
On Software Design for Stochastic Processors

Joseph Sloan, John Sartori, Rakesh Kumar
University of Illinois,
Urbana-Champaign

jsloan,sartori2,rakeshk@illinois.edu

ABSTRACT
Much recent research [8, 6, 7] suggests significant power and en-
ergy benefits of relaxing correctness constraints in future proces-
sors. Such processors with relaxed constraints have often been
referred to as stochastic processors [10, 15, 11]. In this paper we
present three approaches for building applications for such pro-
cessors. The first approach relies on relaxing the correctness of
the application based upon an analysis of application characteris-
tics. The second approach relies upon detecting and then correct-
ing faults within the application as they arise. The third approach
transforms applications into more error tolerant forms. In this pa-
per, we show how these techniques that enhance or exploit the
error tolerance of applications can yield significant power and en-
ergy benefits when computed on stochastic processors.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Methodologies, Repre-
sentation; D.2.4 [Software Engineering]: Software/Program Ver-
ification—Reliability

General Terms
Algorithms, Design, Reliability

Keywords
Application Error Tolerance, Stochastic Processors, ABFT

1. INTRODUCTION
With growing challenges to sustaining Moore’s law with pro-

cess scaling alone, stochastic computing [4, 13, 14] is being in-
vestigated aggressively as a possible path for realizing future high
performance and low power technologies. The key to realizing the
stochastic computing vision will rest with the ability of researchers
and developers to design efficient techniques which both enhance
and exploit the natural error tolerance of applications. Due to
growing fault rates and diverse failure behaviors, software tech-
niques will be especially important for providing low power and
low energy stochastic computation. In this paper, we discus three
approaches that can be used to design robust software on stochas-
tic processors.

The first approach involves relaxing application correctness con-
straints. Many applications have inherent algorithmic and cogni-
tive error tolerance. For such applications, significant performance
and energy benefits can be obtained by selectively allowing er-
rors. As an example, we consider GPU applications where control

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7,2012, San Francisco, California, USA.
Copyright 2012 ACM ACM 978-1-4503-1199-1/12/06 ...$10.00.

divergence [3] incurs large overheads. By selectively eliminat-
ing control divergence through a technique called branch herding
(i.e., forcing all threads to take the same control path for certain
branches), we show that performance can be improved signifi-
cantly while maintaining acceptable output quality acceptable for
many applications.

For the second approach, faults are handled in a more traditional
manner by detecting and then correcting or recovering from the
faults. Unfortunately, the overheads of many typical fault detec-
tors (e.g. dual modular redundancy (DMR)) are simply too large
for these techniques to be utilized as a viable solution for stochas-
tic computing. For this reason, techniques for low-overhead al-
gorithmic fault detection and correction are extremely important.
We present one example of low-overhead Algorithmic Based Fault
Tolerance (ABFT) [5] for an important class of algorithms (sparse
linear algebra) that will be used in many future applications. These
techniques exploit both inherent properties of the data, as well as
inherent fault tolerance characteristics of common iterative linear
solvers. As error rates increase, however, the overheads incurred
from frequent recovery events can make a detection-only-based
fault tolerance approach (even an algorithmic one) infeasible. Fre-
quently, applications may not be concerned with correcting all er-
rors exactly, but instead with simply reducing the amount of noise
below a certain threshold. Below that threshold, applications can
still make efficient forward progress by naturally tolerating noise.
In this paper, we present an approach for algorithmic fault cor-
rection by approximately correcting errors that occur in Matrix-
Vector operations of an iterative linear solver.

The third approach aims to take any arbitrary application and
transform it into a more robust form capable of efficiently run-
ning on stochastic processors. We describe one such approach for
application transformation for robustness that utilizes a numerical
optimization framework to naturally tolerate errors. By convert-
ing applications to numerical optimization problems with minima
corresponding exactly to the original programs’ output, we can
use robust solvers to efficiently compute the original programs’
deterministic output.

Section 2 describes the approach of application relaxation by
using branch herding. Sections 3 and 4 describe the approaches
for algorithmic detection and algorithmic correction, respectively,
with examples involving linear algebra-based applications. Fi-
nally, Section 5 introduces a general approach for transforming
applications for increased robustness, which we call Application
Robustification. Section 6 concludes.

2. RELAXING CORRECTNESS
One approach to building software for stochastic processors in-

volves relaxing the correctness constraints of the applications to
improve performance or power characteristics [1]. We focus on
GPU applications with frequent control divergence [3]. GPUs uti-
lize SIMD-based architectures where multiple execution pipelines
are designed to run in lockstep. Applications incur large perfor-
mance overheads for synchronization when threads running on
different execution pipelines encounter control divergence. How-
ever, many GPU applications also exhibit typical fault tolerance
characteristics commonly seen in data-parallel applications with

while (--i && (xx + yy < T(4.0))) {
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;

} return i;

Figure 1: The main computation loop for Mandelbrot. The
loop is unrolled 20 times in the actual application kernel.

-40

-30

-20

-10

0

10

20

30

40

0 10 20 30 40 50 60 70 80 90 100

% forced uniform branches

%
 ru

nt
im

e
re

du
ct

io
n

Performance increase (no software overhead)

Performance increase (software overhead)

Figure 2: The performance of Mandelbrot can be increased
by herding more branches. However, if software overhead is
added to ensure branch uniformity, increasing the number of
affected branches increases overhead and can even result in
degraded performance.

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80 90 100
% forced uniform branches

%
 m

is
m

at
ch

ed
 o

ut
pu

t b
yt

es

Mandelbrot Output Quality Degradation

Julia Output Quality Degradation

Figure 3: While eliminating control divergence can increase
performance, blindly herding can result in degraded output
quality.

inherent redundancy across time and space. So by carefully elimi-
nating control divergence, we may achieve significant performance
benefits.

Figure 1 shows an example of a kernel that exhibits control di-
vergence, called Mandelbrot [18]. Control divergence arises in
Mandelbrot because the number of iterations required to deter-
mine whether a particular is in the Mandelbrot (or Julia) set varies
based on the point’s location, especially in image regions near the
set boundary, where some threads execute many iterations while
others finish quickly.

The effect of control divergence on performance can be signifi-
cant. Figure 2 shows the potential performance increase (runtime
reduction) if control divergence is eliminated for a fraction of the
static branches in Mandelbrot (from 0% to 100% of branches).
The branches are chosen uniformly randomly when the fraction
is less than 100%. Control divergence is eliminated by chang-
ing the source code to vote within a warp on the condition of a
branch and forcing all threads in the warp to take the same (major-
ity) direction at the branch.We call the technique branch herding.
Branch herding can be implemented relatively efficiently in soft-
ware, using the CUDA intrinsics ballot (_ballot) and population
count (_popc). The ballot intrinsic is a warp vote function that
combines predicates computed by each thread in a warp and sets
the Nth bit in a 32-bit integer if the predicate evaluates to non-zero
for the Nth thread in the warp. The ballot result is broadcasted to
a destination register for each thread in the warp. We use the pop-
ulation count intrinsic to count the number of set bits in the ballot
result. Branch herding can also be implemented easily in hardware
by adding a 32-bit majority logic block.

While only 10% of dynamic instructions in Mandelbrot are branches,
and less than 1% of branches diverge, performance can potentially
be increased by 31% by eliminating control divergence. As the no
software overhead performance series in Figure 2 demonstrates,
performance increases for Mandelbrot as control divergence is
eliminated for more branches. Figure 3 shows that the quality of
the Mandelbrot output set degrades by less than 2%, even when
divergence has been eliminated for all static branches. This shows

Figure 4: Progression of Mandelbrot (top) and Julia (bottom)
images from 20% to 100% forced branch uniformity in 40%
intervals.

0

10

20

30

40

50

60

Mandelbrot histogram volumeRender particles SobelFilter oceanFFT sad lbm AVERAGE

%
 R

un
tim

e
R

ed
uc

tio
n

Software Branch Herding

Hardware Branch Herding (expected: no performance overhead)

Hardware Branch Herding (conservative: 1 cycle overhead)

Figure 5: Performance for software and hardware branch
herding.

that for certain error-tolerant applications, it may be possible to
get significant performance benefits by relaxing correctness con-
straints related to control divergence for minimal output quality
degradation.

Figure 4 shows the quality of the Mandelbrot and Julia output
sets as the percentage of herded branches increases from 20% to
100% in increments of 40%.

A quick look at the last Julia output set, however, also suggests
that an indiscriminate selection of branches for herding may result
in significant output quality degradation for several applications.
Therefore, any implementation of branch herding needs to care-
fully select the branches to target.

One policy for determining which branches are profitable for
herding is to use profiling information in a feedback loop. After in-
strumenting a branch (or some fraction of the candidate branches)
for herding (which can be done automatically by the compiler or
manually by the programmer), the code is re-compiled and pro-
filed to measure performance and output quality. If performance
increases and output quality degradation remains below the ac-
ceptable threshold specified by the programmer, the branches are
accepted for herding, else they are reverted to their original state.
In terms of output quality, we find that in several cases, outputs
may be considered acceptable even when herding is used for all
the branches in a kernel function. In this case, herding can simply
be switched with a compiler flag.

Experimental performance results for branch herding are shown
in Figure 5. Software branch herding performance and output
quality are measured directly at runtime (i.e., native execution on
NVIDIA GeForce GTX 480.). The hardware branch herding tech-
nique in Figure 5 assumes some simple logic that eliminates the
software overhead of herding. Hardware branch herding increases
performance by 30% on average and up to 55% for individual ap-
plications. The software branch herding implementation achieves
13% performance benefits, on average.

Since branch herding exploits error tolerance to eliminate di-
vergence, it may result in output quality degradation. Table 1
compares output quality degradation for the benchmarks with and
without branch herding. Overall, branch herding does not result in
much additional output quality degradation, while providing fairly
substantial performance benefits.

3. ALGORITHMIC FAULT DETECTION
The second approach relies on detecting and then recovering

from faults. In context of stochastic processors, we focus on tech-
niques for algorithmic fault detection which exploit application er-

Table 1: Output Quality Degradation (%) for Branch Herding compared to Original
% Mismatch Mandelbrot histogram volumeRender particles SobelFilter oceanFFT sad lbm

Original 0.03 0.00 6.72 18.24 0.00 0.03 0.00 6.7E-7

Branch Herding 1.87 5.82 7.61 18.24 6.00 0.03 0.42 5.6E-5

ror tolerance as only those errors that adversely affect application
output are considered . Below we discuss one example application
class (sparse linear algebra) which exhibits inherent fault tolerance
that algorithmic techniques can exploit.

Sparse linear algebra problems frequently have well defined
structures. Common examples of structure are diagonal, banded
diagonal, and block diagonal matrices. For example, qpband (Fig-
ure 6), which represents a canonical indefinite optimization prob-
lem, illustrates a typical banded diagonal structure (the nonzero
pattern is on the left). Similarly, the matrix msc00726 (Figure 7),
representing a structural engineering problems from the Boeing
test matrix group [2], also contain banded diagonal type structures.

Such structures in sparse problems commonly translate into uni-
form distributions of the column sums, which are directly used in
algorithmic checks [17, 5] (cT (Ax) = (cTA)x where c = 1̄).
These matrices with well-defined distributions of column sums
present an opportunity to sample only a fraction of the columns,
which gives up a small degree of coverage (some errors may be
missed) for a significant reduction in overhead. We call the tech-
nique using a random sampling and a sampling based upon clus-
tering, Approximate Random and Approximate Clustering respec-
tively. These checks are especially valuable since they exploit the
fact that some errors can be tolerated by the application itself (e.g.
iterative methods that converge to more accurate solutions).

Another opportunity for reducing algorithmic detection over-
head for sparse linear algebra applications is that many such ap-
plications typically use the same matrix as part of many individ-
ual operations. For example, iterative solvers for linear systems
(Ax = b) use MVM multiple times over thousands of iterations.
This property of frequent data reuse makes it possible to analyze
the structure of a given matrix or precondition the matrix to have a
more amenable form for low overhead algorithmic fault detection,
thus amortizing the setup cost by using lower overhead checks for
subsequent MVM operations.

Identity conditioning (IC) transforms the high variance column
sum distribution of the original matrix (A) into a more uniform
set of values by using a check vector tailored to the given problem,
instead of the traditional checksum: c = 1̄. IC finds such a tailored
check vector by solving the system:

cTA = 1̄T (identity equation)

The effect of A and the variance of the column sums can be mini-
mized by then using:

cT y = (cTA)x = 1̄Tx =
∑

x (IC)

This makes the problem directly amenable to low-cost sampling
as the variance in A now has a smaller effect on the product cTA,
making the sampling in AR and AC more representative than when
sampling the check vector c = 1̄.

While Identity Conditioning eliminates the influence of A on
the check, additional conditioning can also eliminate the influence
of x. The Null Conditioning (NC) algorithm finds a check vector
in the null space of the matrix A, solving the equation

cT y = (cTA)x = 0 (NC)

This significantly reduces the runtime overhead of the check, since
the right side of the check requires no additional computation (e.g.
the sum equals zero) and the memory locality is improved since
the input is no longer read in the check.

Finding a vector in (or near) the null space of A is done by
computing its smallest singular value using singular value decom-
position (SVD). The accuracy of fault detection for NC depends
on the size of the problem’s smallest singular value.

To evaluate the effectiveness of these detection techniques, we
compare each technique when applied to a single MVM opera-
tion over a set 100 problems from the University of Florida Sparse

Matrix Collection [2]. The analysis includes the overhead incurred
during the execution of the MVM operation and excludes the set-
up cost, such as clustering and conditioning. The utility of our
fault detection algorithms depends on both their detection accu-
racy and performance overhead.

Figure 8 presents the results. The three columns on the left-
hand side correspond to the three full algorithms we’re evaluat-
ing: the traditional dense check, the Oracle algorithm, and a Deci-
sion Tree based-algorithm (picks best technique and parameters
based on learned parameters from matrix characteristics). The
eight columns on the right-hand side correspond to each base tech-
nique, highlighting their individual capabilities. The four tech-
niques on the far right are combinations of the others (e.g. ICAR
is IC + AR, while NCAR is NC + AR). For a given technique and
input problem, we choose the configuration parameters (detection
threshold, sampling rate, conditioning quality) that minimize its
overhead while meeting the F-Score bound. The bars (left vertical
axis) show the fraction of problems on which each detection tech-
nique achieved the target F-Score. The empty circles show each
technique’s overhead on each of the problems meeting the F-Score
target, and the red filled circle within each column is the detec-
tor’s average overhead across all of these problems. Finally, the
lines within each column indicate the range of overheads within
± one standard deviation of the average as well as the minimum
and maximum overheads.

In general, the results show that the traditional dense check has
an average overhead of 32%, ranging from 5% for denser prob-
lems to 80% for larger sparse problems with poor locality. While
in contrast, the overhead of AR was 16% on average, over the
same set of sparse problems (i.e. 16% lower than the traditional
dense check).

Figure 8 illustrates a scenario where the dense check is sig-
nificantly brittle, meeting the F-Score target with only 10% of the
problems.In contrast, the Oracle can combine checks to cover 94%
of the problems and the Decision Tree succeeds with 77%. This is
because faults directly in the check are more likely to occur with
the traditional dense check, which performs more operations than
the proposed techniques.

Dense OracleD−Tree AR AC IC NC NCAC NCAR ICAC ICAR
0

10

20

30

40

50

60

70

80

90

100

of

 M
at

ric
es

 m
ee

tin
g

Ta
rg

et
(%

)

Dense OracleD−Tree AR AC IC NC NCAC NCAR ICAC ICAR
0

10

20

30

40

50

60

70

80

90

100

Detection Techniques

P
er

fo
rm

an
ce

 O
ve

rh
ea

d
%

Figure 8: Right axis: Runtime overhead of each technique.
Left axis: Number of problems meeting F-Score target. F-
Score target=0.9, Fault Rate=1e-6, FaultModel=1

We also evaluate the fault detection techniques in the context of
CG and IR sparse linear solvers. Errors affect linear solvers in two
ways. First, since iterative algorithms converge from a poor solu-
tion to an accurate one, undetected errors are likely to slow down
the algorithm’s convergence or even cause it to diverge. Further,
detected errors are managed using the classic rollback-restart tech-
nique, where the application is rolled back to some prior point in
its execution and its execution is resumed. Our experiments use
the simplest variant of this technique where the solver rolls back
to the start of the current iteration every detected fault. In our ex-
periments, each solver is executed until it reaches an error resid-
ual of 1e-6, meaning that if errors are detected, they may restart

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Column Sums

N
um

be
r o

f C
ol

um
ns

Column Sum Distributions

Figure 6: qpband (Variance = 1.6071) The matrix has a well de-
fined and low variance (< 1e3) column sum distribution and is a
good candidate for both Approximate Random and Approximate
Clustering.

−1.5 −1 −0.5 0 0.5 1 1.5 2

x 108

0

2

4

6

8

10

12

14

16

18

20

Column Sums

N
um

be
r o

f C
ol

um
ns

Column Sum Distributions

Figure 7: msc00726 (Variance = 9.4724e14) The matrix has high
variance (> 1e3) column sums. This matrix is a good candidate
for clustering given the finite sets of unique values shown above.

many iterations multiple times before they reach this goal. Fig-
ures 9 make this comparison between the execution time of the
solver implementations employing a sparse check (on the x-axis)
and the corresponding implementation employing the traditional
dense check, via a sequence of graphs. The difference is measured
as

overhead =
T imesparse_check − T imedense_check

T imedense_check

which means that a difference of -50% corresponds to the linear
solver executing twice as fast with the sparse detector than with
the traditional dense detector. The overall difference in execution
times of the linear solvers is consdiered in Figure 9.

Each detector and linear solver combination is evaluated on 5
different linear problems (separate sets for basic and precondi-
tioned solvers). The average overhead over these matrices, for
each detector, is shown as a red filled circle. Red lines correspond
to the standard deviation and the max/min are shown using blue
lines. The set of problems, for use with the basic solvers, were
chosen randomly from those used in the MVM experiments.

The results also show that in the context of linear solvers the
dense checks can have fairly large performance overheads (30-
50%). For CG, the sparse check based implementation spent 17%
less time in MVM operations on average than the traditional dense
check-based implementations. This corresponds to a total execu-
tion time that is 9% lower on average. For IR, the sparse check
based implementations spent 10% less time in MVM operations
than the dense check-based implementations on average. This cor-
responds to 5% lower total execution time on average.

The results show that the impact of larger setup overheads for
some of the techniques (e.g. clustering and preconditioning), in
the context of both the IR and CG, is fairly negligible (< 0.01%),
since the amount of reuse is high. We observed that the absolute
amount of reuse in the context of CG is dependent on the con-
ditioning of the problem which impacts the number of iterations
required to reach the desired solution. The error rate can also have
an impact on the number of iterations and hence the amount of
reuse within the algorithm

Upon analyzing the performance of the techniques in the differ-
ent scenarios shown in Figure 9, we observed that the overall over-
head can be reduced by 5%-20% by configuring the techniques to
minimize the overhead from missed faults and false positives.

CG, and IR are two real application contexts that demonstrate
that the sparse techniques are frequently able to exploit structure
and reuse in sparse problems to reduce the overall overhead of al-
gorithmic fault tolerance compared to the traditional dense checks.
More details of our work on algorithmic fault detection for sparse
linear algebra applications can be found in [17].

4. ALGORITHMIC FAULT CORRECTION
Previous algorithmic techniques for correcting errors [5] are

primarily limited to scenarios involving rare error events, because
of high overheads and the inability to make forward progress.
Many applications contain inherent fault tolerance however, and
are not always concerned with correcting all errors exactly. There-
fore we can frequently use techniques that only approximately cor-

Oracle D−Tree AR AC IC NC NCAC NCAR ICAC ICAR
−40

−30

−20

−10

0

10

20

30

40
Total cg,fault rate=1.0e−004

Detection Techniques

P
er

fo
rm

an
ce

 O
ve

rh
ea

d
%

Oracle D−Tree AR AC IC NC NCAC NCAR ICAC ICAR
−40

−30

−20

−10

0

10

20

30

40
Total ir,fault rate=1.0e−004

Detection Techniques

P
er

fo
rm

an
ce

 O
ve

rh
ea

d
%

Figure 9: Percent difference between the execution time of the
sparse techniques vs. dense check applied to CG & IR. Each
column shows the total execution time overhead.

rect errors, ensuring that the aggregate effect of errors on the ap-
plication’s correctness and performance is bounded.

The general problem formulation of Algorithmic Fault Correc-
tion is, therefore: Given an application with an unknown correct
output y, ensure that the application, even in the presence of faults
produces an output y∗ within a certain threshold of y.

As an example, in the context of Linear Algebra, we consider
an MVM operation (v = Au) with k faulty entries in the output
vector(v′). The traditional approach would explicitly detect and
correct each of the k faults. In reality, the application may only
care about approximately correcting the error (e = v′ − v), and
improving the accuracy (i.e. RMS ‖v′ − v‖2). Therefore an al-
gorithmic correction technique for the MV product could involve
subtracting the projection of the error onto a code space. The par-
tially corrected MV product(v′′) in then found by:

v′′ = v′ − (cT e)c

‖c‖2 (1)

One of the primary advantages of this particular approach, is that
this type of approximate correction is guaranteed to always im-
prove accuracy:

‖v′′ − v‖2 = ‖v′ − v‖2 − (cT e)2

‖c‖2
‖v′′ − v‖2 ≤ ‖v′ − v‖2 (2)

The above algorithmic correction can be easily adapted to ac-
count for the most important faults in terms of performance and
accuracy. The developer has significant flexibility in the amount
and types of codes chosen for the correction, depending on the
accuracy targets which are desired.

5. APPLICATION TRANSFORMATIONS FOR
ROBUSTNESS

The approaches described in prior sections are application-specific.
Having the ability to transform arbitrary programs into more er-
ror tolerant forms is also an important consideration for stochastic
processors. We call this Application Robustification [16]. In this
section, we describe one approach for taking an arbitrary appli-
cation and converting it into a more error tolerant form by refor-
mulating it as a numeric optimization problem. We express the
applications as constrained optimization problems, mechanically
convert these to an unconstrained exact penalty form, and then

����

�
�

�
�

��

Non-Robust
Application

Figure 10: Application Robustification involves converting an
application to an unconstrained optimization problem, where
the minimum corresponds to the output of the original non-
robust application.

solve them using gradient descent and conjugate gradient algo-
rithms. This approach is quite generic, since linear programming,
which is P-complete, can be implemented this way.

Let the vector x∗ denote the (unknown) solution to our problem.
To devise a robust algorithm, we construct a cost function f whose
minimum is attained at x∗. Solving the problem then amounts to
minimizing f . The main challenges, as illustrated in Figure 10:

• How to construct f without knowing the actual value of x∗

a priori?

• How to choose an optimization engine that converges quickly
and tolerates CPU noise?

For some applications, the natural conversion is to a general
constrained variational form

minimize
x∈Rd

f(x)s.t. g(x) ≤ 0, h(x) = 0 (3)

for some functions f , g, and h. Commonly, the transformation
of a given problem into its general variational form (3) is often
immediate from the definition of the problem. We provide several
illustrative examples below.

Least Squares Given a matrix A and a column vector b, a fun-
damental problem in many problems is to find a vector x that min-
imizes ‖Ax− b‖2 This problem is typically implemented on cur-
rent CPUs via the SVD or the QR decomposition of A. The ro-
bust formulation of this problem is constructed by minimizing the
quadratic function: f(x) = ‖Ax − b‖2 = x�A�Ax − 2b�x +
b�b. is The Least Squares problem is commonly thought of as a
more intrinsically robust application, due to the continuous nature
of much of it computation. We’ll now consider the formulation of
a problem not typically seen as fault tolerant, sorting.

Sorting: To sort an array of numbers on current CPUs, one
often employs recursive algorithms like QUICKSORT or MERGE-
SORT. Sorting can be recast as an optimization over the set of per-
mutations. Among all permutations of the entries of an array u ∈
Rn, the one that sorts it in ascending order also maximizes the
dot product between the permuted u and the array v = [1 . . . n]�

In matrix notation, for an n × n permutation matrix X , Xu is
the sorted array u if X maximizes the linear cost v�Xu. Since
permutation matrices are the extreme points of the set of doubly
stochastic matrices, which is polyhedral, such an X can be found
by solving the linear program

max
X∈Rn×n

v�Xu s.t. Xij ≥ 0,
∑
i

Xij ≤ 1,
∑
j

Xij ≤ 1.

(4)
Note that sorting is traditionally not thought of as an applica-

tion that is error tolerant. Our methodology produces a potentially
error tolerant implementation of sorting.

Bipartite Graph Matching The maximum weight bipartite graph
matching problem can also be solved with a linear program, simi-
lar to sorting but with a more generalized objective function. Typ-
ical implementations are again not considered error tolerant (e.g.
Hungarian algorithm). Our methodology however produces a po-
tentially error tolerant implementation of Bipartite Graph Match-
ing.

Once we have converted the programs (both those that require
precisely correct outputs –fragile applications, as well as those that

do not–intrinsically robust applications) into optimization formu-
lations,the best solver to compute the programs output can now be
determined.

Under mild conditions, as long as step sizes are chosen care-
fully, gradient descent converges to a local optimum of the cost
function even when the gradient is known only approximately. For
this reason, we rely on gradient descent as the primary optimiza-
tion engine to construct algorithms that tolerate noise in the CPU’s
numerical units. To minimize a cost function f : Rd → R, gradi-
ent descent generates a sequence of steps x1 . . . xi ∈ Rd via the
iteration

xi ← xi−1 + λi∇f(xi−1), (5)

starting with a given initial iterate x0 ∈ Rd. The vector ∇f(xi−1)
is a subgradient of f at xi−1, and the positive scalar λi is a step
size that may vary from iteration to iteration. The goal is for the
sequence of iterates to converge to a local optimizer, x∗, of f . The
bulk of the computation in gradient descent is in computing the
gradient ∇f . The suitability of gradient descent for processors
with reduced guardbands is due to the fact that under various as-
sumptions of local convexity on f , xi is known to approach the
true optimum as iterations progress [12]. As long as the ∇f is
unbiased, gradient descent can eventually extract a solution with
arbitrarily high accuracy. [16]

We rely on an exact penalty method to convert constrained prob-
lems, such as (3) into unconstrained problems that can be solved
by gradient descent:

f(x) + μ
∑
i

|hi(x)|+ μ
∑
j

[gj(x)]+ . (6)

The operator [·]+ = max(0, ·) returns its argument if it is pos-
itive, and zero otherwise. A similar result for quadratic exact
penalty functions of the form f(x)+μ

∑
i hi2(x)+μ

∑
j [gj(x)]

2
+

also hold.
For example, the linear program for Sorting (4) can be con-

verted into a corresponding unconstrained problem by using an
exact quadratic penalty function:

f(X) =− v�Xu+ λ1

∑
ij

[Xij]
2
+ + λ2

∑
i

[∑
j

Xij − 1

]2

+

+ λ2

∑
j

[∑
i

Xij − 1

]2

+

(7)where λ1 and λ2 are suitably large constants.
While we use gradient descent as a search strategy for most

of our kernels, some kernels may warrant the use of other search
strategies. For example,the conjugate gradient (CG) method can
be used for well conditioned (quadratic objective functions) to ob-
tain very fast convergence with large problems.

To evaluate the robust versions of the above algorithms, we built
an FPGA-based framework with support for controlled fault injec-
tion [16]. To calculate the energy benets from application robus-
tifcation, we also used circuit-level simulations to calculate the
relationship between voltage and error rate for the FPU.

To explore the feasibility of the proposed approach to provide
robustness and energy benefits, we evaluated stochastic gradient
descent (SGD) on the problems for Bipartite Graph Matching and
Sorting across a wide range of fault rates.

The metric used to describe the quality of output is different for
each benchmark. For Sorting, the y-axis represents the percentage
of outputs where the entire array is sorted correctly (any undeter-
mined entries (NaNs), wrongly sorted number, etc., is considered
a failure). For Bipartite Graph Matching, the y-axis represents the
percentage of outputs where all the edges are accurately chosen.

We chose small problem sizes for our evaluations due to low
FPGA-based simulation speeds and the need to manually orches-
trate each experiment (e.g., identify coefficients, parameters, etc.).
For sorting, array size is 5 elements. Bipartite Graph Matching
is performed for a graph with 11 nodes and 30 edges. State of
the art deterministic applications are used for each of the applica-
tion baselines (i.e. the C++ Standard Template Library (STL) and
Hungarian Algorithm)

Examining the results, we see that we are able to achieve high
quality results for both the fragile and the intrinsically robust ap-
plications. Sorting (Figure 11) performs poorly with linear step
size scaling, but with sqrt step size scaling is able to achieve 100%
accuracy even with large fault rates.

Bipartite Graph Matching (Figure 12) using 10000 iterations of
SGD showed little performance degradation with increasing fault
rates. However, using a combination of preconditioning, step siz-
ing, and annealing techniques with gradient descent showed that
100% accuracies were also obtainable across even the largest fault
rates.

�

��

��

��

��

���

� �� �� �� �� 	� ��

Su
cc

es
s

R
at

e
(%

)

Fault Rate (% of FLOPs)

Accuracy of Sort - 10000 Iterations
Base SGD SGD+AS,LS SGD+AS,SQS

Figure 11: Success rate for different implementations of Sort-
ing as a function of fault rate

�

��

��

��

��

���

� �� �� �� �� 	� ��

Su
cc

es
s

R
at

e
(%

)

Fault Rate (% of FLOPs)

Accuracy of Matching - 10000
Iterations

Non-robust Basic,LS SQS
PRECOND ANNEAL ALL

Figure 12: Success rate for different implementations of Bi-
partite Graph Matching as a function of fault rate

While stochastic gradient descent-based techniques provide high
robustness, it often comes at the expense of significantly increased
runtime due to the large number iterations required for conver-
gence. For some applications where the transformed implementa-
tion has complexity per iteration less than the original applications
complexity, it may be possible to show energy benefits by voltage
overscaling a processor and letting the processor have errors. For
other applications where the complexity per iteration of the opti-
mization form is equal or greater than the original implementation
complexity, it may be more difficult to show energy benefits.

Figure 13 shows an example of a problem where the complex-
ity of the transformed implementation is lower. In this Figure,
the y-axis shows the normalized energy results for the FPU for a
Least Squares problem (Ax = B) assuming a voltage overscaled
processor (non-zero error rates). The quadratic nature of the prob-
lem allows for CG to converge in fewer iterations (compared to
gradient descent), while also naturally tolerating certain types of
errors. Additionally, by using a specialized accelerator for lin-
ear operations [9], more applications such as Graph Matching can
achieve energy benefits by using stochastic processors. For some
problems, such as Sorting, it will be remain difficult however, even
with a accelerators, to achieve energy benefits with voltage/scaling
type models.

6. CONCLUSIONS
Harnessing the power of stochastic computing systems depends

heavily on the ability of researchers and developers to design ef-
ficient algorithms and techniques which both enhance and exploit
the error tolerance of applications. This paper presented three ap-
proaches for building applications for stochastic processors. This
included: relaxing the correctness of applications, algorithmic de-
tection/correction as faults arise, and application transformation

0.00E+00

5.00E+04

1.00E+05

1.50E+05

1.00E-07 1.00E-05 1.00E-03 1.00E-01En
er

gy
 (

Po
w

er
*

of

 F
LO

P
)

Accuracy Target

Least Squares Energy
Base: Cholesky CG

Figure 13: Energy for a CG-Based implementation of Least
Squares
for robustness. In this paper, we show how these techniques that
enhance or exploit the error tolerance of applications can yield sig-
nificant power and energy benefits when computed on stochastic
processors.

7. REFERENCES
[1] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard,

editors. the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation(
PLDI), Beijing. ACM, 2012.

[2] Timothy A. Davis. University of florida sparse matrix
collection. NA Digest, 92, 1994.

[3] W. Fung, I. Sham, G. Yuan, and T. Aamodt. Dynamic warp
formation and scheduling for efficient gpu control flow. In
MICRO, pages 407–420, 2007.

[4] R. Hegde and N.R. Shanbhag. Energy-efficient signal
processing via algorithmic noise-tolerance. In Low Power
Electronics and Design, 1999. Proceedings. 1999
International Symposium on, pages 30 – 35, 1999.

[5] Kuang-Hua Huang and J.A. Abraham. Algorithm-based
fault tolerance for matrix operations. Computers, IEEE
Transactions on, C-33(6):518 –528, 1984.

[6] A. Kahng, S. Kang, R. Kumar, and J. Sartori. Designing a
processor from the ground up to allow voltage/reliability
tradeoffs. In IEEE International Symposium on
High-Performance Computer Architecture(HPCA), 2010.

[7] A. Kahng, S. Kang, R. Kumar, and J. Sartori.
Recovery-driven design: A methodology for power
minimization for error tolerant processor modules. In the
47th Design Automation Conference (DAC), June 2010.

[8] A. Kahng, S. Kang, R. Kumar, and J. Sartori. Slack
redistribution for graceful degradation under voltage
overscaling. In Asia and South Pacific Design and
Automation Conference (ASPDAC), January 2010.

[9] D. Kesler, B. Deka, and R. Kumar. A hardware acceleration
technique for gradient descent and conjugate gradient. In
Application Specific Processors (SASP), 2011 IEEE 9th
Symposium on, june 2011.

[10] R. Kumar. Stochastic processors. In NSF Workshop on
Science of Power Management, March 2009.

[11] S. Narayanan, J. Sartori, R. Kumar, and D.L. Jones.
Scalable stochastic processors. In Design, Automation Test
in Europe Conference Exhibition (DATE), 2010.

[12] A Nemirovski, A Juditsky, G Lan, and A Shapiro. Robust
stochastic approximation approach to stochastic
programming. SIAM Journal on Optimization, 19(4), 2009.

[13] J. Sartori and R. Kumar. Architecting processors to allow
voltage/reliability tradeoffs. In CASES, 2011.

[14] J. Sartori and R. Kumar. Compiling for energy efficiency on
timing speculative processors. In the 49th Design
Automation Conference(DAC), June 2012.

[15] N. Shanbhag, R. Abdallah amd R. Kumar, and D. Jones.
Stochastic computation. In the 47th Design Automation
Conference(DAC), June 2010.

[16] J. Sloan, D. Kesler, R. Kumar, and A. Rahimi. A numerical
optimization-based methodology for application
robustification: Transforming applications for error
tolerance. In Dependable Systems and Networks (DSN),
2010, June 2010.

[17] J. Sloan, R. Kumar, G. Bronevetsky, and T. Kolev.
Algorithmic approaches to low overhead fault detection for
sparse linear algebra. In Dependable Systems and Networks
(DSN), 2012, 2012-july 1 2012.

[18] Wikipedia. Mandelbrot set, 2011. http:
//en.wikipedia.org/wiki/Mandelbrot_set.

