
Distributed Peak Power Management for Many-core Architectures
John Sartori and Rakesh Kumar

Coordinated Science Laboratory
1308 West Main St
Urbana, IL 61801

Abstract
Recently proposed techniques for peak power manage-

ment [5] involve centralized decision-making and assume
quick evaluation of the various power management states.
These techniques suffer from two limitations. First, they do
not prevent instantaneous power from exceeding the peak
power budget, but instead trigger corrective action when
the budget has been exceeded. Second, while these tech-
niques may work for multi-core architectures (processors
with small number of cores), they are not suitable for many-
core architectures (processors with tens or possibly hun-
dreds of cores on the same die) due to an exponential ex-
plosion in the number of global power management states.

In this paper, we look at a hierarchical and a gradient
ascent-based technique for decentralized peak power man-
agement for many-core architectures. The proposed tech-
niques prevent power from exceeding the peak power bud-
get and enable the placement of several more cores on a die
than what the power budget would normally allow. We show
up to 47% (33% on average) improvements in throughput
for a given power budget. Our techniques outperform the
static oracle by 22%.

1 Introduction

While power has long been a well-studied problem, most
dynamic power reduction techniques, e.g., V/f scaling, clock
gating, etc., exploit slack in the execution behavior of pro-
grams to reduce average power. Peak power is often left
untouched. This is in spite of the fact that peak power plays
a large role in determining the characteristics and hence the
cost of the power supply, thermal budgeting for the chip, as
well as the reliability qualification of the processor [3].

While the inefficiencies due to the lack of peak power
management are substantial even for uniprocessors [5], the
extent of the problem becomes much worse for multi-core
processors. This is because the number of additional cores
that can be powered using the absolute gap between peak
power and average power keeps increasing with the increas-
ing number of cores on a processor die. In fact, this ineffi-
ciency increases linearly with the core scaling factor [5]. If
the predictions of tens to hundreds of cores on future proces-
sors are correct, effective, efficient, and scalable peak power
management will become a necessity.

Recently proposed techniques for peak power manage-
ment [5] involve centralized decision-making and assume
quick evaluation of the various power management states.
For example, Isci, et al [5], propose techniques that as-
sume a global power manager that records the performance
and power information corresponding to all the cores on the
die and then instantly searches through the decision space.
While these policies work well for multi-core processors
(with a relatively small number of cores), they may not be
suitable for many-core architectures (processors with tens

or possibly hundreds of cores on the same die) due to an
exponential explosion in the number of global power man-
agement states.

For example, an 8-core processor with four power states
(three voltage states and one off state) has 48, i.e., over
65 thousand possible global states that must be evaluated.
Similarly, an 80-core processor like Intel’s recent announce-
ment [4], with two power states (full-power and half-power)
can have over 1.2×1024 possibilities! While one can use in-
telligent search/optimization techniques to prune the search
space, an alternate approach is to look for solutions that are
not centralized. This paper presents two such solutions.

The second limitation of previously proposed techniques
is that while these techniques attempt to limit the global
power consumption, power overshoots are still allowed
(overshoots trigger corrective action). The techniques that
we propose in this paper attempt to guarantee that the power
of a multi-core processor does not exceed a threshold. The
guarantee is provided by dynamically selecting a subset of
cores and scaling down their voltages. So, the processor
effectively keeps switching between different peak power
management states, each with a peak power consumption
below a threshold. The switches are made between states
based on applications’ execution characteristics to maximize
the throughput of the processor.

2 Throughput Benefits of Peak Power Man-
agement

There is often a sizable gap between the average power
and peak power of a multi-core processor. Figure 1 shows
the distribution of power consumption for a 9-core chip
multi-processor (CMP) as a percentage of peak power for
a set of workloads that we studied (details in Section 4). On
average, the processor consumes only 66% of its maximum
rated power. However, the processor and the power sup-
ply must be designed to supply the peak power and rated to
handle this load. In theory, we should be able to add ap-
proximately 50% more cores running at full power and still
remain below the peak power, on average.

Now consider an architecture (Figure 2) with peak power
management that has several more cores on the die than the
baseline processor. The average power of the new archi-
tecture is just below the peak power of the baseline proces-
sor while a peak power management mechanism prevents
the new architecture from exceeding the peak power of the
baseline (even though the processor contains several more
cores than the power budget would normally allow). The
peak power management mechanism bounds the processor

0Power overshoots can probably be prevented by triggering corrective
action conservatively

1

Figure 1. On average, a multicore processor con-
sumes only a fraction of its maximum rated power.

(a) Baseline Config. (b) Enhanced Config.
Figure 2. Power-Equivalent Processor Configura-
tions.

power by intelligently scaling down the power for a subset
of cores. Power can be scaled down through the application
of V/f scaling, clock gating, or power gating. The through-
put of this architecture is higher than the baseline processor,
due to the increased number of cores.

In this paper, we employ V/f scaling to limit the maxi-
mum power consumption on a core.

2.1 Intelligent Core to Power State Mapping to
Maximize Throughput

While the availability of more cores should be sufficient
to guarantee increased throughput for an architecture that
supports peak power management, performance can be fur-
ther maximized by choosing the power state of each core in-
telligently, based on application characteristics. In this sec-
tion, we describe the various baselines that we constructed
to compare against our proposed approaches.

2.1.1 Static Mapping

We considered two static baselines – random static and
static oracle – that prevent power overshoots and, therefore,
provide the throughput benefits mentioned previously.

For a given processor configuration, the random static
scheduler arbitrarily selects the cores that will be scaled, or
equivalently, the cores that will receive full power.

Static oracular scheduling [6] requires foreknowledge of
the behavior of applications in various power states and
employs a metric called weighted speedup (WS) [8]. WS
expresses the throughput of an application running at full
power relative to the throughput of the same application run-
ning in a reduced power state. A large WS value indicates
that the performance of an application deteriorates rapidly
as power is decreased. Conversely, an application with a
WS value close to one can run in a reduced power state with
very little performance degradation.The static oracular map-
ping is produced by sorting the applications in a workload
with respect to WS. Those with the highest WS are assigned

to a full power state, and those with lower WS values are
allocated reduced power states.

We also evaluated a static configuration in which all cores
are scaled to the lowest power state. This configuration –
referred to as all scaled – maximizes core integration for a
given power budget.

2.1.2 Dynamic Mapping

We used the previously proposed MaxBIPS policy [5] as our
centralized dynamic baseline.

MaxBIPS, proposed by Isci et al [5], aims to optimize
system throughput by predicting and choosing in the power
scheduling stage the power mode combination that should
maximize the throughput. MaxBIPS policy predicts the cor-
responding power and BIPS values for each possible mode
combination. Afterward, it chooses the combination with
the highest throughput that satisfies the current power bud-
get.

MaxBIPs was presented as a peak power management
solution for a four-core multi-core processor and relies on
a global arbiter/scheduler to make power management deci-
sions for each core on the processor. As confirmed in Sec-
tion 5), the technique is not scalable for a large number of
cores. Secondly, while MaxBIPS attempts to limit the global
power consumption, it allows power overshoots and triggers
reactive correction for these overshoots.

The two dynamic techniques proposed in the next sec-
tion do not allow power overshoots and are targeted towards
architectures with a large number of cores.

3 Non-centralized Peak Power Management

In a many-core architecture, the responsibility of power
management must be shifted away from a central arbiter and
distributed to multiple locations around the processor.

3.1 A Hierarchical Approach

Consider a processor with 64 cores in which half of the
cores run at full power and the other half run at reduced
power to meet the peak power budget. The task of choos-
ing the optimal power state boils down to choosing the 32
cores that can best utilize the full power state, or alterna-
tively, choosing the 32 cores that suffer the least from run-
ning in a reduced power state. Essentially, the size of the
search space contains C(64,32) configurations, where C(x,y)
denotes the number of y-combinations from an x-set.

Now, consider the same processor, divided into 4 clusters.
For each cluster, the search space contains C(16,8) configu-
rations when power is divided evenly between the clusters.
Thus, the search space for the entire processor consists of
4 parallel decisions between C(16,8) states – 14 orders of
magnitude fewer than the number required for a global deci-
sion. When cluster-level power distribution is included, the
number of states will be reduced even further. Clearly, hier-
archical scheduling demonstrates considerable potential for
reducing the search space for power management.

2

M easure
Perform ance

for each
Pow er S tate

Perform
Schedu ling
w ith in each

C luster

C alculate W S
for each Core

and C luster

P roportionally
A llocate Pow er

to C luste rs

Figure 3. Hierarchical scheduling performs power
management within clusters to reduce arbitration
overheads.

Hierarchical Power Management involves dividing the
processor into several clusters of cores and performing lo-
cal scheduling within each cluster. The next level up in
the hierarchy provides power management between clusters.
Power negotiation between clusters is based on the aggre-
gate weighted speedup (WS) metric.

Power is allocated to each cluster proportionally, based
on WS. During allocation, the cluster-level arbiter ensures
that no cluster receives more power than it can possibly use
or less power than it needs to run each core at the most
reduced power state. When concessions need to be made
to satisfy the peak power guarantee, a deficit is cleared by
skimming power from clusters in the order of increasing
WS, and a surplus is distributed by allocating extra power
to clusters in order of decreasing WS. In this respect, each
cluster can be thought of as owning some “power tokens”.
The amount of power that a cluster can consume is deter-
mined by the number of tokens present in the cluster. The
tokens can flow through the system. The amount of power
that a cluster can consume can vary with time, depending on
application characteristics.

As an example, if the weighted speedup values for the
4 clusters of a 16 core processor described above are 5,4,3,
and 2 respectively, and if the peak power budget of the chip
is 70W, the clusters receive 25W, 20W, 15W, and 10W re-
spectively. Within each cluster, local scheduling performs
dynamic subsetting of cores with high power states such that
cluster-level instantaneous peak power budget is respected.
If the WS values change over time, the cluster-level peak
power budget is adjusted accordingly.

The algorithmic flow of hierarchical scheduling is de-
picted in figure 3. Note that hierarchical scheduling may
result in the decisions that are globally suboptimal. The de-
gree of sub-optimality is determined by the effectiveness of
moving the power tokens around from one cluster to another.

In this paper, we consider a hierarchical scheduler that
is based on hybrid a global trigger – i.e., re-allocation and
local scheduling is triggered when the change in aggregate
weighted speedup of the chip exceeds a threshold. For re-
allocation, as described above, power is allocated to clus-
ters based on their contribution to the aggregate weighted
speedup. Local scheduling for all the clusters is done in par-
allel and involves calculating the WS for each core, sorting
the WS values, and allocating power in order of decreasing
WS.

3.2 A Gradient Ascent-based Approach

Hierarchical scheduling reduces the cost of power man-
agement decisions. However, the cost of making such deci-
sions is truly minimized only when power state determina-
tion is performed locally by each core rather than by a high-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.5 0.6 0.7 0.8 0.9 1

V/f Scale Factor

T
h

ro
u

g
h

p
u

t

.

ammp
mcf
bzip
crafty
equake
galgel
mgrid
parser
swim
applu
art
twolf
vortex-2
vpr
wupwise

Figure 4. Different applications exhibit varying per-
formance gradients with respect to power scaling.

level arbiter that must consider the needs of many cores.
One way to shift the responsibility of power management to
the core level is to introduce a distributed control algorithm
such as gradient ascent [1].

Gradient ascent is motivated by the fact that different ap-
plications have different rates of performance decrease when
voltage/frequency is scaled down and makes power alloca-
tion decisions based on these rates. Figure 4 shows the per-
formance gradients for some SPEC benchmarks. For some
applications, the gradient of performance with respect to
power is steep. Gradient ascent determines that these appli-
cations should be allocated full power. Other applications,
however, have flat gradients and therefore should run in
the lowest possible power state for the most efficient power
mapping. Since all the information needed to choose an ef-
ficient power state is present at the core level, the decision-
making process can by executed locally, thereby eliminating
the global arbiter and creating a scalable power management
policy, independent of the number of cores on the processor.
The algorithm in figure 5 describes the gradient ascent ap-
proach to peak power management.

To provide a global peak power guarantee, a single power
balance counter is used to track the number of requests to
ascend and descend one power level. If the power balance
is not zero after each core asserts its desire, either some
cores must accept a lower power state or some cores must
assume a higher power state to keep the power requirement
of the processor constant. A natural tradeoff exists here be-
tween the locality and scalability of decision-making and the
amount of global information used, which in turn affects the
optimality of the solution.

Ideally, the cores which evidence the steepest gradients
should receive extra power first to resolve a positive power
balance. Similarly, the cores with the flattest gradients
should be the first to give up power when concessions must
be made to satisfy the guarantee. However, these opti-
mizations require more global information in the form of
a weighted speedup value from each core. Alternatively, the
cores that are forced to change power states may be selected
randomly or based on a weighted speedup threshold. The
former techniques result in a solution that is closer to opti-
mal whereas the latter techniques favor decentralization of
the decision-making process.

3

R andom ly
P erturb the

P ow er State

M easure
change in

P erform ance
M etric

Ca lcu la te
G radient fo r
each Core

U pdate P ow er
S tate follow ing

the G rad ient

Change >
Thresho ld?

R un in
Current

S ta te

N O

YE S

Figure 5. The gradient ascent approach performs power management locally at each core rather than relying on
a global arbiter.

A common difficulty with gradient ascent is the presence
of local maxima on the path of ascent. Since the gradient
in any direction is negative at a maximum, the control vari-
able will inevitably return to the maximum, unless the per-
turbation of the state is large enough to escape the realm of
the maximum. Interestingly, the gradient ascent approach to
peak power management is not impeded by the presence of
any local maxima. This is because the performance function
is guaranteed to be strictly monotonic. The performance of
an application will never increase as frequency is decreased
and can never decrease as frequency is increased. Thus, no
local extrema exist for the performance function, and local
determination of the gradient always results in a step to-
wards optimal performance.

3.3 Decentralized MaxBIPS

Finally, for completeness, we also consider a decen-
tralized version of MaxBIPS. The decentralized version of
MaxBIPS is same as hierarchical scheduling where the lo-
cal scheduling policy is MaxBIPS. Determination of when
to do mapping is still based on a hybrid global trigger.

Note that decentralized MaxBIPS will not prevent power
overshoots because of the reactive nature of MaxBIPS.

4 Methodology

Table 1 presents individual core specifications for the
baseline processor.

Core Component Baseline Value
Fetch Width 2
Issue Width 2
I/D Cache 32 KB, 4 way, 1 cycle latency
ITLB/DTLB 48/128 entries
MSHR 16 entries
L2 Cache shared, 4 way, 12 cycle latency, 8 banks

4/8 MB for 8/16-core baseline

Table 1. Core Specifications.
The processors evaluated in our study are chip multipro-

cessors (CMPs) with homogeneous cores. All cores are
modeled with 65 nm process parameters. The frequency
and supply voltage of each core are 3 GHz and 1.5 Volts,
respectively, at full power. All cores are connected to the
L2 cache banks through a matrix crossbar interconnect. To
account for increased area due to additional cores and inter-
connections, the L2 cache size of an enhanced configuration
is reduced by half with respect to the corresponding baseline
configuration. Consequently, enhanced configurations that
are compared against an 8-core baseline are modeled with
a 2 MB L2 cache. As the core count is scaled up to allow
analysis of our power management techniques in many-core
architectures, the size of the L2 cache is scaled linearly with
the number of cores.

Power estimates reported by Wattch [2] were used to cal-
culate the peak power consumption of each core in various
power states. Wattch reports the maximum dynamic power
consumption for a core at a given supply voltage. To calcu-
late the total peak power for a core in a given power state, an
assumption is made that the peak dynamic power consump-
tion represents 75% of the total processor power. Thus, the
dynamic power values from Wattch are scaled up to rep-
resent the dynamic and static contributions to peak power.
Table 2 gives the peak power figures for several V/f scal-
ing factors, assuming 65 nm process technology. At most, a
core is allowed to scale down to half of the original voltage
and frequency. Thus, we consider voltages from 1.5 to 0.75
Volts.

ScalingFactor 1.0 0.9 0.8 0.7 0.6 0.5
Peak Power (W) 18.289 15.549 13.098 10.888 8.899 7.107

Table 2. Peak Power Consumption for V/f Scaling
Factors.

The supply voltage and frequency of each core in our
modeled CMPs can be controlled independently. When a
core switches V/f domains, we do not assume an instanta-
neous change. Instead, we model a gradual transition from
one V/f domain to another at a rate of 10 mV/µs. When a
transition between V/f domains occurs, the cores are halted
until the transition is complete for all cores. During this
time, the processor is assumed to still consume power, but
no performance gains are registered. Modeling a V/f transi-
tion in this manner represents a very conservative approach.
Table 3 displays the penalty in cycles incurred when switch-
ing from a full power state to a reduced power state.

ScalingFactor ∆V Switching Time Cycles @ 3 GHz
0.9 0.15 15 µs 45,000
0.8 0.30 30 µs 90,000
0.7 0.45 45 µs 135,000
0.6 0.60 60 µs 180,000
0.5 0.75 75 µs 225,000

Table 3. V/f Switching Penalties.
Workloads are constructed from a set of 16 SPEC2000

benchmarks. Table 4 lists the benchmarks used in workload
construction along with fast-forward distances in billions of
instructions.

ammp mcf bzip crafty eon equake galgel mgrid
2.0 12.6 0.4 0.7 0.1 3.5 5.0 2.1

parser swim applu art twolf vpr vortex wupwise
0.4 0.3 0.3 7.5 0.9 36.1 6.0 1.1

Table 4. Simulation Benchmarks and Fast-Forward
Distances.

For the 16 core results that we present in this paper, we
average the results over five kinds of workloads (each con-
sisting of 16 threads). The all workload contains all 16

4

benchmarks in equal proportions. The high sensitivity work-
load includes benchmarks that exhibit the highest sensitivity
to V/f scaling. The low sensitivity workload includes bench-
marks with low sensitivity to V/f scaling. The mixed sen-
sitivity workload includes benchmarks with varying degrees
of sensitivity to V/f scaling. Finally, the dynamic workload
contains benchmarks that exhibit more dynamic behavior
than others.

Simulations are performed using SMTSIM [9] to simu-
late our various CMP configurations. Wattch is integrated
into SMTSIM to gather power statistics. SMTSIM executes
statically-linked Alpha binaries. After fast forwarding each
benchmark for an appropriate time [7], all simulations run
for 1 Billion cycles.

We performed our evaluations with respect to weighted
speedup (WS) and aggregate throughput and found no sig-
nificant difference in trends or analysis.

5 Analysis and Results

In this section, we demonstrate the performance benefits
of peak power management for many-cores.

5.1 Improving Throughput through Peak Power
Management

X × Vdd Core Count Full Power
Cores

Reduced
Power
Cores

Peak Power
(W)

1.0 8 8 0 146.0 W
0.8 9 5 4 143.8 W
0.7 10 5 5 145.9 W
0.5 11 6 5 145.3 W

Table 5. Alternative processor configurations with
the same peak power bound.

To quantify the throughput benefits of peak power man-
agement, we consider an 8-core baseline processor, all cores
running at full power, and compare it against peak power-
equivalent processors with larger number of cores, where
some cores are running at reduced power. Table 5 describes
four different processor configurations which have nearly
the same peak power requirements but differ in the num-
ber of cores. Figure 6 shows the corresponding throughputs
for different static mapping policies. Results are shown rel-
ative to the average performance of a benchmark running on
a reduced power core. As the results show, even static sub-
setting of cores can result in 16% throughput improvement
when voltage is halved and by 5% when voltage is scaled by
a factor of 0.8.

5.2 Overhead of Managing Peak Power for Many-
cores

The previous section shows the potential benefits of static
peak power management. Performance improvements for
dynamic peak power management depend on the overhead
of making dynamic power scheduling decisions. Figure 7
shows the overhead of making peak power management de-
cisions for the various techniques for various number of
cores. MaxBIPS, which has been shown as an effective

7.500

8.000

8.500

9.000

9.500

10.000

10.500

0.8 0.7 0.5

V/f Scale Factor

A
v
g

 W
e
ig

h
te

d
 S

p
e
e
d

u
p

.

Baseline

Random Static

Oracle

All Scaled

Figure 6. Performance comparison against the
baseline processor for various peak power man-
agement techniques.

0

20

40

60

80

100

4 8 12 16 20 24 28 32

cores

S
c
h

e
d

u
li
n

g
 O

v
e
rh

e
a
d

 (
u

s
)

.

gradient
ascent

hierarchical

maxbips

decentralized
maxbips

Figure 7. Timing Overhead of Making Dynamic
Peak Power Management Decisions

global power management technique in [5], is unsuitable for
peak power management for many-core architectures (with
unacceptably large overheads even for 8 cores) due to the
exhaustive nature of its state space search. Even the decen-
tralized version of MaxBIPS has unacceptable (exponential)
overheads for more than 16 cores due to the exhaustive na-
ture of its local search. The decentralized policies (gradient
ascent and hierarchical) have the least overhead. In fact,
the overhead of gradient ascent shows little change with
increasing number of cores till at least 1000 cores and is,
therefore, the most suitable for many-core peak power man-
agement. Overheads for other techniques increase linearly
and may be prohibitive for a large number of cores.

5.3 Power Management using Non-centralized
Techniques

The previous section demonstrated that naive, central-
ized peak power management policies may be inadequate
for peak power management for chips with a large number
of cores (more than 16 or 32). There are certain policies that
are inadequate even for 8 core processors. In this section,
we consider a chip with a small number (16) of cores and
compare the various strategies in terms of throughput im-
provement when their timing overheads are still acceptable.
Figure 8 shows the results. The graph contains results for
all policies except MaxBIPS (which has unacceptably high
overhead for 16 cores). Decentralized MaxBIPS results are
included as the timing overhead is still manageable for 16
cores.

Results show that the proposed distributed techniques
fare quite well at peak power management even for 16-
core processors (for which the naive centralized techniques
have acceptable timing overheads) due to their ability to re-

5

14

16

18

20

22

gradient ascent hierarchical decentralized

MaxBIPS

oracle baseline

A
v

g
.
W

e
ig

h
te

d
 S

p
e

e
d

u
p

Figure 8. Performance of many-core power man-
agement policies against the baseline and the
static oracle.

duce the state search space. With the hierarchical schedul-
ing approach, for example, dividing the arbitration deci-
sion between four clusters in a 16-core processor reduces
the complexity of the task by 99.8%. The use of hierarchi-
cal power management generated average improvements of
18.7% and 7.8%, respectively, over the baseline and static
oracular models.

Note that hierarchical scheduling produces a power map-
ping that is potentially globally and also locally suboptimal.
This is why worse performance is observed for 16 cores
compared to decentralized MaxBIPS which is locally op-
timal. However, as Figure 7 shows, the overhead of decen-
tralized maxBIPS becomes prohibitive for higher number of
cores, so hierarchical scheduling will easily win out.

The gradient ascent approach to peak power manage-
ment produced the best results of any policy, demonstrat-
ing a 33.3% improvement over the baseline processor and a
22.5% increase over the static oracle. While most other poli-
cies were designed with two possible power states for each
core, the gradient ascent algorithm was given more freedom
in the application of V/f scaling. Because the task of arbitra-
tion is distributed to each core, this additional control does
not represent a substantial increase in the search space for
power configurations. In fact, the complexity of the algo-
rithm will remain the same for an arbitrary number of pos-
sible power states. However, since our modified gradient
ascent approach only shifts scale factors in discrete quanta,
more power states will result in longer time to convergence
when the optimal global mapping is far from the initial state
of the processor. Overall, decentralized arbitration and flex-
ibility in V/f scaling make the gradient ascent approach par-
ticularly effective in choosing the optimal power allocation
for each core.

6 Summary and Conclusions

This research focuses on peak power management for
many-core architectures. We demonstrated that there is a
signficant throughput advantage to doing peak power man-
agement for many-core architectures where power is pre-
vented from exceeding the peak power budget. We pro-
ceeded to show that managing peak power for many-core
architectures (processors with tens or possibly hundreds of
cores on the same die) poses a significant challenge when
using naive centralized techniques. Finally, we proposed
two non-centralized peak power management techniques
that are specifically tuned for many-core architectures.

Over our set of diverse workloads, our enhanced architec-
tures (using the proposed techniques) averaged 30% better
performance than comparable CMPs with equivalent area
and power budgets. Also, the policies that we devised
specifically for many-core architectures performed, on av-
erage, at least 22% better than our policies for multi-core
architectures, even for 16 cores. As the number of cores on
a processor die rapidly increases, the effectiveness of our
techniques will only continue to increase.

References

[1] P. Bartlett, E. Hazan, and A. Rakhlin. Adaptive online gra-
dient descent. Technical Report UCB/EECS-2007-82, EECS
Department, University of California, Berkeley, Jun 2007.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a frame-
work for architectural-level power analysis and optimizations.
In ISCA ’00: Proceedings of the 27th annual international
symposium on Computer architecture, pages 83–94, 2000.

[3] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N.
Kudva, A. Buyuktosunoglu, J.-D. Wellman, V. Zyuban,
M. Gupta, and P. W. Cook. Power-aware microarchitecture:
Design and modeling challenges for next-generation micro-
processors. IEEE Micro, 20(6):26–44, 2000.

[4] Intel Corp. Intel’s Teraflops Research Chip.
[5] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and

M. Martonosi. An analysis of efficient multi-core global
power management policies: Maximizing performance for a
given power budget. In MICRO 39: Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2006.

[6] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas. Single-ISA Heterogeneous Multi-core Architec-
tures for Multithreaded Workload Performance. In Interna-
tional Symposium on Computer Architecture, June 2004.

[7] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder.
Discovering and exploiting program phases. In IEEE Micro:
Micro’s Top Picks from Computer Architecture Conferences,
Dec. 2003.

[8] A. Snavely and D. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreading architecture. In Eighth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, Nov. 2000.

[9] D. Tullsen. Simulation and modeling of a simultaneous multi-
threading processor. In 22nd Annual Computer Measurement
Group Conference, Dec. 1996.

6

