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Abstract
Internet-connected mobile processors used in cellphones, tablets,
and internet-of-things (IoT) devices are generating and transmit-
ting data at an ever-increasing rate. �ese devices are already the
most abundant types of processor parts produced and used today
and are growing in ubiquity with the rapid proliferation of mo-
bile and IoT technologies. Size and usage characteristics of these
data-generating systems dictate that they will continue to be both
bandwidth- and energy-constrained. �e most popular mobile ap-
plications, dominating communication bandwidth utilization for
the entire internet, are centered around transmission of image,
video, and audio content. For such applications, where perfect
data quality is not required, approximate computation has been
explored to alleviate system bo�lenecks by exploiting implicit noise
tolerance to trade o� output quality for performance and energy
bene�ts. However, it is o�en communication, not computation,
that dominates performance and energy requirements in mobile
systems. �is is coupled with the increasing tendency to o�oad
computation to the cloud, making communication e�ciency, not
computation e�ciency, the most critical parameter in mobile sys-
tems. Given this increasing need for communication e�ciency, data
compression provides one e�ective means of reducing communica-
tion costs. In this paper, we explore approximate compression and
communication to increase energy e�ciency and alleviate band-
width limitations in communication-centric systems. We focus
on application-speci�c approximate data compression, whereby a
transmi�ed data stream is approximated to improve compression
rate and reduce data transmission cost. Whereas conventional lossy
compression follows a one-size-�ts-all mentality in selecting a com-
pression technique, we show that higher compression rates can
be achieved by understanding the characteristics of the input data
stream and the application in which it is used. We introduce a suite
of data stream approximations that enhance the compression rates
of lossless compression algorithms by gracefully and e�ciently trad-
ing o� output quality for increased compression rate. For di�erent
classes of images, we explain the interaction between compression
rate, output quality, and complexity of approximation and establish
comparisons with existing lossy compression algorithms. Our ap-
proximate compression techniques increase compression rate and
reduce bandwidth utilization by up to 10× with respect to state-of-
the-art lossy compression while achieving the same output quality
and be�er end-to-end communication performance.
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1 Introduction
Traditional computing systems are increasingly being replaced and
outnumbered by mobile and cloud computing systems that rely
heavily on communication between internet-connected devices.
Along with this shi� toward communication-centric computing,
technological advances and proliferation of internet-connected de-
vices are constantly increasing the amount of data produced and
transmi�ed in these computing systems [1–4]. �is explosion in
data communication is particularly prominent for image, video, and
audio data. For example, mobile phones with high-resolution cam-
eras like the iSight camera in iPhone6s regularly exchange 12MP
images through popular applications like Facebook and Instagram.
�is represents a more than 100× increase in transmi�ed data for a
single image compared to the images transmi�ed by earlier phone
models. Similar, or even greater increases in communication band-
width usage are observable across the gamut of popular mobile
applications, including streaming digital audio and video content,
social media, video conferencing, and cloud storage [5]. In fact,
nearly all of the applications that consume the vast majority of all
internet bandwidth (e.g., Net�ix, Youtube, Facebook, iTunes, Insta-
gram, Snapchat, etc.) are centered around transmission of video,
image, and audio content [6]. Network technologies continue to
evolve to support increasing loads from an ever-increasing num-
ber of communication-centric computing devices and applications,
but device technology and application advances, along with usage
trends, ensure that the demand for more bandwidth always exceeds
the advances in communication and network technology.

With applications and computing platforms straining available
communication bandwidth, data compression presents one means
of reducing bandwidth utilization. Given trends toward more
mobile, parallel, and cloud-based computing, it may o�en be ad-
vantageous to compress data locally before transmi�ing over a
bandwidth-constrained link. At the same time, given that many of
the killer applications for communication bandwidth operate on
noise-tolerant data (e.g., image, video, audio), lossy compression [7]
presents a potentially-a�ractive approach to reduce bandwidth us-
age further by sacri�cing some data �delity for increased compres-
sion rates. In this paper, we recognize that exploiting noise toler-
ance in these applications to perform less costly approximate data
communication may be more e�ective for emerging applications
than exploiting noise tolerance to perform approximate computing.
Along this vein, we expand on the �eld of lossy compression by
designing a suite of approximate compression techniques for noise-
tolerant applications.1 We use classi�cation of dataset features to
create data-aware approximations that enhance the compressibility
of data while maintaining acceptable data quality. �e goal of our
approximate compression techniques is to maximize the increase
in compression rate provided by approximation per unit reduction
in quality. Our paper makes the following contributions.
•We propose a suite of approximation techniques that enhance the
performance of existing lossless compression algorithms for image

1To distinguish approximate compression from existing lossy compression techniques,
we describe approximate compression as data approximation followed by lossless
compression.
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data. Our techniques leverage image characteristics to increase
gains in compression rate per unit quality reduction.
•We show that the approximation technique that maximizes com-
pression rate depends on image characteristics and desired output
quality and demonstrate that learning-based techniques (e.g., neu-
ral networks) can be used to select an appropriate approximate
compression technique for a given data stream.
• Our approximation techniques allow graceful trade-o�s between
data quality and compression rate, allowing a sweet spot to be
selected based on user preferences or application constraints.
•We perform a thorough evaluation of our suite of approximate
compression techniques over the trade-o� space between quality
and compression rate and show that our data-aware approximate
compression techniques result in up to 10× improvement in com-
pression rate with respect to state-of-the-art lossy compression
techniques, for the same output quality.
•We evaluate the performance of our approximate compression
techniques against state-of-the-art lossy compression and show that
they improve end-to-end performance by over 2×, on average, while
achieving be�er compression rates for the same output quality. We
also show that our approximation techniques achieve performance
scalability on massively-parallel processors, indicating that the
overhead of performing approximate compression will decrease as
processors continue to integrate more parallelism.

2 Background
In his seminal work on information theory in the late 1940s [8],
Claude Shannon quanti�ed the information gained from an event,
e , in terms of the probability of occurrence of the event, pe . I.e.,
in f ormatione = −loд2(pe ). �e entropy, h, of a transmi�ed data
stream is the information content present per symbol in the data
stream. I.e., if a source transmits n identical, independently dis-
tributed symbols, the entropy of the data stream is given by h =∑n
i=1(pi ∗−loд2(pi )). �e entropy of the data stream also represents

the minimum number of bits required to encode the symbols, so
that they can be uniquely decoded at the receiver. An encoding
scheme is said to be optimal when the number of bits used for
encoding equals the entropy of the data stream. Redundancy is the
di�erence between the symbol set’s largest possible entropy and
the actual entropy. A data stream is said to have achieved maximum
compression when the redundancy is nil.

Statistical data compression methods based on entropy encoding
assign shorter codes to frequently-occurring symbols and longer
codes to rarely-occurring symbols to reduce the total amount of
data in the encoded stream. �e achievable compression rate for a
data stream depends on the frequencies of occurrence of symbols in
the stream, as well as the ability of the model to correctly estimate
the relative symbol frequencies. �e goal of our approximation
techniques is to judiciously increase the occurrence of frequently-
occurring symbols and decrease the occurrence of infrequently-
occurring symbols in a way that best preserves data quality. �is
increases compression rate by (1) reducing the average code length
for encoded symbols and (2) making it easier to estimate relative
symbol frequencies to produce a more optimal encoding.

Our approximate compression techniques are similar to lossy
compression, whereby data quality is sacri�ced to achieve a higher
compression rate. Lossy compression is applicable for applications
in which perceptual inaccuracies in the output are permissible.
Typical applications of lossy compression include image, video, and
audio compression. �e loss of output �delity from the original
data stream is either imperceptible to the user or has been accepted
by the user for the application. �e goal of lossy compression is to
maximize the compression rate within the given distortion limits.
When the distortion is 0 (i.e., lossless compression), the number

Figure 1. We propose a suite of approximation techniques to en-
hance the compressibility of the input stream fed to a lossless
compression algorithm.

of bits required for encoding is equivalent to the entropy of the
symbols generated by the source. Reducing the number of bits
required to encode the input stream to below its entropy becomes
possible with the introduction of distortions to the data stream.

Lossy compression introduces distortions through transforma-
tion and quantization of the input data, which are then losslessly
compressed. Transformation algorithms like Discrete Cosine Trans-
form, and Discrete Wavelet Transform are used to transform the
input to a form with lower entropy that requires fewer bits for
encoding. Transformation may also aid in identifying components
of a data stream that are irrelevant to human perception.

�is paper demonstrates how di�erences in data characteristics
can be leveraged to enhance data compressibility for image data.
In general, approximations made to image data either (1) target
the property of the entropy encoder to assign shorter codes to
frequently-occurring symbols or (2) impose a more compact data
representation. In addition to immediate bene�ts due to data reduc-
tion, these techniques also improve the accuracy of the modeling
stage by increasing the probability that relative symbol frequencies
are estimated correctly. Both factors improve compression rate.
3 Related Work
Our work on approximate compression techniques can be seen as an
extension of the �eld of lossy compression. Compression of an im-
age is only possible when there is redundancy in the image, equiva-
lently, correlation between pixels. Conventional lossy compression
algorithms [9–11] work by transforming an image into a repre-
sentation where the dependencies between pixels are eliminated,
i.e., the pixels are decorrelated and the symbols in the equivalent
representation can be encoded independently. Lossy compression
techniques based on transforms such as Discrete Fourier Transform
(DFT) and Discrete Cosine Transform (DCT) transform images into
the frequency domain and identify frequency coe�cients, corre-
sponding to di�erent spatial frequencies, that can be approximated
with minimal impact on output quality. A segment of the image
with �ne details and sharp edges contains predominantly high spa-
tial frequencies. Since the human eye is more sensitive to variations
in low-frequency regions than high-frequency regions, quantiza-
tion of high-frequency coe�cients to increase compression rate
has less of an impact on visual perception of image quality.

Research has also been done on introducing approximations to
the transforms used in lossy compression techniques to reduce their
complexity at the expense of some accuracy [12, 13]. Approximate
transforms that use integer rather than �oating point coe�cients
have been applied to Fast Fourier, Discrete Fourier, Discrete Hartley,
and Discrete Cosine transforms [14, 15]. �e integer approxima-
tions result in lower multiplicative complexity for the computations
compared to traditional approaches.
4 Approximation Techniques
�is section discusses a suite of approximation techniques that
can be used to enhance the compressibility of image data. �e ap-
proximations introduce controllable distortions to images, allowing
graceful trade-o�s between output quality and compression rate. As
shown in Figure 1, approximation is performed as a pre-processing
step to lossless compression to enhance its performance. �e goal
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Figure 2. Mode-based and average-based approximations can pro-
vide be�er representative pixel values compared to midrange-based
approximation. �e distance of approximation used is 32.
of approximation is to maximize the increase in compression rate
per unit of quality degradation.

Our approximations target the principle of entropy encoding
used in lossless compression. In general, the approximations pro-
posed in this section increase the repetition of frequently-occurring
pixel values and reduce the occurrence of infrequently-occurring
pixel values. �is reduces the average code length, increases the
number of pixels represented by shorter codes, and reduces the
number of pixels represented by longer codes. �is also reduces
the number of unique pixel values and increases the probability
that modeling correctly estimates the relative pixel probabilities,
resulting in an encoding that is closer to optimal. To characterize
the extent to which an approximation is allowed to distort an image,
we introduce a context-speci�c metric called distance of approx-
imation, which will be explained for each approximation below.
Increasing the distance of approximation allows approximation to
be performed to a greater extent in exchange for increased compres-
sion rate. Sweeping the range of distance of approximation explores
the trade-o� space between output quality and compression rate.
Midrange, Mode, andAverage-based approximations: Our �rst
set of approximation techniques reduce the entropy of image data
by analyzing the histogram of pixel values in the image and se-
lecting representative pixel values from the image. To select the
representative values, we divide the histogram into equal-sized
spectral ranges and select one pixel value from each range to rep-
resent all the pixels in the range. A�er this approximation, many
pixel values may be replaced by a nearby approximate pixel value.
For this approximation, the distance of approximation is de�ned
as the radius of the spectral ranges that partition the histogram.
A distance of d means that 2d pixel values are represented by one
representative value. A greater distance of approximation corre-
sponds to choosing fewer values to represent the pixel distribution.
�is improves compressibility by increasing the repetition of fewer
unique values but reduces output quality. We explore three ways
of selecting the representative value from a spectral range.

�e simplest way to select representative values is to use the
midpoint of each range. We call this midrange-based approximation.
Since the set of representative values is static for a given distance
of approximation, the approximation time for this technique is not
data-dependent. �is simpli�es computation of the approximate
image but may result in lower quality, since the representative
values are independent of the underlying pixel distribution. For
example, in the pixel value histogram of Figure 2, selecting the
midpoint value of 228 to represent the pixel values from 196 to 250
is not very representative of the distribution of pixel values in the
range, since the data are clustered around the low end of the range.

One way to make the selection of representative values pixel
distribution-aware is to select the most frequently-occurring value
to represent each range, i.e., mode-based approximation. In case

multiple values tie for the mode, their mean is selected to represent
the range. Mode-based approximation can increase quality, since
it considers the underlying pixel distribution. �e computational
complexity for �nding the mode (O(n)) is greater than for selecting
the midpoint, as in midrange-based approximation (O(1)).

While using the mode value to represent a range can result
in a be�er representative value, the mode only represents one of
the values in the range. To provide an equal weighting of all the
pixel values within a range, the average pixel value can be used,
i.e., average-based approximation. Computing the average can be
performed with a parallel reduction algorithm. �e complexity of
performing histogramming to compute the mode depends on the
data distribution, which determines the rate of con�icts that require
serialization while updating histogram bins. Figure 3 illustrates
how the distance of approximation can be varied for midrange,
average, and mode-based approximations to navigate the trade-o�
between output quality and compressibility.
NxN approximations: �e approximation techniques discussed
so far look at images from a global perspective and fail to capture
local variations within the image. For example, average-based ap-
proximation computes a representative value for a range based on
all the pixels in the image that fall within the range. Our next set of
approximation techniques – NxN approximations – aims to achieve
higher quality by applying the previously-proposed techniques to
local regions in an image. �e image is subdivided into blocks of
NxN pixels, as shown in the le� sub�gure of Figure 4, and mean-
or mode-based2 approximations are applied locally within each
block. �is reduces distortions, since the average and mode are
localized based on the distribution of pixel values in each block.
On the other hand, compressibility is reduced for NxN approxi-
mations, compared to the global approximations discussed above,
since accounting for local variations in the image increases entropy.

In addition to the distance of approximation, the block size, N ,
introduces another dimension along which to explore the trade-
o� between compression rate and image quality. Increasing N
tend to increase compression rate at the expense of output quality.
Empirically, we select an optimal value of N = 8 for our evaluations.
Clustering-based approximation: NxN approximations con�ne
the scope of local variations to square blocks. �is is a computationally-
simple way to achieve locality but may not maximize entropy re-
duction, since spatial locality of pixel values may extend beyond
the bounds of the NxN square regions. Clustering-based approxi-
mation forms arbitrarily sized and shaped local clusters of pixels
with similar pixel values. For clustering-based approximation, the
distance of approximation is de�ned as the maximum di�erence
between any two pixel values that are permi�ed within the same
cluster. As with other approximation techniques, a larger distance
can increase compression rates at the expense of output quality.

Clusters are formed by traversing the rows of an image and
keeping track of the minimum and maximum values observed. One
cluster ends and another begins when the maximum and minimum
values di�er by more than the distance of approximation. Pixels
in a cluster are replaced with the average of the values belonging
to the cluster. �e middle sub�gure in Figure 4 illustrates cluster
formation. Since rows can be traversed in parallel, cluster formation
can be implemented e�ciently.
Flood�ll-based approximation: Flood�ll-based approximation
is an extension of clustering-based approximation that extends clus-
ters in multiple directions, rather than just along horizontal scan
lines. Since regions with uniform pixel values do not necessarily
conform to square regions or horizontal scan-lines, as highlighted
in the right sub�gure of Figure 4, �ood�ll-based clustering can
2Note that midrange-based NxN approximation would be the same as the global
midrange-based approximation.
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Figure 3. �e distance of approximation can be adjusted to trade o� output quality for increased compressibility.

Figure 4. From le� to right: (a) NxN approximation captures local
variations of pixel intensities within the image. (b) Clustering-based
approximation extends locality clusters along horizontal scan-lines.
(c) Flood�ll-based approximation identi�es connected groups of
pixels with similar values across multiple dimensions.
exploit spatial value locality to a greater extent than NxN and
clustering-based approximations, potentially resulting in greater
entropy reduction and increased compressibility. �e �ood�ll algo-
rithm assigns the same average pixel value to an area of connected
pixels, where connectivity is decided based on spatial adjacency
and distance of approximation, as in clustering-based approxima-
tion. To retain the structure of the image, edges in the image are
identi�ed using Canny edge detection and are le� untouched by
the approximation. �e possibility of lowering the entropy by in-
creasing distance of approximation is contingent on the presence
of regions of connected pixels with similar values in the original
image. While �ood�ll-based approximation can identify larger con-
nected regions than clustering-based approximation, the �ood�ll
algorithm is more complex and less parallelizable than cluster for-
mation and therefore requires more time to perform approximation.
�adtree-based approximation �e approximation techniques
discussed so far improve compressibility by reducing image entropy.
Motivated by approximation techniques that assign a representa-
tive pixel value to a region of pixels with similar values, our next
approximation technique aims to reduce image size by storing the
image in a compact format that only records the size and average
representative value for a region of pixels. To avoid the necessity
of storing location information for regions, we base our approxi-
mation on a tree data structure called a quadtree, in which each
internal node has exactly four children. We use a quadtree to recur-
sively subdivide an image into similarity regions based on regional
variance, where variance is de�ned as the average sum of squares
of di�erences between pixel values in the region and the region’s
mean pixel value. In our approximate quadtree representation,
an image region is subdivided into four quadrants whenever the
variance of the region is greater than a speci�ed distance of approx-
imation.3 As such, we de�ne the distance of approximation for this

3�adtrees have been used to perform lossless image compression by subdividing
regions with multiple pixel values into quadrants until all regions can be represented
by a single pixel value [16].

Figure 5. �adtree-based approximation identi�es large blocks
of similar-valued pixels that can be represented using just two
numbers – the dimension of the block and the mean of the pixel
values within the block.
technique as the maximum variance allowed for a similarity region.
A larger distance of approximation can result in larger regions and
a smaller quadtree size but also allows more distortions.

Figure 5 visualizes the quadtree representation of an image. �e
structure of the quadtree allows reconstruction of the image based
on only the edge size and representative value for each region. �is
allows for an extremely-compact image representation when the
image contains large regions of similar values. For example, the
large 64x64 blocks corresponding to the background in the lower
le� corner of Figure 5 can be represented by only two values – a
block compression rate of 2048×. Since the image is transmi�ed in
the approximate compressed format, post-processing is required to
convert the quadtree data back into a normal image format.

We de�ne a minimum block dimension of 2 for our quadtree-
based approximation, ensuring that the compressed image is at
most half the size of the original image. If a block has a variance ex-
ceeding the distance of approximation and is at the minimum block
size, it is not subdivided further, since doing so would increase the
image size in the quadtree representation. �e process of quadtree
formation and block approximation can be performed in parallel,
reducing the time to perform approximation.
5 Methodology
Sequential evaluations of compression, decompression, and approx-
imation are performed on an Intel Xeon X5675 CPU running at
3.07 GHz. Parallel evaluations of our approximation techniques are
performed on an NVIDIA GeForce GTX480 GPU.
Benchmark Images: �e benchmark images, summarized in Ta-
ble 1, are taken from GreySet1 of the Waterloo image repository [17].
Lossless Compression Algorithms: �is section discusses the
lossless compression algorithms that were evaluated as candidates
to compress the approximated image data generated by our ap-
proximation techniques. �e lossless algorithms considered are
7zip 15.09 [18], BZIP2 1.0.6 [19], CMIX-v7 [20], GZIP 1.6 [21],
Infozip [22], LHA 1.14i [23], LZ4 [24], Nanozip 0.09 [25], LZIP
1.17 [26], LZOP 1.03 [27], PAQ 8o6 [28], RAR 5.21 [29], XZ 5.2.1 [30],
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Table 1. Characterization of benchmark images.
Image Characteristics

Slope • Autokinetic image – appearance
changes when viewed from di�er-
ent angles.

• Arti�cially generated, but the quali-
ties of blur and noise are similar to
natural images.

Bird • Still image.
• Composed of smooth textured re-

gions – e.g., background, bird’s head
– and mildly coarse textured regions
like the feathers on the bird’s body.

Lena • Still image.
• Dominated by smooth regions – her

face, body, portions of the back-
ground. �ere are also mildly coarse
textured regions – her hat – and
complex textured regions – the ac-
cessory on her hat.

Goldhill • Still image.
• Many edges form boundaries be-

tween textured regions.
• Many complex textures, localized to

small regions.
Camera • Still image.

• Composed of equal amounts of
smooth textured regions – the coat,
the sky – and mildly coarse textured
regions – the grass.

Bridge • Still image.
• Various types of textures in di�erent

regions of the image help to camou-
�age distortions introduced by ap-
proximation techniques.

ZLIB 1.2.8 [31], ZPAQ 7.05 [32], ZZIP v0.36c [33], PNG, and GIF us-
ing NConvert4 [34]. Table 2 shows the compression rates achieved
by the di�erent lossless compression algorithms on the original,
unapproximated benchmark images.
Metrics for Evaluation: �e goal of this paper is to introduce
controlled approximations to the images that trade o� quality for
improved compression. �us, we need to quantify image quality
and compression performance to properly evaluate the approxima-
tions. �e metrics used to evaluate image quality and compression
are discussed below.
Image �ality: �e metric used to assess the output quality of
an approximated image should quantify the degradation of the
image due to approximations, with respect to the original image.
Since the acceptability of approximations is user-determined, the
approximation metric should correlate well with visual perception
of image quality. In image processing, Mean Squared Error (MSE)
and Peak Signal to Noise Ratio (PSNR) are the two widely used
metrics for quality of recovered images a�er lossy compression.

Figure 6 compares di�erent quality metrics for images with
di�erent distortions. All the images have a PSNR of around 20 dB,
and yet, appear visually di�erent. �e contrast-stretched image
(2nd image), visually appears to be a good approximation to the
original image, but it has lower PSNR than the images a�ected by
noise (4th , 5th , 6th images), which look worse. We do not use PSNR
4NCovert (GIF) uses LZW compression, which achieves compression only when sym-
bols are small and repetitive; thus, GIF has compression ratios of less than one for
some images with �ne details (see Table 2).

Figure 6. MS-SSIM correlates be�er with subjective evaluation
of visual quality than PSNR and SSIM. From le�-to-right, starting
across the top row, these images are 1. the original version [17] 2.
contrast-stretched 3. mode 8x8 approximated 4. salt and pepper
noise 5. Speckle noise 6. Gaussian noise

as a metric because it is not able to di�erentiate between images
that are perceived to have di�erent quality by the human visual
system, and it does not correlate well with perceived image quality.

Structural Similarity (SSIM) is a metric that has been developed
to quantify the visually-perceived quality of images [35]. �e hu-
man visual system perceives images by recognizing their struc-
tural information, which is provided by the inter-dependency of
spatially-close pixels. �e SSIM algorithm processes the reference
and distorted image in terms of 8x8 pixel blocks. Separate func-
tional measures of luminance – l(x,y), chrominance – c(x,y), and
structural similarity – s(x,y) are de�ned over the local, overlapping
windows of the two signals x and y, and are weighted within each
window. A general form of SSIM index is obtained by combining
the three measures. SSIM(x ,y) = [l(x ,y)]α ∗ [c(x ,y)]β ∗ [s(x ,y)]γ ,
where α , β , and γ are used to assign the relative importance to
luminance, chrominance, and structural similarity measures. �e
SSIM rates the quality of images on a scale between -1 to 1. An SSIM
value of 1 indicates identical images, whereas a value of -1 indicates
complete uncorrelation between the reference and distorted image.

�e quality score provided by SSIM can distinguish between the
images, as shown in Figure 6. However, images that are a�ected
by noise (fourth, ��h, and sixth images) get a quality score close
to 0, even though the bird in these images is discernible. In the
third image of the series, in spite of the visibility of the distortions
introduced by approximations, the quality score is higher than what
is assigned for the images a�ected by noise. Hence, SSIM does not
correlate well with human perception for these images.

Multi-Scale Structural Similarity Index (MS-SSIM) [36] extends
the SSIM technique by evaluating the image at multiple resolutions
and viewing distances. MS-SSIM works by computing the SSIM
over many iterations by successively down-sampling the reference
and distorted images by a factor of two. �e results obtained from
the di�erent scales of evaluation are weighted di�erently to give
an overall MS-SSIM score. MS-SSIM has been shown to align more
closely with subjective evaluations of image quality than SSIM and
PSNR [36]. �us, we select it as our quality metric.
Compression: �e bandwidth of a transmission link is the amount
of data that can be transferred per unit time across the link. �e
compression rate achieved when a data stream is compressed is
directly proportional to the reduction in bandwidth usage on a
transmission link when the compressed data stream is transmi�ed.
Compressing data reduces transmission time at the cost of increased
processing time at the sender and receiver for compressing and
decompressing the data. �e evaluation of the performance of
compression algorithms is based on the following two metrics.



ESTIMedia’17, October 15–20, 2017, Seoul, Republic of Korea
Harini Suresh, Shashank Hegde, and John Sartori

University of Minnesota

Table 2. Compression rates achieved by di�erent lossless compression algorithms for original, unapproximated images.
Compression Algorithm Switches Test Images

Bird Bridge Camera Goldhill Lena Slope CosinePa�ern
7zip -m0=LZMA2 1.898 1.273 1.593 1.362 1.358 4.747 3.875
7zip -m0=PPMd 2.041 1.193 1.629 1.316 1.325 4.923 6.767
BZIP2 –best 1.952 1.212 1.562 1.308 1.349 4.854 5.887
CMIX 2.716 1.395 1.984 1.535 1.741 8.587 8.720
GZIP –best 1.570 1.069 1.353 1.130 1.113 3.672 6.489
INFOZIP –best 1.562 1.065 1.347 1.126 1.110 3.630 6.426
LHA 1.588 1.079 1.388 1.144 1.141 3.668 6.477
LZ4 -9 1.279 1.005 1.175 1.009 1.022 3.107 6.460
NANOZIP (LZHD) -cd 2.207 1.365 1.730 1.490 1.678 4.795 6.622
LZIP –best 1.907 1.275 1.599 1.365 1.358 4.838 7.854
LZOP -9 1.434 1.005 1.253 1.031 1.039 3.394 6.465
NANOZIP (NZCM) -cc 2.027 1.338 1.614 1.437 1.539 3.079 9.969
PAQ 8o6 -7 2.624 1.372 1.943 1.511 1.711 7.566 10.386
RAR -m5 1.818 1.266 1.443 1.388 1.384 3.652 6.663
XZ 1.902 1.275 1.595 1.365 1.357 4.792 7.866
ZLIB 1.580 1.077 1.387 1.154 1.117 3.624 6.538
ZPAQ –best 2.218 1.289 1.756 1.409 1.451 6.738 8.742
ZZIP -mx 2.001 1.221 1.586 1.316 1.345 5.288
NConvert (GIF) 1.382 0.858 1.184 0.959 0.923 2.229 2.204
NConvert (PNG) 1.541 1.057 1.355 1.131 1.096 3.434 8.826

• Compression rate is de�ned as Size of uncompressed f ile
Size of compressed f ile . Lossy

compression rates are reported at a particular output quality value.
•�e time taken to approximate and compress the �le at the sender
and decompress the �le at the receiver is measured by the Linux
time command and averaged over ten runs.

�e choice of a compression algorithm is based on the prior-
ity between the resulting �le size and the speed of approximation
and compression, or decompression, as dictated by the applica-
tion requirements or user preference. A third factor – the memory
requirements of the compression algorithm – also in�uences the
choice. Data Compression �nds applications in storage and trans-
mission. Storage favors high data density and faster access times,
and as such, the typical priority ladder from top to bo�om is (1)
compression rate, (2) time to decompress, and (3) time to approxi-
mate and compress. For storage applications, e.g., backing up data
on a hard drive, the primary concern is reducing the size of the
compressed �le to meet available storage capacity. �is application
involves a one-time compression and a many-time decompression.
�erefore, longer approximation or compression time does not
impact performance as much as a longer decompression time.
Parallelization and Acceleration of Approximation Compres-
sion: Increasingly, mobile platforms are integrating more advanced
parallel processors, including GPUs [37]. Due to abundant data
parallelism inherent in our approximation techniques, parallel im-
plementations of the techniques demonstrate excellent performance
scalability as parallelism increases. We implemented and evaluated
our approximations on an NVIDIA GeForce GTX480 GPU to mea-
sure performance scalability. On average, for di�erent distances of
approximation ranging from 2 to 32, parallelization reduces approx-
imation time by 80-230×. While more e�cient parallel implemen-
tations may exist, even our �rst-e�ort parallelizations indicate that
(1) parallelization can signi�cantly accelerate our approximation
techniques and (2) time to perform approximation should continue
to decrease as trends in increasing parallelism continue.

Mobile platforms are also increasingly accelerator-rich, even
including hardware accelerator support for conventional lossy com-
pression (JPEG) [38]. Given the increasing trend toward special-
ization and hardware acceleration motivated by energy e�ciency
demands, as well as dark silicon [39], we argue that mobile plat-
forms should also include hardware support for lossless compres-
sion. Accelerators for lossless compression have been shown to
achieve higher throughput than those for lossy compression and
can be implemented at lower area and power cost [40, 41]. Fur-
thermore, as we will show in Section 6, approximation followed by
lossless compression may o�en achieve be�er compression rates

Figure 7. JPEG approximates DCT coe�cients corresponding to
high frequency components in an image, due to the resulting im-
perceptibility of distortions.
than conventional lossy techniques, while improving end-to-end
data transmission performance for the same output quality. Given
that mobile platforms already include accelerators for lossy com-
pression, our results provide strong motivation for acceleration of
lossless compression.
6 Results and Analysis
6.1 Exploring the trade-o� between output quality and

compression rate
�is section evaluates the trade-o� between the compression rate
achieved by the proposed approximation techniques followed by
lossless compression and the output quality of the decompressed im-
age. We compare our approximate compression techniques against
(1) an elementary approximation technique – sampling the pixels of
the image – as well as the state-of-the-art in lossy image compres-
sion – JPEG. Image sampling is implemented by selecting the �rst
value in each group of N pixels as the representative value, where
N corresponds to the distance of approximation. �e performance
of the proposed approximate compression techniques are expected
to be at least as good as the elementary sampling technique, since
the approximations are input-aware.

As shown in Figure 7, JPEG transforms pixel data into the fre-
quency domain using DCT and exploits the human visual system’s
reduced sensitivity to distortions in �ne image details, such as edges,
to identify regions in which distortions can be introduced. Distor-
tions are introduced in the quantization phase by eliminating DCT
coe�cients corresponding to high-frequency information and pre-
serving low-frequency information. �e extent of approximation
can be controlled by specifying the desired output quality.

For the sake of analysis, we classify the benchmark images into
three categories, based on the characteristics described in Table 1 –
(1) autokinetic images, (2) still images dominated by smooth tex-
tures, (3) still images dominated by complex textures.
Autokinetic images: Autokinetic images, though synthetically
generated, can be classi�ed as continuous-tone images due to their
qualities of blur and noise. Hence, the introduction of approxima-
tions to these images could take advantage of the a user’s inability
to identify distortions in the image, based on the viewing distance.
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Figure 8. JPEG’s compression rate does not improve signi�cantly,
even with high quality degradation. Approximate compression
techniques continue to increase compression rate as higher output
quality degradation is allowed. Top: slope Bo�om: cosinepattern

Figure 8 shows the percentage by which compression rate can be
increased for a given allowable reduction in MS-SSIM, for the dif-
ferent approximation techniques, sampling, and JPEG. Losless com-
pression of average- and midrange-based approximations achieves
the best compression rate for most of the range of MS-SSIM, closely
followed by mode-based approximation. To ensure that compres-
sion algorithm performance is not image-speci�c, the above trends
are veri�ed with another autokinetic image – cosinepattern [42].
�e improvement in compression rate is about 7x at 5% quality
reduction and up to 10x at 23% reduction in MS-SSIM for average
and midrange-based approximation of autokinetic images.

�e presence of regions with uniform pixel values in the image
slope aids quadtree-based approximation, in contrast with the im-
age cosinepattern. Clustering-based approximation performs well
because it exploits the uniformity in pixels along the horizontal
scan-lines to improve the compression rate.

�e DCT coe�cients for autokinetic images, shown in Figure 10
are predominantly at 0 or far away from 0. Since JPEG achieves
higher compression by approximating coe�cients that are close
to 0 but not at 0, JPEG cannot provide higher compression, even
by sacri�cing considerable quality. For the image slope , JPEG’s
compression rate does not improve substantially even with large
quality degradation. For example, in Figure 8 (a), the improvement
in compression rate corresponding to a reduction in MS-SSIM from
10% to 30% is only 1.3x. �e compression rate of JPEG begins to
saturate with further degradation in output quality, due to the lack
of coe�cients that can be approximated, as seen in Figure 10 (a) (b).
Images with smooth textures: �e still images bird , lena, and
camera are dominated by the presence of smooth textures, span-
ning small and large regions. �e minor presence of coarse textures
help to camou�age the distortions introduced by approximations
in the feathers and body of the bird in the bird image, the hat and
background in lena, and the ground in camera. Since the images
are dominated by regions of smooth textures, quadtree-based ap-
proximation provides good compression, since larger low-variance
blocks exist in the images. Unlike the large, smooth textured regions
in bird , the image lena has smaller smooth textured regions, nega-
tively impacting the performance of quadtree-based approximation,
pushing the cross-over point between JPEG and quadtree-based
approximation to 20% reduction in MS-SSIM.

Figure 9. High-frequency image components allow JPEG to intro-
duce imperceptible losses and achieve a good trade-o� between
compression and output quality. As quality is degraded further, the
distortions start to a�ect perception, and quadtree-based approxi-
mate compression achieves a higher compression rate for the same
output quality. From top to bo�om: (a) bird (b) camera (c) lena

High-frequency components resulting from edges, i.e., sharp
transitions in intensity values, allow JPEG to provide be�er com-
pression. From Figure 10 (c) (d) (e), which show the distribution of
DCT coe�cients for the images, the order of increasing opportunity
for bene�ts with JPEG is bird , camera, lena, based on their scope
of approximation. It can be observed from Figure 9 that with the
decrease in high frequency components, the range where JPEG is
the best compression technique decreases – from up to 20% reduc-
tion in MS-SSIM in lena, to only up to 3% reduction in MS-SSIM in
bird . Beyond this region of dominance, JPEG sees li�le increase in
compression rate (only 1.19x) as MS-SSIM decreases from 1.5% to
8.4% for bird . �adtree-based approximation, on the other hand,
allows a 1.5x increase in compression rate for only 2% loss in quality
in this region of approximation.
Images with coarse textures: �e still images bridдe and дoldhill
are composed of complex textures, which contain sharp transitions
in intensity, providing the opportunity for JPEG to achieve supe-
rior compression with relatively less loss in perception of visual
quality. �e dominance of complex textures in the images helps
hide distortions e�ectively when high-frequency components are
quantized. From Figure 10 (f) (g), these manifest in the frequency
domain as DCT coe�cients close to 0, that can potentially be ap-
proximated to 0, improving image compressibility. JPEG achieves
the best compression rate for up to 25% reduction in quality in
дoldhill and 32% reduction in quality in bridдe . However, there
is a signi�cant drop in quality between successive approximation
points, as we move toward the lower quality region. For example,
on the JPEG trendline in Figure 11, a quality se�ing of 3 for JPEG
gives an MS-SSIM value of 0.8, whereas a quality se�ing of 2 causes
MS-SSIM to plummet by 56% to 0.35.
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Figure 10. Autokinetic images do not present much scope for JPEG
approximation due to the limited presence of DCT coe�cients near
0, corresponding to high-frequency components. From top le�:
Distribution of DCT coe�cients for (a) slope (b) cosinepattern (c)
bird (d) camera (e) lena (f) bridдe (g) дoldhill

Figure 11. �e cross-over point between JPEG and quadtree-based
average compression shi�s to the right compared to the obser-
vations from Figure 9, implying an increase in the presence of
high-frequency components.

With such complex textures, quadtree-based approximation per-
forms poorly for high quality requirements, since it is not possible
to identify large regions with similar pixel values. When quality re-
quirements are relaxed beyond the cross-over points de�ned above,
the quadtree-based approximation scheme provides 1.3x improve-
ment in compression for 7% reduction in MS-SSIM. For all image
categories above, �ood�ll and clustering-based approximations do
not perform well, since they target be�er output quality, resulting
in higher entropy and less scope for improving compressibility.

Figure 12. JPEG provides be�er compression with impercepti-
ble losses for images dominated by high-frequency components.
�adtree-based approximation increases compressibility more
when images contain larger smooth regions.

6.2 Recommending approximation techniques based on
image characteristics

In this work, we show that the approximate or lossy compression
technique that maximizes compression rate for a given image de-
pends on image characteristics and desired output quality. For
example, autokinetic images lack high-frequency components that
can be quantized by JPEG, so JPEG does not achieve a high compres-
sion rates for autokinetic images. Instead, the proposed average-
and midrange-based approximations followed by lossless compres-
sion provide the best quality vs. compression rate trade-o�.

For still images, the choice between compression schemes can be
made based on the proportion of high-frequency components in the
image and the required application output quality. If only minimal
output quality degradation is permissible and the image has many
high frequency components, JPEG is the best choice. If higher
quality degradation is permissible, quadtree-based approximation
maximizes gain in compression rate per unit loss in quality.

�e slope of the compression rate vs quality reduction curve
varies with the relative composition of edges and smooth textured
regions in an image. When an image has many edges, the range of
MS-SSIM over which JPEG is the best compression technique in-
creases, since JPEG approximates the high-frequency components
in an image, providing higher compression with less degradation
of perceived visual quality. In scenarios where image quality degra-
dation is more acceptable, quadtree-based approximation is able to
identify large regions with near-uniform pixel values and achieve
be�er compression rates. �e conditions for dominance of JPEG
and quadtree-based approximation are illustrated in Figure 12.

While the guidelines above provide adequate criteria for select-
ing an appropriate approximate / lossy compression technique for
a given scenario, ideally, the selection of the best approximation
technique for a given image should be automated. One solution
for automating the selection process is machine learning. We have
implemented a convolutional neural network (CNN) using the Ten-
sorFlow platform [43], retrained on the inception v2 model [44, 45],
which pretrains a network for generic image classi�cation, such
that only the output layer needs to be retrained for the speci�c clas-
si�cation task. A�er using a small training set of only 100 images
to retrain the network, our CNN is able to predict, with perfect ac-
curacy, the approximation technique that maximizes compression
rate for a given output quality for all input images in our test set.
6.3 End-to-end Performance Analysis
�e goal of approximate compression is to improve communication
performance on bandwidth-constrained channels. In this section,
we compare the proposed approximate compression techniques
against state-of-the-art lossy compression in terms of end-to-end
transmission rate.
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Table 3. Average time taken to approximate the benchmark images.
Approximation
Technique

Compression
Rate

Approximation
Time (ms)

Average 19.75 0.1347
Mode 19.80 0.0593
Average8x8 9.43 0.1197
Mode8x8 16.63 0.0315
Midrange 19.82 0.0315
Cluster/Flood 5.17 0.3543
�adtree 22.84 0.6332

Table 4. Average time taken to compress and decompress the
benchmark images using lossless compression algorithms.

Compression
Algorithm

Switches Compression
rate

Time to
compress
(s)

Time to de-
compress
(s)

7zip –m0=
LZMA2

7.916 0.035 0.034

7zip –m0=
PPMd

9.031 0.031 0.047

BZIP2 –best 9.474 0.025 0.019
CMIX 16.175 35.216 35.030
GZIP –best 9.313 0.017 0.016
INFOZIP –best 8.497 0.028 0.020
LHA 8.967 0.016 0.013
LZ4 –9 4.371 0.010 0.008
NANOZIP
(LZHD)

–cd 9.175 0.025 0.042

LZIP –best 10.963 0.039 0.019
LZOP –9 4.762 0.011 0.073
NANOZIP
(NZCM)

–cc 11.858 0.205 0.203

PAQ 8o6 –7 14.103 2.736 2.718
RAR –m5 7.143 0.053 0.024
XZ 10.659 0.035 0.023
ZLIB 8.645 0.015 0.039
ZPAQ –best 8.626 0.178 0.192
ZZIP –mx 10.002 0.019 0.016

Time to Approximate: Table 3 shows the approximation time for
parallel implementations of our approximation techniques, aver-
aged over ten trials, and the compression rate achieved by compress-
ing the approximate images using bzip2. Results are shown for an
approximation distance of 32, which resulted in the longest approx-
imation time in our evaluations. Approximation time is averaged
over all the benchmark images. A comparison of approximation
time (Table 3) and compression time (Table 4) shows that the maxi-
mum observed overhead of data approximation is negligible com-
pared to that of compression. �is is not surprising, considering that
our approximation techniques are highly parallelizable, whereas
compression algorithms tend to be fundamentally sequential in
nature (though accelerators for compression have been shown to
boost compression throughput signi�cantly [40, 41]).
Time to compress and decompress: Table 4 shows compression
and decompression times, averaged over ten trials, along with the
compression rates achieved for di�erent lossless compression algo-
rithms. �e table shows average results over all the approximated
benchmark images. CMIX achieves the highest compression rate
for all the benchmark images. However, it also has the highest run-
time, as it estimates the probability of occurrence of a symbol by
combining the results from several di�erent modeling schemes. For
latency-critical applications, where fast access times may be more
important than maximizing compression rate, the high latency of
an algorithm like CMIX may be unacceptable. �is is likely the case
for many communication-centric applications, since long-latency
decompression could result in undesirable bu�ering time at the des-
tination. As such, we use a di�erent algorithm for our evaluations
(bzip2), which has signi�cantly lower latency than CMIX, while
still providing fairly comparable compression rates.
End-to-end Transmission Time: Approximate communication
based on approximate or lossy compression involves data com-
pression at the source, transmission of compressed data, and data

(a) 2G network

(b) 3G network

(c) 4G network
Figure 13. Approximate compression reduces end-to-end transmis-
sion time compared to state-of-the-art lossy compression (JPEG).
Although the relative overhead of compression increases for newer
wireless technologies, reduction in data transmission time a�orded
by compression substantially outweighs compression overhead.
decompression at the destination. In the case of approximate com-
pression, data is approximated prior to compression to increase
compressibility. Figure 13 compares end-to-end data transmission
time for approximate communication based on the proposed ap-
proximate compression techniques against JPEG for various image
sizes.5 Comparisons are shown for an output quality threshold of
85%. �e sub�gures in Figure 13 provide comparisons for di�erent
wireless network generations with di�erent average data rates [46].
Due to the signi�cant gains in compression rate a�orded by data
approximation, the increased throughput of lossless compression
over lossy compression, and the negligible overhead of data approx-
imation, approximate compression signi�cantly reduces end-to-end
transmission time compared to state-of-the-art lossy compression
(JPEG). Averaged across di�erent �le sizes and network genera-
tions, approximate compression reduces transmission latency by
2.1× compared to JPEG, for the same output quality.

Compressed communication makes sense when the reduction
in communication latency a�orded by transmi�ing compressed
data is greater than the overhead of performing compression and
decompression. Because approximate compression signi�cantly
improves data compressibility, using approximate communication
5Time comparison is also a good proxy for energy, especially for computational
stages that represent overheads of approximate compression (e.g., approximation,
compression, decompression).
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Table 5. Speedup of end-to-end communication time achieved
through approximate and lossy compression, compared to commu-
nication of uncompressed data.

image size (MP) 2G 3G 4G

0.3
Approx 8.0× 8.0× 7.4×
JPEG 5.9× 5.8× 5.3×

1.0
Approx 22.4× 21.8× 17.1×
JPEG 9.2× 9.1× 7.8×

4.2
Approx 133.7× 124.8× 74.3×
JPEG 53.2× 48.8× 26.3×

16.8
Approx 146.7× 136.1× 78.1×
JPEG 74.4× 66.0× 30.6×

based on approximate compression for error-tolerant applications
signi�cantly outperforms communication of uncompressed data,
even considering the overheads of approximation, compression,
and decompression. Table 5 shows speedups for approximate com-
munication based on approximate and lossy compression over com-
munication of uncompressed data. Both lossy and approximate
compression signi�cantly improve communication performance
compared to no compression, and approximate compression out-
performs lossy compression by over 2×, on average. Although the
relative overhead of compression increases for newer wireless net-
work generations with higher bandwidth, the signi�cant reduction
in data transmission latency a�orded by compression substantially
outweighs compression and approximation overhead.
7 Conclusion
Trends toward mobile, communication-centric processors and ap-
plications are increasingly straining available communication band-
width. In this paper, we leverage the inherent noise tolerance of the
most bandwidth-constrained applications (e.g., multimedia stream-
ing) to perform approximate compression and communication. We
introduce a suite of characteristic-aware approximate compression
techniques that enhance the performance of lossless compression
algorithms and allow �uid trade-o�s between compression rate
and output quality. We show that conventional lossy compression
techniques like JPEG may not always achieve the best compression
rate for a given level of output quality, and the best approximate
compression technique for a given scenario depends on desired
quality and image features. Our approximate compression tech-
niques show up to 10× improvement in compression rates over
state-of-the-art lossy compression, for the same output quality,
demonstrating the importance of selecting the best approximate
compression technique for a given scenario. We showed that this
selection can be automated through learning-based techniques such
as neural networks. Our approximate compression techniques im-
prove end-to-end performance of data transmission by 2×, on aver-
age, compared to state-of-the-art lossy compression. Furthermore,
our approximate compression techniques scale well on massively
parallel processors, indicating that the cost of performing approx-
imate compression before data transmission should continue to
decrease in the future as systems become more parallel.
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