. The power savings

achieved by this fast heuristic are typically within 3-5% of

the exhaustive algorithm’s savings, and runtime is reduced

significantly (to less than 1ms).

3.2 Dynamic Power Balancing

For processors in which the relative power breakdown

between pipeline stages may change due to changes in the

workload, dynamic power balancing may afford additional

power reduction over static power balancing. This is be-

cause the optimal power balancing strategy depends on

which stages consume the most power. A processor that

contains units for which utilization depends strongly on the

program or program phase (e.g., a FPU) can potentially ben-

efit from adapting the power balancing strategy during run-

time. The mechanisms used to adapt stage power and delay

dynamically can be the same as those used for post-silicon

voltage assignment. However, to allow dynamic adaptation,

the select lines for tunable delay buffers and DVS are con-

trolled by the operating system (OS) or a simple hardware

controller. Also, an additional mechanism is needed to de-

termine when to re-balance power. We describe the imple-

mentation of this mechanism for the case of the FPU, as

we observed that the fraction of power consumed in other

stages stays relatively constant (Section 6.3).

Algorithm 2 A Fast Gradient Descent-based Power Balanc-

ing Heuristic for Reducing Time Overhead

1. for each stage do

2. stage data[stage].voltage = MAX V OLTAGE;
3. end for

4. while (stage = max savings stage(stage data)) 6= −1 do

5. stage data[stage].voltage = stage data[stage].voltage −

vstep;
6. update loops(stage data);
7. end while

To identify a FP-intensive program phase, we use a per-

formance counter to count the number of FP instructions

committed within a fixed period of time. Since the num-

ber of committed FP instructions provides an estimate of

FPU energy, measuring the count over a fixed period of

time (say, an OS timeslice) gives an estimate of FPU power.

Based on the number of FP instructions in the time win-

dow (FPU power), the dynamic power balancing mecha-

nism adapts the power balancing strategy to shift power and

delay into or out of the FPU. We assume that the FPU is part

of architectural loops that contain other pipeline stages – the

same assumption made in prior work [19, 11]. We observed

that the finest granularity of adaptation required for our test

workloads is on the order of hundreds of ms (Figure 11).

Therefore, we model an OS-based power balancing mech-

anism that counts the number of FP instructions commit-

ted (e.g., PAPI FP OPS) in an OS timeslice (5 ms), and

decides whether power should be re-balanced. The exact

mechanism involves using the FP instruction count to ref-

erence into a lookup table that stores the voltage and delay

assignments for each stage in each configuration. When re-

balancing is needed, the OS assigns the stage voltages and

delays loaded from the table. As we show in Section 6.3, the

number of required configurations is low in practice (only

two are needed – FP and non-FP). Thus, we simply use a

single comparator to select the appropriate power balancing

configuration to load from a two-entry lookup table. In our

evaluation of dynamic power balancing (Section 6.3), we

also consider the time required to adapt stage voltages to

their new levels (at 10 mV/µs) when power is re-balanced.

Note that in practice, the runtime overheads of dynamic

power balancing can be piggybacked on the context switch

overhead that occurs every OS timeslice. Note also that

mechanisms to dynamically adapt voltage and cycle time

are only needed for loops containing the FPU. Thus, hard-

ware overhead for dynamic adaptation mechanisms can be

kept relatively low.



4 Practical Considerations

The previous section describes techniques for balancing

power in a pipeline to reduce total power. To make power

balancing work correctly and efficiently, several practical

issues should be considered. In this section, we discuss in

further detail the relationship between delay and voltage,

and the mechanisms that we use to perform power balanc-

ing.

4.1 Cycle Time Stealing

We use cycle time stealing as the core mechanism to per-

form power balancing. Cycle time stealing [19, 11, 10] al-

lows a pipeline stage to donate a fraction of its evaluation

period (cycle time) to another stage, without affecting the

operating frequency of the pipeline. Cycle time stealing

re-distributes cycle time from a donating stage (SD) to a

receiving stage (SR) by delaying the clock signal at the in-

put flip-flop (FF) of SD (allowing less time to evaluate) and

the output FF of SR (allowing more time to evaluate) by

the same amount (δ). This delay is propagated between SR

and SD by delaying the clock signals to all intervening FFs

from SR, up to and including the FF preceding SD. Since

clock signals at both the input and the output FFs of these

stages are delayed by the same amount, their cycle times

are unaffected. However, since the clock signal at the input

FF of SR is unchanged, SR now has an evaluation period

of Tcp + δ. Similarly, since the clock signal at the output

FF of SD is unchanged, SD now has an evaluation period

of Tcp − δ.

For design-level power balancing, we implement cycle

time stealing statically in the clock network during clock

tree synthesis. For techniques that require post-silicon

adaptation, we assume the use of tunable delay buffers [10].

To avoid effects on throughput or correctness, we ob-

serve certain cycle time stealing constraints [19, 11]. To

perform a trade between two stages, the stages must par-

ticipate in a common loop. Most pipelines have different

execution paths, to accommodate different instructions. If

two stages do not share a loop, delay cannot be traded be-

tween the stages. On the other hand, a stage may partici-

pate in multiple loops. Thus, time stealing within one loop

may alter the latency of other loops. To avoid throughput

implications, the total latency of each loop (s ∗ Tcp for an

s-stage loop) must remain constant before and after cycle

time stealing.

For example, consider a stage (S) that participates in two

loops – L1 and L2 – where L2 is a feedback loop contain-

ing only S. If the delay of S decreases due to a trade within

L1, the delay of the feedback loop, L2, must be increased to

restore its original delay. We can think of the feedback path

in L2, which contains an output FF feeding into an input FF,

as a second stage. Therefore, the stage, S, and the feedback

loop make up a 2-stage loop that must be balanced like any

other loop. This implies that a stage with a feedback path

into itself can only participate in cycle time stealing when

its feedback path is from output FF to input FF. Even then,

trading with the “feedback stage” is limited to a maximum

of Tcp. Again, the important constraint to keep in mind is

that after cycle time stealing, all loops must have the same

delay as before. Feedback paths that end up shorter than

before can be corrected with the addition of delay buffers.

However, increased delay in a feedback loop can only be

corrected by adding in a dummy stage [19] to take up the

negative slack. Dummy stage insertion can degrade perfor-

mance (IPC), and we have not allowed them in our power

balancing heuristics.

Additional practical issues were considered when donat-

ing a large amount of cycle time to a single stage. First,

we recognize that voltage cannot be decreased indefinitely.

Also, voltages of donating stages cannot be increased in-

definitely, due to aging considerations, since circuit aging is

accelerated at higher voltages. On a more subtle note, when

a stage steals cycle time, its critical paths are allowed longer

than the clock period (Tcp) to evaluate. However, the input

FF is still clocked every clock period. Thus, a stage may

be evaluating multiple instructions during the same evalu-

ation period. If a fast path were to cause a stage output

to change before the output of the previous instruction had

been sampled, data would be corrupted. Therefore, all paths

in a stage must satisfy a short path or hold time constraint

(Dmin ≥ δf − δi + Thold) [19]. The constraint on the min-

imum path delay allowable in a stage (Dmin) depends on

the amount by which the evaluation time of the stage has

been extended (δf − δi) and the FF hold time (Thold). Since

the delay of the most power hungry stages could potentially

be extended significantly, fast path buffering may become

necessary for stages that steal cycle time.

4.2 Local Voltage Scaling

While power balancing does not require multiple volt-

age domains, benefits may improve with local voltage scal-

ing. Per-stage local voltage scaling [10] requires that each

stage has its own voltage regulator. This allows voltage and

power reduction for high-power stages, enabled by voltage

increase and slack creation in low-power stages. While lo-

cal voltage scaling is conceptually simple, there are a few

practical issues that must be addressed. First, routing a

unique voltage to each stage can be costly [10]. Rather

than a single voltage network feeding the pipeline, a sepa-

rate network is needed for each stage. In practice, the over-

head of creating separate voltage domains can be limited

to acceptable levels by restricting the number of allowable

voltage domains.

Voltage level conversion between stages may also be

a concern. When a low-voltage stage feeds into a high-

voltage stage, the signal from the low-voltage stage may not

completely turn off an input transistor in the high-voltage

stage, potentially creating a short circuit path. This issue

was analyzed by the authors of [11], who concluded that as
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Figure 4: Trades are efficient when voltage remains within the

“linear” domain of the voltage-delay curve.

long as ∆V < Vt, the static power increase due to short cir-

cuit paths is negligible. Thus, during optimization, we take

care to avoid larger voltage differentials between adjacent

stages to avoid excessive leakage.

4.3 Voltage-Delay Relationship

Circuit delay is inversely related to the voltage supplied

to the circuit (Delay ∝ V
(V −Vt)

ǫ ) [12]. In the delay equa-

tion, V is drain voltage, Vt is threshold voltage, and ǫ is

a technology-dependent constant. Figure 4 shows the de-

lay vs. voltage curve for the Issue stage of the FabScalar

pipeline. As V approaches Vt, there exists a voltage after

which delay begins to rise sharply, even for a small reduc-

tion in voltage. Similarly, there exists a voltage after which

increasing the voltage, even by a large amount, only results

in a small decrease in delay. We observe that our power

balancing heuristics (which select the most power-efficient

voltage and delay for each stage) avoid these regions and

choose voltages in the “linear” region of the delay vs. volt-

age curve. We have taken all the practical considerations

and constraints mentioned in this section into account in our

power balanced pipeline implementations.

5 Methodology

Since an accurate evaluation of power balancing requires

detailed analysis of processor power, delay, and hardware

characteristics, we use a detailed design flow to imple-

ment and evaluate processor hardware. We use the Fab-

Scalar [5] framework for our evaluation of power balanced

pipelines. FabScalar is a parameterizable, synthesizable

processor specification that allows for the generation and

simulation of RTL descriptions for arbitrarily configured

scalar and superscalar processor architectures. For our eval-

uations, we execute benchmarks from the SPEC benchmark

suite (INT: bzip, crafty, gap, mcf, parser, twolf, vortex; FP:

ammp, art, equake, swim, wupwise) for 3 billion cycles. As

described in Section 6.3, we use FP benchmarks primarily

to evaluate dynamic power balancing, since the FabScalar

architecture does not contain a FPU. Benchmarks are exe-

cuted on a synthesized, placed, and routed FabScalar pro-

Table 1: Processor Microarchitecture Parameters.

Fetch Width ALU IQ Size ROB Size

1 1 16 64

Phys Regs LSQ Size Dcache Icache

64 16 32 kB 32 kB

cessor after fast-forwarding the benchmarks to their Sim-

points [6]. Table 1 gives the microarchitectural parameters

of the FabScalar pipeline that we implemented. We also

evaluated pipeline power balancing for other microarchitec-

tural configurations but did not observe a significant differ-

ence in results. Thus, we chose a simpler core in the design

space for faster implementation and characterization.

We compare power balanced pipelines against two dif-

ferent baselines. Our first baseline is a conventional de-

sign that has been leakage optimized by our CAD flow for

minimum power. Since we use cycle stealing as a mecha-

nism for power balancing, we also compare power balanced

pipelines against a second baseline that takes the original

synthesized, placed, and routed design and performs cycle

stealing to maximize the frequency of the processor. When

comparing against the second baseline, we evaluate power

balancing at the highest frequency achievable by the cycle

stealing performance-maximized baseline.

Designs are implemented with the TSMC 65GP standard

cell library (65nm), using Synopsys Design Compiler [15]

for synthesis and Cadence SoC Encounter [4] for layout.

In order to evaluate the power and performance of designs

at different voltages and to provide Vth sizing options for

synthesis, Cadence Library Characterizer [2] was used to

generate low, nominal, and high Vth cell libraries at each

voltage (Vdd) between 1.2V and 0.4V , at 0.01V intervals.

Power, area, and timing analyses are performed using Syn-

opsys PrimeTime [16]. Gate-level benchmark simulation is

performed with Cadence NC-Verilog [3] to gather activity

information for the design in the form of a value change

dump (VCD) file, which is subsequently used for dynamic

power estimation.

Since design-level power balancing may require charac-

terization of pipeline stages for multiple timing constraints,

implementation time may increase proportionally with the

number of additional design points. However, design time

overhead can be reduced by limiting the number of tim-

ing constraints for which each stage is characterized or by

performing characterization after synthesis rather than after

layout.

We implement our designs using cell libraries that guard-

band for worst case process, voltage, and temperature

(PVT) variations (V=0.9V [Vnominal=1.0V], T=125C, pro-

cess=SS). This is standard practice in industry to ensure that

designs operate correctly, even in the presence of variations.

We also evaluate the benefits of power balanced pipelining

assuming worst case variations. This is a fairly conservative

methodology, since it minimizes any additional slack that

might have been advantageous for cycle stealing. Note that

post-silicon voltage assignment and dynamic power balanc-



ing could potentially achieve more power savings by adapt-

ing to process variations. However, we choose not to eval-

uate this potential, since it is not a main contribution of our

work, and previous works have already explored process

variation-related optimizations [19, 11].

Since SRAM structures are already typically optimized

for and operated at their lowest possible voltages on a sep-

arate voltage rail, we do not target SRAM power reduc-

tion with our techniques. Consequently, processor-wide

power savings that consider core logic and SRAMs must

be derated by the fraction of processor power consumed

in SRAMs. We use CACTI [18] with smtsim [20] and

Wattch [1] to estimate the fraction of processor power con-

sumed in SRAMs.

6 Results

6.1 Design-Level Power Balancing

Figure 5 shows total processor power savings achieved

by design-level power balancing with respect to a delay bal-

anced power-optimized pipeline for the same operating fre-

quency. Results are provided for different operating fre-

quencies (clock periods). At nominal voltage, the fastest

attainable clock period for the processor is 1.4ns. We also

compare power savings for an unlimited number of voltage

domains (one per stage) against cases where only one or

two voltage domains are allowed.

As Figure 5 demonstrates, the power savings afforded by

balancing pipeline power rather than delay can be signif-

icant, even when only a single voltage domain is allowed.

Power savings increase for higher clock periods because de-

signs are less tightly constrained at higher clock periods, al-

lowing more flexibility to perform cycle time stealing. This

is especially helpful for design-level power balancing, be-

cause the added flexibility allows more options for trading

power and delay by changing the design implementation,

which may be more efficient in some scenarios than chang-

ing the voltage.

For example, we observe that in several instances, low-

power stages donate cycle time by taking advantage of de-

sign implementations with tighter timing constraints, rather

than operating at an increased voltage. When possible,

tightening the timing constraint can result in less power

overhead than increasing the voltage, because tightening

the timing constraint mostly increases leakage on the criti-

cal paths of a design, while increasing the voltage increases

power for the entire design.

Power savings also increase as more voltage domains are

allowed, since each stage operates closer to its optimal volt-

age. Still, we observe that reducing the number of voltage

domains does not significantly hinder power savings. On

average, allowing only two voltage domains reduces power

savings by only 3% from the per-stage voltage domain case.

Even for a single voltage domain design, power savings are

only reduced by 8%, on average. This is an encouraging
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Figure 5: Design-level power balancing achieves significant power

savings over delay balanced pipelining. Benefits increase with the

clock period and the number of voltage domains.
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Figure 6: Results for the alternative baseline that uses cycle

stealing to maximize performance (frequency). The numbers in

parentheses are the corresponding clock periods for the power-

optimized baseline.

result, since it means that power balancing has the potential

to achieve significant power savings without design over-

heads for additional voltage domains. Also, since cycle

time stealing can be accomplished in clock tree synthesis,

design-level power balancing with a single voltage domain

has no appreciable hardware overheads compared to a con-

ventional delay balanced pipeline, other than hold buffer-

ing, which increases area and power by less than 2%.

We observe that design-level power balancing does not

significantly affect area. On average, the area of a design-

level power balanced pipeline is within 2% of that of a delay

balanced pipeline.

We also evaluated the benefits of power balancing over

a FabScalar baseline that takes the original synthesized,

placed, and routed design and performs cycle stealing to

maximize the frequency of the processor. Figure 6 shows

the results. As can be seen, the benefits of power bal-

ancing increase for the cycle stealing-based performance-

maximized baseline. This is because while cycle time

stealing does indeed improve the frequency of the base-

line processor (for example, the minimum clock period of

the baseline decreased by 12% – 1.4ns to 1.24ns), resulting

in increased power for the corresponding power balanced

pipeline (since microarchitectural loops are now tighter),

the performance maximized baseline consumed 15% more

power, on average, than the power-optimized baseline, for
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Figure 7: Power balancing through post-silicon voltage assign-

ment reduces processor power significantly. Benefits are less than

those of design-level power balancing, because the design imple-

mentation is fixed, so power can only be traded through voltage.
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Figure 8: Results for the alternative baseline that uses cycle

stealing to maximize performance (frequency). The numbers in

parentheses are the corresponding clock periods for the power-

optimized baseline.

clock periods between 1.4-2.5ns. This led to higher relative

benefits from power balancing. On an ancillary note, the re-

sults also show that the power-optimized baseline is more

power efficient than a cycle time stealing-based perfor-

mance maximized baseline for our Fabscalar design. Note

also that power balancing can potentially save power even

when cycle stealing cannot increase performance. Consider

an example processor with 2 pipeline stages where both

stages have equivalent delay, but Stage1 consumes 10X

more power than Stage2. Although the performance of this

design cannot be increased with cycle stealing, power bal-

ancing can significantly reduce the power.

6.2 Post-Silicon Static Voltage Assign-
ment

Figure 7 shows total processor power savings achieved

by a power balanced pipeline that employs post-silicon

static voltage assignment, with respect to a delay balanced

pipeline. Again, results are shown for different operating

frequencies and numbers of voltage domains.

As in the design-level case, benefits increase with the

clock period and the number of voltage domains. On av-

erage, allowing per-stage voltage domains increases power

savings by 5.5% compared to the dual voltage rail case.
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Figure 9: Since our power balancing techniques do not target

SRAM power, we also show power savings that account for the

power consumed by SRAMS and core logic for different cache

sizes (e.g., x = 4 means Icache = Dcache = 4kB).

Power savings are lower (20%, on average) than those of

design-level power balancing, because the implementation

for a given frequency is fixed. As discussed in the pre-

vious section, adapting the design-level implementation is

especially beneficial for several low-power stages that do-

nate cycle time. The main benefits of post-silicon voltage

assignment over design-level power balancing are reduced

design time and the potential to achieve additional benefits

by adapting to process variations, if they are significant. As

discussed in Section 5, we choose to present conservative

results that do not account for adaptation to process varia-

tions, since it is not a main contribution of our work, and

previous works have already explored process variation-

related optimizations [19, 11].

Figure 8 shows the corresponding results for the cycle

stealing-based performance maximized baseline. Again,

the benefits from power balancing are higher in spite of

tighter microarchitectural loops due to significantly in-

creased power consumption of the performance-maximized

baseline.

As explained in Section 5, our power balancing tech-

niques do not target SRAM power reduction. Figure 9

shows processor-wide power savings, averaged over all

benchmarks, that account for the power of core logic and

SRAMs. Results are shown for different Icache and Dcache

sizes at maximum operating frequency (T = 1.4ns). The

data for cache size 0 represents power savings for core logic

alone.

6.3 Dynamic Power Balancing

In our evaluation of power balancing for a FabScalar

pipeline, which does not support a FPU, we did not ob-

serve a significant difference in the optimization strategy

or benefits for different benchmarks (results omitted due to

page limit). This is not surprising, since the optimization

strategy depends not on the absolute power consumption of

each stage (which can vary significantly between bench-

marks) but the relative power breakdown between stages
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Figure 10: Pipeline stages show little variation in power consump-

tion while executing INT benchmarks.

(which remains fairly constant). Since all the stages in a

pipeline operate synchronously, when the utilization of one

stage changes, the utilization of all other stages tends to fol-

low suit. Thus, the fraction of power consumed by each

stage does not vary significantly, and static power balanc-

ing performs well in most scenarios. Figure 10 shows the

percentage of total power consumed by each pipeline stage

throughout the execution of sample integer (INT) bench-

marks (results are similar for others), demonstrating that the

power breakdown remains fairly stable.

The situation may be different, however, in a processor

that contains a FPU. In order for a stage to require dynamic

power balancing, the fraction of power consumed by that

stage must vary dynamically. This requires that (1) the stage

consumes a significant fraction of total processor power and

(2) the utilization of the stage varies significantly, and some-

what independently, from the rest of the pipeline. These

conditions may be true for a FPU, since a FPU can con-

sume a significant fraction of total processor power, and FP

benchmarks typically contain phases of intense FPU utiliza-

tion that integer benchmarks do not.

In order to test our intuitions about the FPU, we charac-

terized the activity factor of the FPU over time for different

benchmarks using smtsim [20]. We then performed SPR for

the FPU from the OpenSPARC T1 processor [14] to allow

accurate design-level power and delay characterization. To

characterize FPU power vs. time for different benchmarks,

we propagated the activity profiles captured from smtsim on

the OpenSPARC FPU, using PrimeTime [16].

Figure 11 shows the percentage of total processor power

consumed in the FPU over the execution of several bench-

marks, and Figure 12 shows the average pipeline power

0

5

10

15

20

25

30

0 50 100 150 200 250 300

10M cycles

%
 F

P
U

 P
o

w
e

r 
  
  
. ammp

art

equake

swim

wupwise

mcf

parser

twolf

Figure 11: The fraction of processor power consumed by the FPU

is significantly different for INT benchmarks and FP benchmarks.

SPEC

0%

20%

40%

60%

80%

100%

ammp art equake swim wupwise mcf parser twolf

%
 T

o
ta

l 
P

o
w

e
r 

  
  
.

FPU

ActiveList

LSU

WriteBack

Execute

RegRead

Issue

Dispatch

Rename

Decode

Fetch

Figure 12: The breakdown of power consumption into pipeline

stages is different for INT benchmarks and FP benchmarks.

breakdown. (We show results for all FP benchmarks but

only three INT benchmarks (mcf, parser, twolf), as results

are similar for all INT benchmarks.) Figures 11 and 12

confirm that the pipeline power breakdown does not vary

significantly within or between INT benchmarks, even for

a processor with a FPU. Also, the fraction of power con-

sumed by the FPU for INT benchmarks is small. Thus, there

is no potential for benefits from dynamic power balancing

within INT benchmarks. The figures also show that the

difference in the pipeline power breakdown between INT

and FP benchmarks can be significant due to the change in

FPU power consumption. Thus, dynamic power balancing

may achieve benefits by identifying and adapting to FP and

non-FP workloads. We did observe significant variations in

FPU power within FP benchmarks (Figure 11). However,

the benefits of adaptation within a FP benchmark will be

limited, as these variations do not significantly affect the

pipeline power breakdown (Figure 13).

Figure 14 evaluates dynamic power balancing by com-

paring the energy required to execute several benchmarks

for three scenarios. In the static case, the power balancing

strategy is the same for all benchmarks, based on the aver-

age power consumption of each stage, including the FPU.

In the dynamic cases, we adapt the power balancing strat-

egy as the FPU utilization changes. The dynamic oracle
represents an ideal policy where the processor always uses
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Figure 13: Dynamic changes in the power breakdown of a pro-

cessor while running a FP benchmark do not deviate significantly

from the average. Results are shown for the FP benchmarks that

exhibit the most dynamic variation.

the optimal power balancing strategy for a given program

phase. Plain dynamic represents our realistic implemen-

tation that includes all overheads of dynamic adaptation,

required to recognize and adapt to the program phase dy-

namically.

The most substantial difference between static and

dynamic is for INT benchmarks. Since static is optimized

for average case FPU activity, INT benchmarks – which

have almost no FPU activity – exhibit 10% higher energy,

on average. For FP benchmarks, the difference between op-

timizing for average FPU activity (static) and full dynamic

adaptation is small (1 – 2%), since variation in FPU activ-

ity does not cause the relative power breakdown to devi-

ate significantly from the average. Therefore, the potential

benefit of dynamic adaptation is mainly in adapting to the

differences between INT and FP benchmarks, but not the

differences between phases within a FP benchmark. This

is somewhat beneficial, because it allows for a very sim-

ple adaptation mechanism. The mechanism only needs to

recognize the difference between FP and non-FP phases

and adapt the power balancing strategy accordingly. This

mainly involves shifting power between the FPU and the

stages of one architectural loop. Thus, the overhead for

adaptation circuitry (TDBs and voltage scaling) can be con-

fined to this loop of the processor.

The dynamic power balancing results in this section as-

0.60

0.65

0.70

0.75

0.80

0.85

ammp art equake swim wupwise mcf parser twolf

E
n

e
rg

y
 (

n
J

) 
  
.

Static

Dynamic Oracle

Dynamic

Figure 14: When the relative power breakdown of the processor

changes substantially (e.g., between INT and FP benchmarks), dy-

namically adapting the power balancing configuration can increase

power savings.

sume the availability of per-stage voltage adaptation. Nev-

ertheless, energy increases by less than 5% if only two volt-

age domains are allowed.

7 Related Work

In this paper, we propose the concept of power balanced

pipelines in which delay is delberately unbalanced to reduce

the disparity in power consumption of different processor

pipestages to minimize total processor power without af-

fecting throughput. Below, we characterize previous work

related to pipeline power and delay adaptation.

Cycle time stealing has been used in the past as a

means of post-silicon tuning to increase the performance

of a pipeline affected by process variations. ReCycle [19]

uses post-silicon cycle time stealing to re-balance delay in

a pipeline – re-distributing cycle time from fast stages to

slow stages, allowing a pipeline to operate at a clock pe-

riod closer to the average stage delay. ReVIVaL [11] pro-

poses a form of latch-based cycle time stealing in which an

empty “donor stage” can add an extra cycle of latency to

a timing-critical pipeline loop in case manufacturing varia-

tions prevent the processor from meeting timing. A version

of Razor [10] proposes to reclaim per-stage slack caused

by factors such as process variation by allowing cycle steal-

ing and per-stage voltage scaling to re-balance the delay of

the pipeline stages. We use cycle time stealing in a novel

context – rather than re-balancing the delay of the pipeline

stages to cope with manufacturing variations, we deliber-

ately unbalance the stage delays in favor of power balanc-

ing to reduce power in energy-constrained processors while

guaranteeing the same performance. In fact, we can take

any design where delay has been balanced using any of the

above techniques (or combinations thereof) and get power

benefits through power balancing. Section 6 presents the

benefits of power balancing for a baseline that uses cycle

time stealing to maximize operating frequency.

Multiple voltage and clock domain (MVCD) de-

signs [13, 8, 21] aim to exploit application characteristics



to manipulate the power and delay of regions within a de-

sign in order to save energy. Voltage and clock frequency

adaptations can be applied at the granularity of cores in a

multi-core system or even within a single processor core.

Performance loss in MVCD depends on the application.

On the other hand, power balanced pipelines guarantee the

same performance. For this reason, we can perform power

balancing using the peak power of low power stages and

the minimum power of high power stages even if we don’t

know the application behavior. Also, unlike MVCD de-

signs, pipeline power balancing does not require multiple

frequency or voltage domains.

Our goals are somewhat similar to those of asynchronous

design [7]. We minimize energy by adapting the delay of

each pipeline stage, allowing large, complex blocks more

time to evaluate at reduced power. An asynchronous de-

sign is even more adaptable than a power balanced pipeline.

Asynchronous design uses additional circuitry to signal

completion of a logic block for every applied input. In our

case, we only manipulate the path delays of a logic block,

and the adjustment is static for a given input. There is no

additional circuitry to signal that a logic block is ready for

the next input, should the current input fail to excite the

critical path of the logic block. The added adaptability of

asynchronous design may allow higher throughput or lower

energy in several cases, however, practical implications of

asynchronous design tend to incur considerable overheads

and design difficulties [7].

8 Conclusion

In this paper, we make a case for power balanced pro-

cessor pipelines by demonstrating that deliberately unbal-

ancing the delay of different pipeline stages to reduce the

disparity in the power consumption of the different stages

of the processor pipeline can result in significant proces-

sor power savings for the same guaranteed performance.

We propose and evaluate several static and dynamic im-

plementation techniques based on cycle time stealing for

pipeline power balancing, and demonstrate that even low-

overhead, static approaches have potential to reduce proces-

sor power significantly. We demonstrate 46% power sav-

ings at maximum frequency for a power balanced pipeline,

compared to a delay balanced power-optimized pipeline

with the same frequency. Benefits are comparable over a

baseline where static cycle time stealing is used to optimize

frequency. Power savings increase at lower frequencies. To

the best of our knowledge, this is the first such work on

microarchitecture-level power reduction that guarantees the

same performance.
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