Compiling for Energy Efficiency on Timing Speculative Proce

SSOrs

John Sartori and Rakesh Kumar
University of lllinois at Urbana-Champaign

ABSTRACT

Timing speculation is a promising technique for improving mi-
croprocessor yield, in field reliability, and energy efficiency.
Previous evaluations of the energy efficiency benefits of tim-
ing speculation have either been based on code compiled for
a traditional target [2] — a processor that produces no errors,
or code that relies on additional hardware support [6]. In this
paper, we advocate that binaries for timing speculative proces-
sors should be optimized differently than those for conventional
processors to maximize the energy benefits of timing specula-
tion. Since the program binary determines the utilization pat-
tern of the processor, which in turn influences the error rate of
the processor and the energy efficiency of timing speculation,
binary optimizations for timing speculative processors should
attempt to manipulate the utilization of different microarchi-
tectural units based on their likelihood of causing errors. An
exploration of targeted and standard compiler optimizations
demonstrates that significant energy benefits are possible from
TS-aware binary optimization.

Categories and Subject Descriptors

D.3.4 [Processors]: Compilers, General Terms: Design
Keywords: error resilience, binary optimization, computer ar-
chitecture, energy efficiency, timing speculation

1. INTRODUCTION

Timing speculation [2] is a promising technique for improving
microprocessor yield, in field reliability, and energy efficiency.
In the most common usage model, timing speculation involves
relaxing voltage or frequency guardbands to improve energy ef-
ficiency at the expense of timing errors. Errors are corrected
or tolerated by a hardware or software error resilience mecha-
nism [2] to maintain acceptable output quality.

Previous evaluations of the energy efficiency benefits of tim-
ing speculation have either been based on code compiled for
a traditional target [2] — a processor that produces no errors
— or code that relies on instruction set extensions and addi-
tional hardware support [6]. For example, [6] advocates the
use of instruction set extensions whose circuit implementations
have shorter critical paths. Unfortunately, physical design tools
render most pipeline stages critical in power-optimized proces-
sors [8,11], reducing the effectiveness of such approaches. Also,
instruction set extensions may not be feasible in many settings.

In this paper, we make a case for compiling differently for
timing speculative processors in a way that increases energy ef-
ficiency without additional hardware support or instruction set
extensions. To motivate our approach, we first explain the na-
ture of benefits afforded by timing speculation (TS). The mag-
nitude of energy efficiency benefits available from exploiting T'S
depends on two factors — (a) where and (b) how often the pro-
cessor produces errors when operating at an overscaled voltage
or frequency. (For more details, see supplemental Section S1.)
The path slack distribution of a timing speculative processor
determines which paths do not meet timing constraints (nega-
tive slack paths) and thus cause errors when they are toggled.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

DAC 2012, June 3-7, 2012, San Francisco, California, USA.

Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

Likewise, the activity distribution of the processor describes
how often paths are toggled, and thus determines the frequency
of errors caused by a path when it has negative slack. Together,
the slack and activity distributions dictate the error distribu-
tion of a processor, i.e., the locations and frequencies of errors
produced in an overscaled processor —i.e., a processor operating
below nominal voltage or above nominal frequency.

Altering the error distribution of a timing speculative pro-
cessor has the potential to increase the energy benefits from
exploiting error resilience. For example, previous works have
demonstrated that modifying the slack distribution (where er-
rors are produced) can increase the energy efficiency of a tim-
ing speculative design [4,9,10,12]. In this paper, we focus
on the activity distributions (how often errors are produced)
of timing speculative processors and make a case for timing
speculation-aware binary optimization. Since the program bi-
nary, in conjunction with the processor architecture, determines
a processor’s activity distribution, optimizing a program binary
for timing speculative processors can manipulate the utilization
of different microarchitectural units based on their timing slack
distribution to deliver energy efficiency benefits. For example,
binary optimizations can be used to change the set of frequently
exercised paths in a processor to avoid activating the longest
paths. Since these paths are the first to have negative slack
when the processor is overscaled, throttling their activity re-
duces early onset timing violations. Similarly, binary optimiza-
tions can be used to reduce error rate by throttling activity in
structures of the processor that cause the most errors. Other
possibilities include optimizations to overlaps errors in a single
cycle to reduce the effective errors per cycle and optimizations
to redistribute errors in the processors to reduce the effective
error recovery overhead.

This paper on timing speculation-aware binary optimization
makes the following contributions.

e We show that the activity distribution of a processor,
and by extension, the error distribution, can be altered
through binary optimizations.

e We demonstrate that the energy efficiency of timing spec-
ulative processors can be improved by altering their ac-
tivity distributions through binary optimizations, without
any additional hardware support.

e Through careful analysis of the main factors that influ-
ence processor error rate, we show that several optimiza-
tions that are already supported by existing compilers can
improve the energy efficiency of TS.

e We quantify the energy savings from targeted and stan-
dard binary optimizations for a family of timing specula-
tive processor architectures. We observe up to 39% addi-
tional energy savings from TS-aware binary optimization
for a Razor-based processor.

2. BASELINE ARCHITECTURE

Which optimizations are most effective for a processor de-
pend on which processor modules cause the most errors. In
this section, we describe the family of processor architectures
we study to develop binary optimization strategies and iden-
tify their error-critical modules. We also discuss how the error
criticality of modules may depend on program characteristics.

Figure 1: The FabScalar Pipeline. [1]

900 q —+-LSU
800 1 —— IssueQueue
700 4 —4— Rename
600 | —— RegRead
A - % - WhiteBack
£ 500
©
Q400
I+
300
200 4
100 4
[oF
0.0 02 04 06 08 10
Slack (ns)

Figure 2: The static slack distributions for the pipeline stages
show how many critical paths they have but do not provide
information about how often the paths toggle, which is essential
in characterizing error rate.

2.1 FabScalar Architecture

We use the FabScalar [1] framework for our architectural
evaluations. FabScalar is a parameterizable, synthesizable pro-
cessor specification that allows for the generation and simula-
tion of RTL descriptions for arbitrarily configured scalar and
superscalar processor architectures. FabScalar allows for the
configuration of many microarchitectural parameters, including
superscalar width (ss), fetch width and depth (fw,fd), numbers
and types of functional units, issue width and depth (iw,id),
issue queue size (iq), select logic depth (sel), register file depth
(rrd), re-order buffer entries (rob), physical registers (reg), and
load and store queue sizes (1sq). In this paper, we study a fam-
ily of superscalar processors by selecting interesting candidates
from the available configurations space of FabScalar. Figure 1
shows the FabScalar pipeline.

2.2 Error Criticality Analysis

Different pipeline stages cause errors at different rates, de-
pending on their slack and activity distributions. Figure 2
shows the static slack distributions for the pipeline stages that
cause the most errors. While our highly-optimized design flow
removes excess slack in all stages, two stages in particular —
the issue queue (IQ) and the load store unit (LSU) — have the
highest number of critical paths. Based on Figure 2, one might
expect that the IQ, having many more critical paths than all
other modules combined, would produce the most errors in the
processor. However, the static slack distribution only shows the
potential for paths to cause errors. Not all stages exercise their
critical paths often. Stages with frequently exercised critical
paths cause the most errors. In Figure 3, we create activity-
weighted, dynamic slack distributions by showing the sum of
toggle rates for all the paths at each value of timing slack (activ-
ity from SPEC benchmarks). The more timing critical activity
a module has, the more errors it is likely to cause. From Fig-
ure 3, it is clear that the LSU dominates the error distribution
of the processor.

2.3 Program Dependenceof Error Criticality

As demonstrated in the previous section, the LSU, and sec-
ondarily, the IQ are the primary sources of timing violations for
the family of processor architectures that we studied. Below,
we describe the implementation of the LSU and the IQ in the
FabScalar processor to understand the dependence of error rate
on program characteristics.

The LSU (Figure 4) performs memory disambiguation for
the processor. This involves checking for dependencies between
loads and stores. After address resolution, a store must search
the address CAM of the LQ and process all entries with match-
ing addresses to determine if any load issued out of order and
broke a RAW dependence. Load disambiguation is more com-

Sum of Toggle Rate

Figure 3: The activity-weighted (dynamic) slack distributions
for different pipeline stages indicate how much timing critical
activity they have, and by extension, how frequently they will
produce errors for a given level of overscaling — i.e., a given
(voltage, frequency) pair.

To Writeback

DISAMBIG-
UATION
LOGIC

Figure 4: Memory disambiguation is on the critical path of the
LSU [1]. The path delay is longest when store-to-load forward-
ing is required, since this necessitates an access to the SQ data
RAM, in addition to the other disambiguation operations.

plicated because it may include store-to-load forwarding. In
addition to a search through the SQ address CAM, a load must
generate a mask vector indicating all preceding stores in pro-
gram order. Matching entries from the CAM search are filtered
by the mask vector, and the latest resulting entry, if any, for-
wards data from the SQ data RAM to the load.

LSU delay depends on program characteristics for several rea-
sons. The primary reason is that the store-to-load forwarding
path is on the static critical path of the LSU. Since many RAW
dependencies in a code lead to more forwarding, the timing er-
ror rate will be higher for code with a relatively large number
of RAW dependencies. Program characteristics also determine
the utilization of the LQ and the SQ, which, in turn, dictates
access delays for the structures. For example, when the LQ
or SQ are nearly full, as may be common for memory-centric
codes, more entries must be accessed in a single cycle to gener-
ate mask vectors. This increases the length of the propagation
path, and consequently, increases delay. Additionally, when
there are many dependencies between memory operations, ad-
dress CAM searches generate many hits, increasing load ca-
pacitance and delay for the CAM access. Finally, propagation
delay increases when many hits are signaled in parallel (due to
many potential dependencies), since the average length of the
propagation path from the CAM entries to the port increases.
Hence, the average delay is higher for memory-centric codes
with a large number of dependencies.

We confirmed that the forwarding paths are timing criti-
cal in the LSU, and that more dependencies result in activa-
tion of longer paths, by observing the activity-weighted (dy-
namic) slack distribution of the LSU for two different instruc-
tion streams (Figure 5). The first contains a stream of memory
operations that access the same address. Each load depends
on the previous store and activates the forwarding paths in
the LSU. In the second stream, the dependencies are removed.
Figure 5 demonstrates that activity on the critical paths of the
LSU is greatly reduced when the dependencies are removed and
forwarding is not required.

The wakeup-select logic used in the IQ is similar in nature
to the memory disambiguation logic in the LSU. For example,
wakeup consists of finding all instructions that depend on the
destination register of another instruction. This CAM-based
dependence check in the 1Q is performed in much the same
way as the dependence checks in the LSQ. Likewise, select logic,
which selects a ready, waiting instruction to execute is some-
what akin to the masking logic that identifies valid, conflicting
stores for forwarding. Because of their similarities, the LSU
and IQ have similar timing considerations.

5 R &

Sum of Toggle Rate

oN M O ©

00 01 02 03 04 05 06 07 08 09 10
Figure 5: Since forwarding paths are critical in the LSU, elim-

inating dependencies and the need for store-to-load forwarding
reduces activity on the critical paths of the LSU.

Table 1: Average processor-wide Razor overheads.

Hold buffering | Razor FF | Counterflow | Error Recovery

2% energy 23% energy | <1% energy P cycles

3. METHODOLOGY

To understand the impact of different binary optimizations
on the error behavior and energy efficiency of different proces-
sor architectures, we used a detailed methodology that carefully
models the relationships between execution behavior, power,
performance, and reliability. Designs are implemented with
the TSMC 65GP library (65nm), using Synopsys Design Com-
piler for synthesis and Cadence SoC Encounter for layout. In
order to evaluate the power and performance of designs at dif-
ferent voltages and to provide Vi sizing options for synthe-
sis, Cadence Library Characterizer was used to generate low,
nominal, and high V4, libraries at each voltage (Viq) between
1.0V and 0.5V at 0.01V intervals. Designs are implemented at
500 MHz. Power, area, and timing analyses are performed in
Synopsys PrimeTime. Gate-level simulation is performed with
Cadence NC-Verilog to gather activity information for the de-
sign, which is subsequently used for dynamic power estimation
and error rate measurement. (For more details on error rate
measurement, see supplemental Section S2.)

In our evaluations, we compile and run several microbench-
marks to demonstrate architecture-specific TS-aware optimiza-
tions. We also run instruction traces from the SPEC bench-
mark suite (bzip,gap,mcf,parser,vortex). after fast-forwarding
the benchmarks to their Simpoints [5]. All benchmarks are
compiled with gcc-2.7.2.3 (SPEC benchmarks and gec version
correspond to those supported by FabScalar).

We model Razor-based error resilience [2] in this paper (though
our proposed techniques are generally applicable to any timing
error resilient processor). Table 1 summarizes the processor-
wide static and dynamic overheads of Razor-based error detec-
tion and correction. In our design flow, we measure the per-
centage of die area devoted to sequential elements, as well as
the timing slack (with respect to the shadow latch clock skew
of 1/2 cycle) of any short paths that need hold buffering. When
evaluating energy at the processor level, we account for the in-
creased area and power of Razor flip-flops, hold buffering on
short paths, and implementation of the recovery mechanism.
Most of the static overhead is due to Razor FFs. Buffering
overhead is small, and the availability of cells with high and
low Vi, provides more control over path delay, eliminating the
need for buffering on most paths. We also add energy and
throughput overheads proportional to the error rate to account
for the dynamic cost of correcting errors over multiple cycles.
We use a counterflow pipeline Razor implementation [2] with
correction overhead proportional to the number of processor
pipeline stages (P). We conservatively replace all sequential
cells with Razor FF's.

4. RESULTSAND DISCUSSION

We now discuss different architecture-specific binary opti-
mizations that may increase the efficiency of timing speculative
processors. The proposed optimizations are primarily geared
toward error avoidance in the LSU and 1Q. We first discuss
targeted loop-based optimizations and quantify their benefits
through the use of microbenchmarks. Then, we evaluate the

for(i=0; i<N; i++) for(i=0; i<N; i+=4){
sum += A[i]; suml += A[i];
sum2 += A[i+1];
sum3 += A[i+2];
sum4 += A[i+3];
}

sum=suml+sum2+sum3+sum4;
Figure 6: Original loop (left) and unrolled loop (right).

1
|
|
I
I
I
I
|

R ke e ek i e A
T T T

0.95 [0} .85 0.80 0.75

0 0
Voltage (V)
Figure 7: Loop unrolling reduces activity on LSU forwarding

paths, resulting in a significant error rate reduction.

benefits of combining standard gcc optimizations using O lev-
els for SPEC benchmarks.

4.1 Targeted Optimizationsfor TS Processors
4.1.1 Loop Unroalling

As described above (Section 2), activity on the static crit-
ical paths of the LSU can be reduced by avoiding dependent
memory operations and scenarios that cause the LSQ to fill up.
This can enable significantly deeper voltage overscaling, since
the LSU is often the source of many timing violations.

Loop unrolling is a classic compiler optimization that can
eliminate and spread out loop carried dependencies, and thus
has the potential to reduce LSU delay. Normally, unrolling
would only be used when spin up and spin down costs are over-
come by reducing the number of executed instructions. How-
ever, T'S-aware compilation provides a new use for unrolling
— avoiding errors to increase the efficiency of TS by grouping
often independent instructions (like vector math) and eliminat-
ing often dependent instructions (like branches and loop index
updates). Unrolling also allows optimization of register alloca-
tion over multiple loop iterations that can eliminate load and
store disambiguation, thus reducing pressure on the LSU. Un-
rolling can also reduce pressure on the branch resolution unit
and arithmetic unit, since the number and frequency of branch
instructions and loop index updates are reduced. Thus, in addi-
tion to fostering critical path avoidance by reducing dependen-
cies, loop unrolling can also be an agent for activity throttling.

Unrolling can cause binary size to increase, which may reduce
instruction cache efficiency and may be undesirable in some
embedded processors. Unrolling may also cause an increase in
dynamic power. When exploiting T'S-aware binary optimiza-
tion, it is important to consider the impact on performance
and power, as well as energy efficiency.

Figure 6 shows an example of loop unrolling by a factor of
4. Figure 7 shows the error rate of the processor when ex-
ecuting the two code sequences of Figure 6. Unrolling sig-
nificantly reduces the error rate by reducing activity on the
forwarding paths in the LSU. This error rate reduction en-
ables additional overscaling and results in a substantial en-
ergy reduction for a Razor-based TS processor, as shown in
Table 2. Microarchitectural parameters not specified in Table 2
are iq = 16,70b = 64,reg = 64,lsq = 8 + 8 = 16.

In the error-free case, the same unrolled loop causes dynamic
power to increase significantly, even as it increases throughput.
Thus, unrolling has the potential to reduce error rate but may
also increase power for a conventional processor where TS is not
allowed. So, most energy-efficient binary optimization depends

Table 2: Razor-based TS and error-free energy savings (%) for

loop unrolling. (ss = superscalar width)
CORE | original | unrolled | unrolled error-free
ss1 11.8 43.1 1.6
ss2 6.4 20.8 2.0
! 4.0 129 3.2

for(i=0; i<N; i++)

for(i=0,j=N/2;i<N/2;i++,j++){
sum += A[i];

suml += A[i];
) sum2 += A[j];

sum = suml+sum2;

Figure 8: Original code (left — ILP 1) and code with more ILP
exposed (right — ILP 2).

0.08 p————————
007 /
o 006 // —e ILP1
8 g-gi , - ILP2
é 003 // —4—ILP4
w002 ,
001
o et ‘ ‘
1.00 0.98 096 094 092 090
Voltage (V)

Figure 9: When hardware parallelism is not available (ssl), ex-
posing parallelism floods backend queue structures and increases
the error rate.

on whether the target uses TS. This demonstrates the need for
TS-aware compiler analysis and optimization.

4.1.2 Balancing Instruction-Level Parallelism

In an out-of-order processor, instructions are dispatched to
the processor backend as long as there is available space in
the appropriate backend structures, namely, the reorder buffer
(ROB), 1Q, and LSQ. However, when there are not enough
execution units to handle ready, waiting instructions, backend
structures fill up and remain full. As discussed above, this leads
to longer propagation delays for these structures — especially for
queues.

Thus, we observe that when hardware parallelism is lim-
ited, optimizing the binary to promote software parallelism
can actually increase energy in a timing speculative proces-
sor by increasing logic delay and limiting overscaling. Conse-
quently, when hardware parallelism is limited, a TS-aware com-
piler should actually throttle parallelism to prevent instructions
from reaching the backend. This kind of compiler optimization
is contrary to conventional wisdom, which promotes ILP when-
ever possible for potential performance gains.

On the other hand, when hardware parallelism is available,
the scenario is reversed. Dependencies that hinder ILP keep
queues full and increase the delay of dependence-checking logic.
Thus, when adequate hardware resources are available, enhanc-
ing parallelism can eliminate dependencies and lead to better
TS efficiency.

To illustrate the above points, we have run the codes in Fig-
ure 8 on TS processors with different superscalar widths. Fig-
ure 9 compares the error rates of the code sequences for the ssl
case. In this case, hardware parallelism is not available, and ex-
posing more instructions to the processor backend causes queue
structures to fill, increasing propagation delays. Thus, the error
rate increases as more parallelism is exposed (e.g., ILP4).

For a processor with more hardware parallelism (e.g., $s2),
the backend can handle increased software parallelism without
putting excessive fill pressure on queue structures. In this case,
the reduced dependencies of the more parallel code reduce ac-
tivity in the timing critical disambiguation logic and enable
more overscaling. Figure 10 compares error rates for the codes
on a ss2 processor. The error rate for the code without exposed
parallelism (ILP1) increases abruptly and surpasses the error
rates for the more parallel codes. Table 3 shows energy results
for Razor-based T'S, demonstrating that TS efficiency increases
when hardware and software parallelism are balanced. The table
also demonstrates that enhancing parallelism does not provide
any significant energy savings in the error-free case, motivating
the need for T'S-specific compiler analysis and optimization.

Table 3: Razor-based TS and error-free energy savings (%) for
balancing parallelism.

CORE JILPT[ILP 2 | ILP 4 | ILP 2 error-free
ss1 13.1 5.5 0.0 1.4
ss2 5.4 9.8 9.7 0.8

0 + T T T T T T T T |
100 099 098 097 09% 095 094 093 092 091 09
Voltage (V)

Figure 10: When hardware parallelism is available (ss2), expos-
ing parallelism eliminates dependencies and reduces error rate.
j = N-1; sum = A[0] + A[N-1];
for(i=0; i<N; i++){ for(i = 1; i < N; i++){
sum += A[i] + A[j]; sum += A[i] + A[i-1];
j=1

Figure 11: Original code (left) and code with a dependence
peeled from the loop (right).

4.1.3 Loop Splitting

Loop splitting or peeling can also be used to break dependen-
cies in code by peeling dependent instructions out of the loop
body. The original code in Figure 11 contains two dependen-
cies — a loop carried dependence for the accumulator variable
(sum), and a dependence between the array indices (7, j). By
peeling one of the iterations from the loop, we can eliminate
one of the dependencies. This reduces the load on the CAM
structure that performs dependence checking, and eliminates
occurrences of forwarding. Figure 12 shows how peeling a de-
pendence from the loop reduces the error rate for ssl, ss2, and
ss4 processors. Table 4 compares the energy savings achieved
by Razor-based TS and error-free operation before and after
loop splitting is performed. In all cases, the additional over-
scaling enabled by loop splitting results in energy savings for
Razor-based TS. For error-free operation, loop splitting actu-
ally increases energy slightly, because it causes a small reduc-
tion in performance (IPC). This divergence between the best
decision for TS and error-free cases motivates the need for TS-
specific compiler analysis and optimization.

4.1.4 Loop Fusion

Another technique for manipulating dependence patterns in
code is loop fusion. Loop fusion merges independent instruc-
tions in separate loops into the same loop. Grouping inde-
pendent instructions can help to break up long chains of de-
pendent instructions by spreading them further apart in the
binary. This can reduce the need for forwarding, since conflict-
ing instructions are able to clear the LSQ before their depen-
dent instructions are dispatched to the processor backend. As
a side effect, loop fusion may decrease locality of access, which
can degrade cache performance. In general, it is important to
consider the potential performance impacts of T'S-aware binary
optimization along with the energy savings it enables.

Figure 13 compares code sequences with (right) and without
(left) loop fusion. Note that loop fusion and loop splitting are
inverse operations. I.e., the original code can be produced by
performing loop splitting on the fused code. In the ssl case
(Figure 14), grouping independent instructions does not pro-
vide benefits, since there are not adequate hardware resources
to handle the exposed ILP. In this case, the unfused (split)
code has a lower error rate, because the activity of the LSU
(the module that causes the most errors) is throttled by the
interleaving of branches and loop index updates with the loads
and stores. This activity throttling leads to increased TS en-
ergy efficiency, as shown in Table 5.

In the ss4 case (Figure 15). the clustering of independent in-
structions in the fused code spaces out dependent instructions

Table 4: Razor-based TS and error-free energy savings (%) for
loop splitting.

CORE | original | split | split error-free
ss1 5.8 13.8 -0.2
ss2 0.0 9.0 -0.4
ssd 3.6 13.4 -0.1

Error Rate

Error Rate

0.07 4

r——r——-o———&
/

/

1/7

b ——+——
7/

/ —e split
—=— original

Error Rate

100 098 0.

% 094
Voltage (V)
Figure 15: When hardware parallelism is available (ss4), the
fused code spaces out dependent instructions, reducing forward-

ing, and consequently, error rate.

Table 5: Razor-based TS and error-free energy savings (%) for
loop fusion.

Error Rate

1.00 098 096 094 0.92 0.90
Voltage (V)
Figure 12: By removing a dependence from the loop, loop split-
ting reduces the error rates of the ssl (top), ss2 (middle), and
ss4 (bottom) processors.

in the pipeline, thus eliminating many occurrences of forward-
ing and reducing activity on timing critical paths in the LSU.
This critical path avoidance reduces error rate and enhances T'S
efficiency, as shown in Table 5. Again, energy savings from loop
fusion in the error-free case are only meager (< 1%), motivating
the need for T'S-aware compiler analysis and optimization.

CORE | original | fused | fused error-free
ss1 12.2 5.9 0.2
ssd 42 12.3 0.5

for(i=0; i<N; i++)

for(i = 0; i < N; i++){

suml += A[i]; suml += A[i];
for(i=0; i<N; i++) sum2 += B[i];
sum2 += B[i]; sum3 += C[i];
for(i=0; i<N; i++) sum4 += D[i];

sum3 += C[i]; }
for(i=0; i<N; i++)
sum4 += D[i];
Figure 13: Original code (left) and code with fused loops (right).

Several other TS-aware binary optimizations are possible.
The goal of this paper is to demonstrate that significant energy
benefits may be possible from TS-aware binary optimization.
An exhaustive exploration of all possible binary optimizations
is beyond the scope of this work.

4.2 Standard gcc Optimizationsfor Timing Specula-
tive Processors

Fortunately, many standard gcc optimizations have similar
goals as the targeted optimizations discussed above. For exam-
ple, optimizing for a higher O level has the potential to reduce
dependencies and bolster ILP. Similarly, optimizing for a lower
O level may effectively restrict ILP. Below, we evaluate the TS
efficiency of SPEC binaries that have been optimized at differ-
ent O levels.

For architectures without available hardware parallelism (e.g.,
ss1), highly optimizing compute-limited applications can cause
pipeline backend structures to fill, resulting in longer delays and
higher error rates. On the other hand, for memory-bound ap-

008
007 { =+ original
006 { —#—fused
005
004
0.03
002
001

om =

100 098 0% 094 0% 090

Voltage (V)

Figure 14: When hardware parallelism is limited (ssl), the un-
fused (split) code has a lower error rate, since LSU activity is
throttled.

Error Rate

plications with many indirect memory references, critical LSU
paths are not frequently exercised. Instead, IQ contributes
most substantially to the error rate, so optimizing at a higher
O level, which reduces average 1Q entries, and consequently, IQ
delay, reduces the error rate. Thus, when hardware parallelism
is limited, compute-limited applications should be optimized
for a lower O level (O0), while memory-bound, pointer-chasing
codes can be optimized for a higher O level.

For architectures with available hardware parallelism (e.g.,
$s2), highly optimizing compute-limited applications can re-
duce dependencies, activity on critical LSU paths, and error
rate. Optimizations do not have much effect on memory-bound,
pointer-chasing codes, since available hardware parallelism al-
lows average IQ entries to remain low, and critical LSU paths
are not frequently exercised. Below, we test these intuitions for
SPEC benchmarks with standard gcc O levels.

Figure 16 shows the error rates of SPEC benchmarks we eval-
uated at available O levels, running on the ssl core. Although
higher optimizations (e.g., O2) generally improve performance
(IPC), they increase error rate and degrade TS energy effi-
ciency for compute-limited codes (Table 6). This is because
optimizing at the higher O level enhances software parallelism,
but there is not sufficient hardware parallelism to handle the
dispatched instructions. Thus, backend structures (LSQ and
IQ) fill, and propagation delay increases, limiting overscaling.
Consequently, performing no optimizations (OO0) is preferable
for compute-limited applications on the ssl core when TS is
used. Note that this is an interesting result, as the choice of O
level would be different when compiling for the error-free case,
since increasing the O level improves performance.

For pointer-chasing codes like vortex, which performs object-
oriented database lookups, and thus contains many indirect
memory references, critical LSU forwarding paths are not fre-
quently exercised. Rather than the LSU, the IQ dominates the
processor error rate for the O0 binary on this core. Optimizing
for a higher O level results in fewer average IQ entries, reducing
delay and error rate, and significantly increasing energy savings
(Table 6).

For the ss2 core, the backend queue structures are not overly
stressed. Optimizing at a higher O level reduces dependencies
for compute-limited codes, and by extension, activity on the
critical paths of the LSU. This reduces error rate (Figure 17)
and allows more overscaling and reduced energy (Table 7).
Thus, higher optimization (O) levels are beneficial, in general,
for Razor-based T'S when hardware parallelism is not restricted.
Choosing the correct optimization level that balances hardware
and software parallelism maximizes energy savings. Note that
results in this section demonstrate that the best optimization
level is different for TS and non-TS cases. For example, O1
achieves the most energy benefits for TS on the ss2 core, even
though O2 has higher performance in the error-free case.

As expected, memory-bound, pointer-chasing codes see little
impact from optimizations on the ss2 core. The many indirect
memory references in vortex cannot be optimized at compile
time, and thus, optimizations do not significantly impact LSU
activity. Also, since HW parallelism is available to relieve 1Q

fill pressure, optimizations do not significantly reduce the 1Q
error rate either.

In the error-free case, optimizing at a higher level (02) can
increase performance, but this performance comes with a sig-
nificant increase in power consumption. Thus, energy is not sig-
nificantly improved with O2 in the error-free case (Tables 6, 7).
Distinctions between the best strategy in T'S and non-T'S cases
further demonstrates the need for T'S-aware compiler analysis
and optimization.

0.08 q
0.07 4

—-.0
—=—01
——02
—% 03

0.92

—+ .00
—a—01
2
- 03

0.90

96 094
Volage (V)

Figure 16: For the ssl core, highly optimizing compute-bound
code (e.g., bzip) can increase the error rate, because fill pressure
increases the delays of highly utilized pipeline backend struc-
tures and limits overscaling. Optimizing memory-bound code
(e.g., vortex) can reduce error rate, because critical LSU paths
are not exercised, and optimizations reduce IQ fill pressure.

0.08 q /

0.07 - / bzip - ss2 —x

—+ 00
—a—01
—— 02
—x%- 03

0.92

-0
—a—01
——02

—+ .00
—a—01
—4—02
- 03

0.98 0.96 0.92 0.90

094
Voltage (V)

Figure 17: Optimizing compute-bound code (e.g., bzip) can re-
duce dependencies and activity on the critical paths of the LSU
for the ss2 core. Choosing the right optimization level that bal-
ances HW and SW parallelism can be important. This results
in lower processor error rates. The effect of optimizations is
limited for memory-bound code (e.g., vortex).

Table 6: Razor-based TS and error-free energy savings (%E),
performance (IPC), and binary size (MB) for SPEC benchmarks
at different O levels (ssl).

ssl bzip mcf vortex
OPT %E IPC MB %E IPC MB %E IPC MB
00 11.8 | 0.45 | 0.32 | 14.7 | 0.56 | 0.31 0.0 0.55 | 1.70
O1 7.5 0.79 | 0.29 9.2 0.67 | 0.29 | 14.0 | 0.49 | 1.48
02 0.0 0.77 | 0.29 9.0 0.54 1 0.29 | 14.0 | 0.51 | 1.47
03 7.2 0.75 | 0.31 9.2 0.59 | 0.30 | 14.0 | 0.51 | 1.49
O2 no-error 1.2 0.77 | 0.29 0.1 0.56 | 0.29 0.0 0.55 | 1.47
Table 7: Razor-based TS and error-free energy savings (%E),
performance (IPC), and binary size (MB) for SPEC benchmarks
at different O levels (ss2).
$52 bzip mcf vortex
OPT %E | TPC MB %E IPC MB %E IPC MB
00 0.0 0.65 | 0.32 0.0 0.69 [0.31 | 10.4 | 0.61 1.70
O1 7.7 1.39 1 029 | 134 | 1.45 | 0.29 [10.0 | 0.74 | 1.48
02 5.7 1.32 | 0.29 9.1 1.37] 0.29 [10.2 | 0.75 | 1.47
03 7.5 1.34 | 0.31 8.5 1.26 | 0.30 | 10.4 | 0.76 | 1.49
O2 no-error 1.2 1.5 0.29 1.0 1.49 | 0.29 0.4 0.78 | 1.48

5. SUMMARY AND CONCLUSIONS

Previous work on improving energy efficiency of timing spec-
ulative processors relied on code targeting conventional proces-
sors or assumed additional hardware support and instruction
set extensions. In this paper, we have demonstrated that care-
ful binary optimization can increase the energy efficiency of
error resilient processors without additional hardware support.
Since the program binary determines the utilization pattern of
the processor, which in turn influences the error rate of the
processor and the energy efficiency of timing speculation, op-
timizing a binary specifically for timing speculative processors
can manipulate the utilization of different microarchitectural
units based on their timing slack distribution to deliver energy
efficiency benefits. We have demonstrated up to 39% additional
energy savings with timing speculation-aware binary optimiza-
tion for Razor-based processors. We expect the energy benefits
to grow as more sophisticated compiler techniques are devel-
oped.

6. REFERENCES
[1] N. Choudhary, S. Wadhavkar, T. Shah, S. Navada, H. Najaf-abadi,
and E. Rotenberg. Fabscalar. In WARP, 2009.

[2] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A
low-power pipeline based on circuit-level timing speculation. In
MICRO, page 7, 2003.

Y. Fujimura, O. Hirabayashi, T. Sasaki, A. Suzuki, A. Kawasumi,
Y. Takeyama, K. Kushida, G. Fukano, A. Katayama, Y. Niki, and
T. Yabe. A configurable sram with constant-negative-level write
buffer for low voltage operation with 0.149um? cell in 32nm
high-k/metal gate cmos. In ISSCC, 2010.

B. Greskamp, L. Wan, W. Karpuzcu, J. Cook, J. Torrellas,

D. Chen, and C. Zilles. Blueshift: Designing processors for timing
speculation from the ground up. HPCA, 2009.

G. Hamerly, E. Perelman, J. Lau, and B. Calder. Simpoint 3.0:
Faster and more flexible program analysis. In JILP, 2005.

G. Hoang, R. Findler, and R. Joseph. Exploring circuit
timing-aware language and compilation. In ASPLOS, pages
345-356, 2011.

Intel Corporation. Intel atom processor z5xx series, 2008.

A. Kahng, S. Kang, R. Kumar, and J. Sartori. Designing
processors from the ground up to allow voltage/reliability
tradeoffs. In HPCA, 2010.

A. Kahng, S. Kang, R. Kumar, and J. Sartori. Recovery-driven
design: A methodology for power minimization for error tolerant
processor modules. In DAC, 2010.

A. Kahng, S. Kang, R. Kumar, and J. Sartori. Slack redistribution
for graceful degradation under voltage overscaling. In ASPDAC,
2010.

J. Patel. CMOS process variations: A critical operation point
hypothesis, 2008.

S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas. Eval:
Utilizing processors with variation-induced timing errors. MICRO,
pages 423-434, 2008.

J. Sartori and R. Kumar. Architecting processors to allow
voltage/reliability tradeoffs. CASES, 2011.

(3]

(4]

5]
(6]

(7]
8l

9

(10]

(11]

(12]

(13]

S1. Understanding How Slack and Activity Dis-
tributions Determine Error Rate

In this supplemental section, we explain in greater detail how
slack and activity distributions determine the error rate of a
processor. The extent of energy benefits gained from exploiting
timing error resilience depends on the error rate of a processor.
In the context of voltage overscaling-based timing speculation,
for example, benefits depend on how the error rate changes as
voltage decreases. Likewise, in the context of frequency over-
scaling, benefits depend on how the error rate changes as fre-
quency increases. If the error rate increases steeply, only mea-
ger benefits are possible [8]. If the error rate increases gradually,
greater benefits are possible. In this paper, we have consid-
ered voltage overscaling-based timing speculation, though our
conclusions should also be applicable to other forms of timing
speculation.

The timing error rate of a processor in the context of voltage
overscaling depends on the timing slack and activity distribu-
tions of the paths of the processor. Figure 18 shows an example
slack distribution. The slack distribution is a histogram that
shows the number of paths in a design at each value of timing
slack. As voltage scales down, path delay increases, and path
slack decreases. The slack distribution shows how many paths
can potentially cause errors because they have negative slack
(shaded region). Negative slack means that path delay is longer
than the clock period.

From the slack distribution, it is clear which paths can cause
errors (timing violations) at a given voltage and frequency. In
order to determine the error rate of a processor, however, the
activity of the negative slack paths must be known. A negative
slack path causes a timing error when it toggles. Therefore,
knowing the cardinality of the set of cycles in which any nega-
tive slack path toggles reveals the number of cycles in which a
timing error occurs.

For example, consider the circuit in Figure 19 consisting of
two timing paths. P; toggles in cycles 2 and 4, and P» toggles
in cycles 4 and 7. At voltage Vi, P; is at critical slack, and P
has 3ns of timing slack. Scaling down the voltage to V2 causes
P1 to have negative slack. Since P; toggles in 2 of 10 cycles,
the error rate of the circuit is 20%. At V3, the negative slack
paths (now P and P») toggle in 3 of 10 cycles (cycles 2,4,7),
and the error rate is 30%.

paths zero slack after
voltage scaling

timing slack

\4

I yoltage scaling

Figure 18: Voltage scaling shifts the point of critical slack. Paths
in the shaded region have negative slack and cause errors when
toggled.

Pﬂﬂgli%i) Sl ack
N ™ P, | P, |ER
D Q D @
Vi| Ons| 3ns| 0%
5 5 V,|-1ns| 1ns|20%
— o V3|-2ns |- 1ns |30%

Tz(c_yagz—;; Total cycles = 10

Figure 19: Slack and activity distributions determine the error
rate.

S2. Details of Activity-based Error Rate Calcula-
tion

This supplemental section provides additional details on how
we calculate error rate in our design flow. To calculate the
error rate produced by a binary running on a processor imple-
mentation, we run a gate-level simulation of the binary on the
synthesized, placed, and routed processor RTL, and we capture
switching information for the nets in the design in the form of
a value change dump (VCD) file. To calculate the error rate of
a design at a particular voltage, toggled nets from the VCD file
are traced to find the paths that have toggled in each cycle. The
delays of toggled paths are measured using PrimeTime, and any
cycle in which a negative slack path toggles is counted as an
error cycle. The error rate (ER) of the design is equivalent to
the cardinality of the set of error cycles, divided by the total
number of simulation cycles (Xtot), as shown in Equation 1,

ER — |Up6Pn Xtoggle(p)| (1)
Xtot
where P, is the set of negative slack paths and Xtoggic(p) is the
set of cycles in which path p toggles.

Figure 20 shows an example VCD file and illustrates the path
extraction method. The VCD file contains a list of toggled nets
in each cycle, as well as their new values. Toggled nets in each
cycle are marked, and these nets are traversed to find toggled
paths. A toggled path is identified when toggled nets compose
a connected path of toggled cells from a primary input or flip-
flop to a primary output or flip-flop. In Figure 20, nets a, b,
and ¢ have toggled in the first and fourth cycles (#1, #4), and
nets d and ¢ have toggled in the second and fourth cycles (#2,
#4). Two toggled paths are extracted: a—b—c and d—c. Paths
a—b—c and d—c both have toggle rates of 40% (|xtoggic(P)] = 2
and Xyot = 5). Therefore, if only one of the paths has negative
slack, the error rate is 40% in this example. If both paths have
negative slack, then timing errors will occur in cycles #1, #2,
and #4, for an error rate of 60%.

Netlist
b

d /

Extracted paths

#0 VCDfile Wave form

Oa a
ob clock : LI LI LILILY
0c — [value,wire] a
0d T
#1 > [time] b

la c . L
1b]

a-b-c (@cyclel, 4)

1d d-c (@cycle2, 4)
HO# #® #HB #

{I;:ligure 20: VCD file format and path extraction from the VCD
e.

In addition to inducing timing errors by increasing logic de-
lays, voltage scaling may prompt reliability concerns for SRAM
structures, such as insufficient Static Noise Margin (SNM).
Fortunately, the minimum energy voltage for our processors
is around 750mV, while production-grade SRAMs have been
reported to operate reliably at voltages as low as 700mV [3].
Research prototypes have been reported to work for even lower
voltages. In any case, modern processors typically employ a
“split rail” design approach, with SRAMs operating at the low-
est safe voltage for a given frequency [7].

S3. Related Work

Previous work on TS-aware design has focused on optimizing
hardware to improve the efficiency of T'S. Work has been done
primarily at the design level [4,8-10,12] and the architecture
level [13] to reshape the slack distribution of a processor to
enhance the energy efficiency benefits of T'S. These optimiza-
tions primarily focus on making the static slack distribution of
a processor more amenable to overscaling.

This work, however, focuses on optimizations at the software
level that influence the activity and dynamic slack distributions
of a processor (see Section 2). Since the error rate of a timing
speculative processor depends on both slack and activity (see
Section S1), TS-aware compilation has just as much potential to
optimize processor error rate as hardware-based techniques. A
promising direction of work involves co-optimization of software
and hardware to reshape the dynamic slack distribution and
maximize the energy efficiency benefits of exploiting T'S.

The closest related work [6] focuses on extending the instruc-
tion set to include instructions for which the circuit implemen-
tation has a shorter critical path. Replacing instructions with
these new instructions increases timing slack and enables more
overscaling. The instruction set extensions proposed by [6] pri-
marily focus on reduced-complexity arithmetic operations. We
optimize program binaries to improve energy efficiency for TS
processors without requiring hardware support.

In a typical ASIC design flow, all paths with excess timing
slack are optimized to remove the timing slack, thus reduc-
ing power consumption and area. This design style produces
a design with a critical slack wall [11], so that the vast ma-
jority of timing paths have near-critical slack. Since all circuit
modules in our designs have many critical paths, as we would
expect in a processor implemented by a typical CAD flow, we
are unable to utilize optimizations that redirect instructions to
units with more timing slack [6]. Instead, our optimizations
focus on avoiding activation of the critical paths in a hardware
unit and throttling the activity of units that cause the most
errors. Additionally, we focus on binary optimizations that do
not require instruction set extensions, and thus, may be more
generally applicable. Finally, since the architectures that we
evaluate are different than the architecture studied in [6], the
modules that cause the most errors are different. Therefore, our
architecture-specific optimizations focus on different regions of
the processor.

