
Enhancing Workload-dependent Voltage Scaling for
Energy-efficient Ultra-low-power Embedded Systems

Veni Mohan
University of Minnesota Twin Cities

Minneapolis, Minnesota
mohan073@umn.edu

Akhilesh Iyer
University of Minnesota Twin Cities

Minneapolis, Minnesota
iyerx108@umn.edu

John Sartori
University of Minnesota Twin Cities

Minneapolis, Minnesota
jsartori@umn.edu

ABSTRACT
Ultra-low-power (ULP) chipsets are in higher demand than ever due
to the proliferation of ULP embedded systems to support growing
applications like the Internet of Things (IoT), wearables and sensor
networks. Since ULP systems are also cost constrained, they tend
to employ general purpose processors (GPPs) rather than more
energy-efficient ASICs, even though they typically run a single
application for the lifetime of the system. Prior work showed that
it is possible to reduce the operating voltage and thus the power
of such systems without reducing the frequency, since the fixed
software stack of a system typically only exercises a subset of
a processor’s paths, and unexercised paths need not meet timing
constraints for the system to work correctly. In this context, we find
additional scope for power reduction by intelligently optimizing the
processor design based on the system’s application-specific activity
characteristics to allow an even lower safe operating voltage. We
demonstrate automated techniques that maximize the application-
specific voltage reduction for a system, resulting in 35% additional
power savings, on average, compared to the application-specific
minimum voltage before optimization and 48% total power savings
compared to the original design at nominal voltage.

KEYWORDS
dynamic timing slack, ultra-low-power, embedded systems, internet-
of-things
ACM Reference Format:
Veni Mohan, Akhilesh Iyer, and John Sartori. 2018. Enhancing Workload-
dependent Voltage Scaling for Energy-efficient Ultra-low-power Embedded
Systems. InDAC ’18: DAC ’18: The 55th Annual Design Automation Conference
2018, June 24–29, 2018, San Francisco, CA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3195970.3196046

1 INTRODUCTION
Rapid growth in application areas such as the internet-of-things
(IoT), wearables, and embedded sensor networks has driven de-
mand for ultra-low-power (ULP) embedded systems. These systems
typically have small form factors, are powered by batteries and
energy harvesters, and are characterized by ultra-low power and
energy budgets [1–5]. ULP systems are also characterized by a
limited software stack – typically one application – that runs re-
peatedly over a device’s lifetime. Given their unique constraints

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’18, June, 2018, San Fran., CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196046

and characteristics, ASICs seem like a natural fit for ULP systems.
However, the ubiquitous deployment of these systems means that
they are also cost constrained. Thus, most ULP systems are built
around general-purpose processors (GPPs), despite their inferior
power and performance characteristics. A GPP can handle a wide
range of applications, thus resulting in faster time to market and
a higher return on investment (RoI). Although ASICs are highly
optimized for energy efficiency, they have a substantially lower RoI
in most cases due to their lack of generality.

In ULP systems, power and energy requirements are the pri-
mary factors that determine critical system parameters such as size,
weight, cost, and lifetime [6, 7]. Thus, reducing power and energy
requirements can have a significant impact. Since a GPP is designed
to handle a large variety of applications, individual applications
may only exercise a fraction of a GPP’s logic [1, 4, 5]. In fact, not
every application exercises the timing-critical paths of a processor
that determine its minimum safe operating voltage for a particu-
lar timing constraint [8–10]. This presents a unique opportunity
wherein some applications can be run at a lower-than-nominal
voltage that is guaranteed to be safe, due to workload-dependent
dynamic timing slack (DTS) exhibited by the application [9]. The
insight behind this opportunity is that paths may safely be allowed
to fail timing as long as they are not exercised by an application,
since they will continue to produce the same constant output values,
despite their inability to propagate a transition within the chip’s
timing constraints.

The amount of available DTS that can be exploited for an appli-
cation depends on which paths are exercised by the application and
how much timing slack they have. In this paper, we observe that it
is possible to increase DTS for a particular system by identifying
the paths that the system software can exercise and increasing
their timing slack (e.g., through cell upsizing and Vt swapping).
This provides additional scope for voltage and power reduction.
However, such optimizations also incur an overhead. Thus, they
must be performed intelligently in order to minimize the overall
power of the optimized design.

In this paper we make the following contributions.
•We propose workload-dependent voltage scaling (WDVS), which
extends the idea of exploiting DTS for power savings through the
use of application-specific design optimizations that reduce the safe
operating voltage of a processor without affecting its performance.
•We provide an automated technique that takes the hardware and
software specifications of an arbitrary system, identifies the paths
that are exercisable by the application, and applies optimizations
on them to enhance DTS.
• We evaluate WDVS for a set of embedded applications on a
common embedded processor and show that WDVS can improve
power savings by 35%, on average, compared to exploiting DTS in
an unmodified design. Average power savings for WDVS are 48%
with respect to the original design at nominal voltage.

DAC ’18, June, 2018, San Fran., CA, USA Veni Mohan, Akhilesh Iyer, and John Sartori

2 RELATEDWORK
Dynamic Timing Slack: In this work, we build upon the previous
work of Cherupalli et al. [11], who showed that application-specific
dynamic timing slack (DTS) can be exploited to reduce the voltage
of a processor running an application without reducing the proces-
sor’s frequency, while still guaranteeing correct operation of the
application. The insight in [11] was to allow the paths that cannot
be exercised by an application to fail timing constraints as voltage
is scaled down, allowing only the exercisable paths to determine
the minimum operating voltage for the application. In our work,
we apply focused optimizations on the exercisable paths to increase
the amount of DTS, and consequently, the power savings available
from exploiting DTS. In Section 5, we compare the benefits of our
approach against those of the approach in [11].

Activity-aware slack distribution: To increase the amount of
DTS for an application or set of applications, we target a subset of
exercisable paths in the design for special optimizations. In their
work on recovery-driven design, Kahng et al. [12] performed opti-
mizations on the most exercised critical paths in a design with the
goal of reducing the operating voltage of the design. Specifically,
their goal was to reshape the design’s slack distribution to allow
more timing speculative voltage scaling for a particular target er-
ror rate that could be tolerated by an error resilience mechanism,
such as Razor [13, 14]. Unlike in timing speculative works, our
optimizations and voltage scaling are completely non-speculative;
an application is guaranteed to execute error-free after scaling to
the minimum voltage determined by our approach.

3 WORKLOAD-DEPENDENT VOLTAGE
SCALING

Given the ultra-low-power requirements of emerging computing
devices like those used in the IoT and the fact that such devices
typically have a single captive application, our goal in this work is
to minimize the power of a ULP device used in a limited-application
setting. We do so by aggressively scaling down the voltage, such
that the paths that are not exercisable by a device’s captive appli-
cation are allowed to fail timing constraints. Since the paths will
still produce the correct (constant) values for the application, the
application is guaranteed to still compute correct outputs.

Reducing voltage reduces power but increases delay. It is possible
to provide more headroom for voltage scaling by replacing stan-
dard cells in a design’s critical paths with faster, leakier versions.
By applying such optimizations only on the application-specific dy-
namic critical paths [9] of a design, we can increase DTS and scale
voltage further; however, this optimization increases power and
may increase area. Our approach for workload-dependent voltage
scaling (WDVS) finds the optimum balance between these opposing
techniques to minimize power for a ULP system. It is an automated
technique to reduce the operating voltage by optimizing the design
for an application, or a set of frequently-exercised applications,
without affecting the performance of other applications that may
be run on the chip.

The first step is to disable timing constraint checks for paths
that can never be exercised by an application by declaring them
as false paths. Identification of unexercisable logic in a processor
is performed through an input-independent symbolic simulation
of hardware and software that propagates unknown logic value
symbols for all application inputs (from input ports and memory),
thus evaluating all possible executions of the application for all

possible inputs and identifying all logic in the processor that can
possibly be exercised by the application. This procedure is described
in detail in prior literature [11, 15]. Once unexercisable paths are
ignored, the standard cells in the remaining (exercisable) timing-
critical paths are over-optimized, either by Vt swapping (which
replaces a cell with a version that is faster but leakier) or by up-
sizing them (which increases drive strength, Ids , the drain current of
the transistor) to increase timing slack of these paths. The result is
a design that can run the target application(s) at a higher frequency
for the same minimum safe operating voltage. Alternatively, it can
deliver the original target performance at a lower voltage.

Effectively, we are leveraging the additional timing slack gener-
ated in the application-specific critical paths (DTS) to reduce the
on-chip operating voltage. This reduces power across the entire
chip – both the exercised and unexercised parts. Note that this
technique does not negatively impact the performance or minimum
operating voltage for non-targeted applications, though there may
be some power overhead for such applications (we investigate this
in Section 5). However, these considerations may not be important
in most ULP systems, since they typically only run one application.

To ensure that the optimized design retains the mapping be-
tween each gate and its activity profile obtained from symbolic
co-simulation, our optimization tool only performs Vt swaps and/or
standard cell up-sizing, as opposed to equally-popular techniques
such as net splitting / load splitting or logic decomposition. Such
optimizations could be integrated into our tool flow, but for clarity,
we relegate them to future work (Section 6). Since the power and
timing analysis tool (Synopsys Primetime, in our case) is instructed
to only perform cell swaps (Vt swaps and upsizing) during opti-
mization, there is not much difference in the placement of the cells
after optimization. As a result, the interconnect RC (resistance and
capacitance) values in the design do not change significantly. We
take advantage of this similarity and use the same interconnect
RC for timing and power calculation during WDVS, which signifi-
cantly reduces algorithm runtime. To validate the accuracy of this
approximation, we have generated an interconnect RC file (using
Cadence Encounter after implementing the Engineering Change Or-
der (ECO) obtained from Primetime) for a design netlist optimized
for the mult benchmark and used this file for slack and minimum
power calculation at the minimum operating voltage obtained from
WDVS. They each differ by only about 1.5% from the values ob-
tained by using the original interconnect RC file for analysis, which
confirms the validity of our approximation.
Optimization Procedure:

To minimize the power of a design for a particular application,
WDVS makes explorations at increasingly-aggressive performance
targets by first increasing DTS on the dynamic critical paths in a
design as much as possible, then reducing the operating voltage
until one of the exercisable paths violates the original design timing
constraints. The goal is to determine the performance target and
corresponding minimum safe voltage that minimize total power.
Figure 1 illustrates the WDVS algorithm.

The WDVS algorithm first (a) optimizes the performance of exer-
cisable logic in the design for a tighter timing constraint to generate
additional DTS then (b) reduces voltage, while still maintaining
non-negative slack. Part (a) increases the power of the design while
part (b) reduces power. Thus, power may either increase or decrease
from one performance step of the algorithm to the next, depending
on whether the optimizations performed enabled a large enough

Enhancing Workload-dependent Voltage Scaling for Energy-efficient ULP Embedded Systems DAC ’18, June, 2018, San Fran., CA, USA

Set false paths on all
nets of the Processor

Reset false paths on the nets
exercisable by the application(s)

Increase performance target
by x% and optimize

Worst
timing
slack <

0

NO Reduce voltage
by y%

NO

Record
Power

YES

END

YES

Toggle profile of
the application(s)

Reset voltage to
original value

START

Performance
Enhancer

Unit

Voltage
Attenuator

Unit

Worst
timing
slack <

0

Figure 1: Our WDVS procedure minimizes the power of a
design for a particular workload through alternating perfor-
mance enhancement and voltage attenuation explorations.

Figure 2: Performance enhancement and voltage attenua-
tion find the sweet spot thatminimizes total power. Left and
right sub-figures correspond to performance targets of 50
MHz and 100 MHz, respectively.

voltage reduction to offset their associated overhead. Empirical
evaluations show that there exists a sweet spot for the operating
voltage, at which overall power is minimum, and beyond this point
any further attempt to optimize the design and reduce voltage leads
to an increase in power. Hence, the algorithm alternates between
performance enhancement and voltage reduction to find the per-
formance target and voltage at which power is minimized.

Figure 2 shows how power changes as the processor is iteratively
optimized to minimize power for the mult benchmark. The left and
right sub-figures correspond to designs optimized for 50 MHz and
100 MHz, respectively. The figure shows that the minimum achiev-
able voltage does not necessarily correspond to the minimum power.
For example, in the design optimized for 50 MHz, the minimum
achievable operating voltage is 580 mV, but the minimum power
consumption (91.5 µW) is observed at 610 mV. Since delay increases
roughly exponentially with reduction in voltage, optimizations,
which increase leakage current and load capacitance, must fight
harder to overcome the delay increase of voltage reduction at lower
voltages. While our optimizations suffer less from this effect, since
we only optimize the exercisable paths in a design, the overall result
is that optimizing the design to enable WDVS reduces power to a
point, after which the optimization cost of further voltage reduc-
tions is too high. In the design optimized for 100 MHz, due to the
tighter performance constraint, the minimum achievable voltage
was hit before the delay increase resulting from voltage reduction

became too steep. Thus, there is no parabolic upswing in the power
vs. voltage curve for that performance target.

The detailed pseudocode for WDVS is presented in Algorithm 1.
The inputs to the algorithm are the processor netlist and the application-
specific activity profile(s) for the target application(s), obtained from
symbolic co-simulation [11]. Initially, the processor netlist is de-
signed to operate at the nominal voltage (VNom), at which all appli-
cations can safely operate on the processor and meet performance
constraints. To focus on the exercisable paths in the design, all paths
that include an application-specific unexercisable net are declared
as false paths. In case of optimization for multiple applications,
the intersection of the sets of unexercisable nets are used. Next, a
performance enhancement phase begins; the target performance
is raised by a certain percentage (∆), and the design is optimized
to meet this constraint at the nominal voltage. If the worst timing
slack after this step is non-negative, a voltage attenuation phase
begins; the operating voltage is iteratively lowered until the worst
timing slack is negative, and the minimum safe voltage and cor-
responding power are recorded for the target application(s) along
with the optimized netlist. Once the voltage attenuation phase is
complete, control returns to the performance enhancement phase,
and an exploration is made at a higher performance target. This
process continues until the performance enhancer fails to optimize
the design for the selected performance target, in which case the
algorithm terminates. Upon termination, the algorithm selects the
optimized netlist with the minimum power for the target applica-
tion(s) among all the candidates. When a target application is run
on the design, the voltage is set to the application’s minimum safe
voltage.

Algorithm 1 WDVS Design Optimization
1. ProcedureWDVS(design_netlist N, app_activity_profiles P, app_list A)
2. for all app ∈ A do
3. Parse app_activity_profile to extract the list of exercisable nets, a.push(app.toggled_nets)
4. end for
5. f ← Target frequency
6. VNom ← Nominal voltage
7. set_false_paths(design_netlist)
8. reset_false_paths(design_netlist, a) // remove the false path attribute on the toggled nets in a
9. s ← report_worst_slack(design_netlist)
10. while s >= 0 do
11. f ← f ∗ (1 + ∆)
12. optimize_design(design_netlist, f, vNom) // optimize the design for f at nominal voltage
13. s ← report_worst_slack(design_netlist) // get the worst slack in the optimized design
14. if s >= 0 then
15. write_netlist(design_netlist) // dump the optimized netlist
16. for all app ∈ A do
17. v ← find_min_voltage(design_netlist) // calculate the min operating voltage for the

optimized netlist
18. p ← report_power(design_netlist,v) // calculate the power in the optimized netlist

at voltage v
19. M_app .push([v , p , design_netlist]) // Create a different stack for each application
20. end for
21. end if
22. end while
23. find_min_power(M_app) // get the netlist with minimum power. In case of multiple applica-

tions, get the netlist with minimum average power across all applications.

4 EXPERIMENTAL METHODOLOGY
Timing and power simulations are run on a post-routed netlist
for the openMSP430 processor [16], aggressively optimized for a
frequency target of 100 MHZ at a nominal voltage of 1V. MSP430
is one of the most popular ULP processors used today [17, 18].
The processor is synthesized, placed, and routed with TSMC 65GP
(65nm) technology using Synopsys Design Compiler [19] and Ca-
dence EDI System [20]. We generated libraries for each voltage
between 1.0V and 0.5V at 0.01V intervals using Cadence Library

DAC ’18, June, 2018, San Fran., CA, USA Veni Mohan, Akhilesh Iyer, and John Sartori

Table 1: Application-specific minimum voltage and mini-
mum power for Nominal, DTS [11] and WDVS.
Benchmark DTS [11]

Minimum
Voltage
(mV)

WDVS
Minimum
Voltage
(mV)

Nominal
Power @
1V (µW)

DTS [11]
Power
(µW)

WDVS
Power
(µW)

mult 950 670 392.7 340.3 220.3
FFT 890 660 498.4 384.4 247.8
autocorr1 950 670 510.2 454.1 287.5
binSearch 950 670 510.2 454.1 287.5
div 890 660 524.0 404.6 266.7
inSort 890 690 484.2 373.3 254.1
intAVG 890 650 483.6 372.9 235.1
intFilt 890 650 483.6 372.9 235.1
rle 890 660 513.3 396.0 258.1
tHold 890 660 448.3 345.1 233.0
tea8 890 660 508.7 392.5 259.1

Table 2: Minimum power (µW)when each benchmark is run
on a design optimized for one or more applications.

Benchmark mult FFT autocorr1 inSort intAVG rle tHold
mult 220.3 307.3 307.3 319.3 318.1 335.4 335.4
FFT 434.3 247.8 561.8 329.3 274.8 368.3 249.3

autocorr1 231.0 280.0 287.5 274.7 264.0 288.5 246.7
inSort 413.1 274.3 539.4 254.1 282.8 300.4 247.3
intAVG 434.7 255.3 561.3 302.4 235.1 346.2 230.4
rle 441.9 250.6 569.8 261.8 251.7 258.1 226.3

tHold 445.0 264.7 576.6 295.9 274.9 320.3 223.3
mult+rle 223.1 271.7 318.4 266.1 256.0 279.9 238.9

Intersection 270.8 319.5 346.0 330.8 322.1 339.1 302.0
Union 230.6 279.8 287.1 274.5 263.6 288.7 246.5

Characterizer. Power and timing analyses are performed using Syn-
opsys Primetime [21]. We show results for all benchmarks from
[22] and for a selection of EEMBC [23] benchmarks that fit in the
memory of the processor. Benchmark applications are chosen to
represent emerging ultra-low-power application domains such as
wearables, IoT, and sensor networks [22]. Activity profiles for the
benchmarks are generated using the input-independent application
analysis algorithm described in [11] and [15]. The WDVS tool is
implemented in Cshell and TCL. Experiments were performed on
a server housing two Intel Xeon E-2640 processors (8-cores each,
2GHz operating frequency, 64GB RAM).

5 RESULTS
To evaluate the benefits of our WDVS approach for ULP systems,
we compare the minimum voltage and power achieved by WDVS
against the approach for exploiting DTS described in [11]. Table 1
shows theminimum safe voltage for each benchmark application, as
well as the corresponding minimum power consumption achieved
by both techniques. Optimizing the processor to expose more DTS
allows WDVS to achieve significantly higher power savings. Fig-
ure 3 compares power savings for WDVS against the DTS baseline
and against operation at the nominal voltage. On average, WDVS
enables a 27% lower operating voltage, resulting in a 35% reduction
in power consumption with respect to baseline DTS exploitation.
Compared to operation at nominal voltage, the power of a WDVS
design is, on average, nearly cut in half. Power savings are up to
37% compared to the DTS baseline, and up to 51% compared to
operation at the nominal voltage, with a corresponding voltage
reduction of 350mV. Since WDVS can use cells with higher drive
strength to optimize dynamic critical paths, it may increase area.
Average area overhead across all benchmark applications is 5%;
however, power savings are significant despite this small amount
of area overhead.

0%

10%

20%

30%

40%

50%

60%

mult FFT autocorr1 binSearch div inSort intAVG intFilt rle tHold tea8

%
 P

o
w

er
 R

ed
u

ct
io

n

Benchmark

%Reduction over DTS %Reduction over Nominal

Figure 3: By optimizing a design to exploit DTS, WDVS re-
duces power significantly with respect to a baseline design
that operates at nominal voltage, and even with respect to
an aggressive baseline that exploits DTS.

Optimizing a design to increase DTS results in significantly lower
power. In the future, market forces such as the IoT revolution, which
demands billions of application-specific ULP processors [24–26],
and technologies such as printed electronics [27, 28], which of-
fers the possibility of cheaply printing a processor optimized for
a particular application, may make the scenario of optimizing a
general purpose IP design for particular target applications [15]
more common. However, even general purpose processors are opti-
mized for a typical workload of benchmark applications, at least
at the architecture level. Our approach enables additional design-
level optimization for the target applications for a design and is
particularly relevant for ULP designs that are expected to support
a small number of applications or common computational kernels.
Notably, our design still retains its general-purpose nature, main-
tains the same functionality as the original design, and does not
degrade performance for other applications run on the design, even
after optimization. As such, it is important to explore the impact of
application-specific optimizations on the power characteristics of
other applications that may be run on the chip. Table 2 shows the
minimum power for a processor that is optimized for the applica-
tion denoted by the row label when it runs the application denoted
by the column label. For each minimum power value, we used the
voltage attenuation procedure described in Section 3 to determine
the minimum safe voltage for the application.

Inspection of the main diagonal of the table verifies that power
is minimized for an application when the processor is optimized for
that application alone. Further inspection of the table reveals other
interesting insights. For instance, optimizing for one application
may reduce power for other applications as well. As an example,
a processor optimized for mult, binSearch, or autocorr1 also
reduces power when running any of the other benchmark appli-
cations. This is evident in Figure 4, which shows the percentage
change in power for each of the benchmarks running on each of
the designs optimized for a specific application. The reason for this
synergistic behavior is that when two applications have dynamic
critical paths in common, optimizing the dynamic critical paths
of one application can allow both applications to achieve a lower
operating voltage, essentially “killing two birds with one stone”. For
example, mult and FFT both use the processor’s hardwaremultiplier,
which contains several dynamic critical paths for the applications.
Thus, a processor optimized for mult exposes significantly more
DTS for FFT as well.

Enhancing Workload-dependent Voltage Scaling for Energy-efficient ULP Embedded Systems DAC ’18, June, 2018, San Fran., CA, USA

Figure 4: The sub-figures show the power reduction (%)when
each application runs at its minimum safe voltage on a de-
sign optimized for the application denoted in the sub-figure.
In some cases, running an application on a design optimized
for a different application results in negative power savings.

As another example, the autocorr1 application has the most
exercisable gates of any application in our benchmark set. In fact,
the sets of exercisable gates for all other benchmarks are close to
being subsets of the exercisable gates for autocorr1. Thus, optimiz-
ing DTS for autocorr1 also optimizes most of the dynamic critical
paths for all other applications. As such, all applications achieve
power reductions on the processor optimized for autocorr1. This
can also be seen in Figure 5, which shows Venn diagrams of the
exercisable gates for several application pairs. As seen in the figure,
the exercisable gates for autocorr1 almost completely encompass
the exercisable gates for mult and rle, covering over 99% of the
exercisable gates for mult and 96% for rle. The situation is similar
for the other applications.

It can also be seen in Figure 4 that optimizing for one application
can have a negative impact for another application. Interestingly,

although optimizing for mult helped FFT (as noted above), opti-
mizing for FFT actually hurts mult. This is because mult exercises
longer critical paths in the hardware multiplier than FFT, so op-
timizing the dynamic critical paths for FFT adds overhead to the
design, increasing the power, but fails to optimize the paths nec-
essary for mult to a achieve a lower voltage. This behavior can be
explained further with a Venn diagram in Figure 5. About 90% of
the exercisable gates for FFT are also exercisable by mult, including
the gates belonging to FFT’s dynamic critical paths. However, there
are many exercisable gates for mult that are not exercisable by FFT,
including gates that belong to the dynamic critical paths for mult.
As can be seen in Table 2, this also means that optimizing for mult,
while beneficial for FFT, is not as good as optimizing for FFT itself,
since optimizing for mult performs many optimizations that are
unnecessary for FFT.

The last three rows of Table 2 correspond to designs that are
optimized for multiple benchmarks. For instance, the design labeled
‘mult+rle’ is expected to provide maximum power benefits for sys-
tems running these two applications for a majority of their lifetime.
This is validated in Table 3. The designs optimized for benchmarks
listed in the first column each run mult and rle for equal amounts
of time. Thus, average power is calculated as the average of the
power values for each application.1 The design optimized for both
mult and rle has lower power than the designs optimized for either
application alone. While optimizing to maximize DTS for multiple
applications improves average power, it degrades the minimum
power for the applications when considered individually, since the
design is over-optimized for the individual applications, which ex-
ercise only a subset of the gates in the union set. This also explains
why WDVS has benefits over exploiting DTS on the original de-
sign. Since the original design considers all gates as equals when
optimizing the design, the resulting design is over-optimized for
any individual application that only exercises a subset of the gates
in the design.

The last two rows of Table 2 represent designs that are optimized
for all the applications in our benchmark set. One design optimizes
the intersection of exercisable gates, and the other exercises the
union. These designs are expected to have good power characteris-
tics for a processor that runs all the applications roughly equally.
The intersection design fails in this regard, because for every appli-
cation, it fails to optimize gates that are in the application’s critical
paths. Thus, the applications have limited DTS. The union design,
on the other hand, provides significant benefits for all applications,
as can be seen in the last sub-figure of Figure 4. This result suggests
that even enhancing DTS for a large set of applications (e.g., the
entire benchmark set used to characterize a general-purpose pro-
cessor during its design) can have significant power benefits over
exploiting DTS on the unoptimized design. Since our optimizations
only incur a relatively small area overhead and do not negatively
impact performance for any application, this result may motivate
the use of our WDVS optimization approach even for applications
that are expected to run a large number of applications.

6 CONCLUSION AND FUTUREWORK
Ultra-low-power chipsets are in higher demand than ever due to
applications like IoT, wearables, and sensor networks. In this work,

1In the event that there are multiple applications run unequally on the chip, the design
can be optimized using a power metric that sums the power of each application,
weighted by its fraction of the total runtime.

DAC ’18, June, 2018, San Fran., CA, USA Veni Mohan, Akhilesh Iyer, and John Sartori

A BA∩B

A

D

C

A∩C

A∩D

C∩D

A∩C∩D

Figure 5: Venndiagrams show the intersection of exercisable
gates for different applications. The extent towhich optimiz-
ing for one workload reduces power for another depends on
the number of common and unique exercisable gates and
the timing-criticality of the paths to which they belong.

Table 3: Minimum power (µW) for designs that run mult and
rle for equal amounts of time.

Benchmark mult rle Average Power=(mult+rle)/2
mult 220.3 335.4 277.9
rle 441.9 258.1 350.0

mult+rle 223.1 279.9 251.5

we proposed design optimizations that target the workload-specific
critical paths in a design to reduce the power of ULP systems by ex-
posingmore DTS and allowing them to operate at lower voltages for
the same performance, while still guaranteeing correct application
behavior. Compared to exploiting DTS without our optimizations,
we demonstrated 35% additional power savings, on average, and
power savings are up to 51% compared to the baseline openMSP430
design operating at nominal voltage.

There is considerable scope to build upon the work done in this
paper, including the following future work directions.
• De-optimization of the paths not used by any application:
This would further reduce leakage power and also reduce area,
potentially resulting in area reduction rather than overhead. How-
ever, the general-purpose nature of the design would be somewhat
degraded, as performance may be degraded for non-target applica-
tions.
• WDVS-aware compiler optimizations: Compiler optimiza-
tions can tune software to avoid activity on dynamic critical paths
and expose more DTS.
•WDVS-aware architecture-level optimizations: Many param-
eters of the processor, such as cache memory, network bus width,
pipeline depth, etc. can be optimized to leverage more control over
dynamic critical paths and improve DTS for the target set of appli-
cations.
• Load splitting/net splitting: Net splitting would lead to intro-
duction of new cells in the design, which would in turn lead to
netlist-activity profile mismatch. However, it may do a better job
at recovering power than the other two optimizations used in this
paper. Optimizations that introduce new cells can be supported by
regenerating the activity profile of the processor each time new
cells are introduced, potentially reducing minimum power at the
expense of increased simulation runtime.

REFERENCES
[1] M. Magno, L. Benini, C. Spagnol, and E. Popovici. Wearable low power dry

surface wireless sensor node for healthcare monitoring application. In 2013 IEEE
9th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), pages 189–195, 2013.

[2] Ross Yu and Thomas Watteyne. Reliable low power wireless sensor networks for
the internet of things: Making wireless sensors as accessible as web servers.

[3] A. Dunkels, J. Eriksson, N. Finne, F. ÃŰsterlind, N. Tsiftes, J. AbeillÃľ, and
M. Durvy. Low-power ipv6 for the internet of things. In 2012 Ninth International
Conference on Networked Sensing (INSS), pages 1–6, 2012.

[4] R. Tessier, D. Jasinski, A. Maheshwari, A. Natarajan, Weifeng Xu, andW. Burleson.
An energy-aware active smart card. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 13(10):1190–1199, 2005.

[5] C. Park, P. H. Chou, Y. Bai, R. Matthews, and A. Hibbs. An ultra-wearable,
wireless, low power ecg monitoring system. In 2006 IEEE Biomedical Circuits and
Systems Conference, pages 241–244, Nov 2006.

[6] B. H. Calhoun, S. Khanna, Y. Zhang, J. Ryan, and B. Otis. System design princi-
ples combining sub-threshold circuit and architectures with energy scavenging
mechanisms. In Proceedings of 2010 IEEE International Symposium on Circuits and
Systems, pages 269–272, May 2010.

[7] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John Sartori.
Determining application-specific peak power and energy requirements for ultra-
low power processors. SIGARCH Comput. Archit. News, 45(1):3–16, April 2017.

[8] Giang Hoang, Robby Bruce Findler, and Russ Joseph. Exploring circuit timing-
aware language and compilation. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems ASPLOS XVI, pages 345–356, 2011.

[9] J. Sartori and R. Kumar. Compiling for energy efficiency on timing speculative
processors. In DAC Design Automation Conference 2012, pages 1297–1304, June
2012.

[10] J. Constantin, L. Wang, G. Karakonstantis, A. Chattopadhyay, and A. Burg. Ex-
ploiting dynamic timing margins in microprocessors for frequency-over-scaling
with instruction-based clock adjustment. In 2015 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 381–386, March 2015.

[11] H. Cherupalli, R. Kumar, and J. Sartori. Exploiting dynamic timing slack for
energy efficiency in ultra-low-power embedded systems. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA), pages 671–681,
June 2016.

[12] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori. Slack redistribution for graceful
degradation under voltage overscaling. In 2010 15th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 825–831, Jan 2010.

[13] D. Ernst, Nam Sung Kim, S. Das, S. Pant, R. Rao, Toan Pham, C. Ziesler, D. Blaauw,
T. Austin, K. Flautner, and T. Mudge. Razor: a low-power pipeline based on circuit-
level timing speculation. In Proceedings. 36th Annual IEEE/ACM International
Symposium on Microarchitecture, 2003. MICRO-36., pages 7–18, Dec 2003.

[14] D. Blaauw, S. Kalaiselvan, K. Lai, W. H. Ma, S. Pant, C. Tokunaga, S. Das, and
D. Bull. Razor ii: In situ error detection and correction for pvt and ser tolerance.
In 2008 IEEE International Solid-State Circuits Conference - Digest of Technical
Papers, pages 400–622, Feb 2008.

[15] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John Sartori.
Bespoke processors for applications with ultra-low area and power constraints. In
Proceedings of the 44th Annual International Symposium on Computer Architecture,
ISCA ’17, pages 41–54, New York, NY, USA, 2017. ACM.

[16] O Girard. Openmsp430 project, 2013.
[17] Wikipedia. List of wireless sensor nodes, 2016. [Online; accessed 7-April-2016].
[18] Jacob Borgeson. Ultra-low-power pioneers: TI slashes total MCU power by 50%

with new “Wolverine” MCU platform. Texas Instruments White Paper, 2012.
[19] Synopsys. Synopsys design compiler user guide.
[20] Cadence. Encounter digital implementation user guide.
[21] Synopsys. Synopsys primetime user guide.
[22] B. Zhai, S. Pant, L. Nazhandali, S. Hanson, J. Olson, A. Reeves, M. Minuth,

R. Helfand, T. Austin, D. Sylvester, and D. Blaauw. Energy-efficient subthreshold
processor design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
17(8):1127–1137, Aug 2009.

[23] Embedded Microprocessor Benchmark Consortium. EEMBC.
http://www.eembc.org, 2017.

[24] Henry Blodget, Marcelo Ballve, Tony Danova, Cooper Smith, John Heggestuen,
Mark Hoelzel, Emily Adler, Cale Weissman, Hope King, Nicholas Quah, John
Greenough, and Jessica Smith. The internet of everything: 2015. BI Intelligence,
2014.

[25] Dave Evans. The internet of things: How the next evolution of the internet is
changing everything. April 2011.

[26] Gil Press. Internet of Things By The Numbers: Market Estimates And Forecasts.
Forbes, 2014.

[27] K. Myny, E. van Veenendaal, G. H. Gelinck, J. Genoe, W. Dehaene, and P. Here-
mans. An 8b organic microprocessor on plastic foil. In 2011 IEEE International
Solid-State Circuits Conference, pages 322–324, Feb 2011.

[28] BK Charlotte Kjellander, Wiljan TT Smaal, Kris Myny, Jan Genoe, Wim De-
haene, Paul Heremans, and Gerwin H Gelinck. Optimized circuit design for
flexible 8-bit rfid transponders with active layer of ink-jet printed small molecule
semiconductors. Organic Electronics, 14(3):768–774, 2013.

