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ABSTRACT
Conventional CAD methodologies optimize a processor module for
correct operation, and prohibit timing violations during nominal
operation. In this paper, we propose recovery-driven design, a de-
sign approach that optimizes a processor module for a target tim-
ing error rate instead of correct operation. We show that significant
power benefits are possible from a recovery-driven design flow that
deliberately allows errors caused by voltage overscaling ([11],[3])
to occur during nominal operation, while relying on an error recov-
ery technique to tolerate these errors. We present a detailed evalu-
ation and analysis of such a CAD methodology that minimizes the
power of a processor module for a target error rate. We demonstrate
power benefits of up to 25%, 19%, 22%, 24%, 20%, 28%, and 20%
versus traditional P&R at error rates of 0.125%, 0.25%, 0.5%, 1%,
2%, 4%, and 8%, respectively. Coupling recovery-driven design
with an error recovery technique enables increased efficiency and
additional power savings.

Categories and Subject Descriptors
B.7.2 [Hardware]: INTEGRATED CIRCUITS—Design Aids; J.6
[Computer Applications]: COMPUTER-AIDED ENGINEERING

General Terms
Algorithms, Design, Performance

Keywords
Recovery-Driven Design, Power Minimization

1. INTRODUCTION
Trends in the semiconductor industry point to a significant in-

crease in device-level variation as lithographic technology lags be-
hind physical device scaling. Such trends have promoted variability
to the forefront in terms of circuit-level design constraints and ex-
posed the ever-increasing power cost of conservative design tech-
niques aimed at ensuring correctness under worst-case conditions.

Better-than-worst-case design techniques [1] have been employed
successfully to reduce power consumption by eliminating guard-
bands, but such techniques still assume correct design in the aver-
age case, limiting their effectiveness for power reduction.

In this paper, we show that significant power benefits are possible
from a design flow that (i) deliberately allows errors caused by volt-
age overscaling ([11],[3]) to occur during nominal operation, while
(ii) relying on an error recovery technique to tolerate these errors.
Moving away from the traditional philosophy of designing for cor-
rectness and correcting variation-induced errors as they arise, we
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propose recovery-driven design – a design approach that allows er-
rors that can be gainfully tolerated by a hardware [3] or software-
based [11] error tolerance technique. In other words, errors are
selectively allowed in order to maximize the power savings for a
given error rate budget. Power benefits result from timing slack
being distributed from infrequently-executed paths to frequently-
executed paths, reducing the error rate at a given voltage, and hence
reducing the minimum supply voltage consistent with a target error
rate.

As we show in this paper, optimizing power for a target error
rate results in significant power savings for similar levels of perfor-
mance. Errors are either detected and corrected by a hardware error
tolerance mechanism [3] or allowed to propagate to an error toler-
ant application [2] where the errors manifest themselves as reduced
performance or output quality [11]. Increasing the error rate target
increases the potential for power savings, since the processor mod-
ule can be operated at a lower voltage. In practice, the error rate
target is chosen such that an error recovery technique can correct
the resulting errors and still achieve lower power (after consider-
ing the error tolerance overhead) for an acceptable degradation in
performance or quality of output.

In this paper, we present a detailed evaluation and analysis of
a CAD methodology that minimizes processor power for a target
error rate. Our proposed methodology for designing for a target
error rate makes the following contributions.
• To the best of our knowledge, we present the first design flow

for power minimization that deliberately allows errors under
nominal conditions. We demonstrate that such a design flow
can result in significant power savings – up to 25%, 19%,
22%, 24%, 20%, 28%, and 20% versus traditional P&R at
error rates of 0.125%, 0.25%, 0.5%, 1%, 2%, 4%, and 8%,
respectively.
• We provide an in-depth exploration of the heuristic design

choices and tradeoffs that are fundamental to the optimiza-
tion quality achieved. We evaluate choices for path order-
ing during optimization, optimization radius, path traversal
during optimization, accuracy of path selection, error bud-
get utilization, starting netlist, voltage step size granularity,
and iterative optimization in terms of their effects on the op-
timization result, heuristic runtime, and sensitivity to error
rate target.

• To support the proposed recovery-driven design flow, we pre-
sent a fast, novel, and accurate technique for post-layout ac-
tivity and error rate estimation that uses functional informa-
tion to redistribute slack efficiently in a circuit, significantly
extending the range of allowable voltage scaling for a given
target error rate.

• We demonstrate that the power benefits of a design produced
by a recovery-driven design flow increase when a hardware-
based error recovery technique is used. We consider Ra-
zor [3] as an example and show additional power reductions
of 21% with respect to the next best approach.

2. BACKGROUND
2.1 Motivation

Figure 1 motivates this work by demonstrating that efficient re-
distribution of timing slack from infrequently-exercised paths to



frequently-exercised paths reduces the error rate at a given voltage,
allowing a reduction in voltage for a given target error rate.
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Figure 1: Our power optimization redistributes slack from infrequently-exercised
paths to frequently-exercised paths and performs aggressive cell downsizing for
average-case conditions. These optimizations reduce the power consumption of
a circuit and extend the range of voltage scaling before a target error rate is ex-
ceeded. The combination of these effects results in operation at a much lower
power point.

The goal of the design problem can be stated formally as fol-
lows. Given an initial netlist N0, a set of cell libraries character-
ized for allowable operating voltages, toggle rates for the toggled
paths in the netlist, and an error rate target ERtarget , produce the
optimized netlist NVopt and operating voltage Vopt that minimize the
total power consumption WVopt of the circuit, such that the error rate
of the optimized netlist does not exceed ERtarget . In this paper, we
present a methodology to solve this design problem.

2.2 Related Work
2.2.1 Design-level Optimization

Design-level optimizations for error-tolerant designs ([6], [5],
[13]) identify and optimize critical paths which are frequently exer-
cised during operation. BlueShift [6] identifies the most-frequently
violated timing paths during gate-level simulation, and optimizes
the paths iteratively until the error rate is below the target. BlueShift
uses two methods to add slack to the frequently-exercised paths –
forward body biasing of selected gates and application of tighter
timing constraints to the frequently-exercised paths. CRISTA [5]
isolates critical paths by Shannon-expansion-based partitioning. Af-
ter partitioning, CRISTA downsizes cells on the critical path and up-
sizes cells on the non-critical paths: critical paths are made slower
while non-critical paths are made faster. When a critical path is
excited, the corresponding operation takes two cycles. Kahng et
al. [13] [14] propose power-aware slack redistribution to shift the
timing slack of frequently-exercised, near-critical timing paths in
a power-efficient manner. They identify frequently exercised paths
with switching activity information and optimize the paths using a
cell sizing method.

Our present work differs from BlueShift in both objective and
approach. Our objective is to minimize power, while BlueShift’s
objective is to improve performance. Consequently, our sensitiv-
ity functions are voltage-aware. Also, BlueShift requires iterative
gate-level simulation, making the approach impractical for large
SOC designs. CRISTA changes the structure of the original circuit
to isolate critical paths. Our method can be used much more gener-
ally, as we do not change the original circuit’s structure. Slack op-
timizer in [13] [14] uses switching activity from SAIF (switching
activity interchange format) to extract frequently-exercised paths
and calculate error rate. However, SAIF-based estimation is pes-
simistic and has limited accuracy. We use not only switching activ-
ity but also functional simulation information directly. So, we can
identify the critical paths and estimate error rates precisely. Slack
optimizer may also become stuck at a local optimum during voltage
scaling-based optimization. However, our heuristic, by finding a
minimum-power design at each voltage level, affords better global
results.

2.2.2 Sensitivity-based Cell Sizing
Sensitivity-based downsizing approaches have been proposed in

[4], [21], [22], [8], [7] and [9]. TILOS [4] proposes a heuristic that

sizes transistors iteratively, according to the sensitivity of the crit-
ical path delay to the transistor sizes, in order to find an optimum
(with maximum delay reduction / transistor width increase). Equa-
tion (1) shows the sensitivity function of TILOS. ∆L(T ) and ∆D(T )
represent the change of leakage and delay for a resized transistor T .
The techniques proposed in [22] use the same sensitivity function
as T ILOS.

Sensitivity(T ) =
∆L(T )

∆D(T )
(1)

For the cell sizing in [8], all cells are sorted in decreasing order of
∆leakage× slack (Equation (2)), where ∆leakage is the improve-
ment in leakage after a cell is replaced with its less leaky variant,
and slack is its timing slack after the replacement has been made.

Sensitivity = ∆leakage× slack (2)
The techniques proposed in [7] and [9] use sensitivity-based down-
sizing (i.e., begin with all nominal cell variants and replace cells
on non-critical paths with long channel-length–variants) heuristics
for leakage optimization. In their heuristics, they defined Pp as the
sensitivity associated with cell instance p.

Pp =
`p− `′p
sp− s′p

(3)

In Equation (3), sp represents the slack of a given cell instance p,
and s′p represents the slack of p after downsizing. `p and `′p in-
dicate the initial and final leakage values of cell instance p before
and after downsizing, respectively. The sensitivities Pp are com-
puted for all cell instances p. The heuristics of [7],[9] select a cell
with the largest sensitivity and perform downsizing with a logically
equivalent cell. If there is no timing violation in incremental STA,
this move is accepted and saved.

3. AN ABSTRACT HEURISTIC FOR POWER
MINIMIZATION

Our heuristic for slack redistribution-based power minimization
uses a two-pronged approach – extended voltage scaling through
cell upsizing on critical and frequently-exercised circuit paths (Op-
timizePaths), and area reduction achieved by downsizing cells in
non-critical and infrequently-exercised paths (ReducePower). The
heuristic searches for the combination of the two techniques that
results in the lowest total power consumption for the circuit, by per-
forming path optimization and power reduction at each voltage step
and then choosing the operating power at which minimum power is
observed.

# paths

timing slack 

(a)
zero slack after

scaling voltage

P-

P+
P+

P-

(b)

(c) (d)

voltage scaling

upsize cells

downsize cells

downsize cells

iterate voltage scaling

Figure 2: The power minimization heuristic reshapes the path slack distribu-
tion by redistributing slack from paths that rarely toggle to paths that toggle
frequently.

Figure 2 illustrates the evolution of the circuit path slack dis-
tribution throughout the stages of the power minimization proce-
dure. Each iteration begins as voltage is scaled down by one step
(a). After partitioning the paths into sets containing positive and
negative-slack paths, OptimizePaths attempts to reduce the error
rate by increasing timing slack on negative-slack paths (b). Next,
the heuristic allocates the error rate budget by selecting paths to



be added to the set of negative-slack paths, and downsizes cells to
achieve area / power reduction while respecting the partition be-
tween positive- and negative-slack paths (c). This cycle is repeated
over the range of voltages to find the minimum power netlist and
corresponding voltage (d). In Figure 2, P+ is a set of paths that
must have non-negative slack after power reduction, and P− is a set
of paths that are allowed to have negative slack.

Figure 3 displays the algorithmic flow of our power minimization
heuristic, which couples path optimization to extend the range of
voltage scaling (OptimizePaths) and area minimization to achieve
power reduction (ReducePower).

In the next section, we present the various implementation details
for this heuristic, and outline a set of heuristic design choices.
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Figure 3: Algorithmic flow of a heuristic for minimizing power for a target error
rate. Pa is the set of all paths toggled during simulation. Pp is the set of all non-
negative-slack paths. Pn is the set of all negative-slack paths in Pa. χtoggle(p) is the
set of cycles in which path p is toggled.

4. HEURISTIC DESIGN AND IMPLEMEN-
TATION: DETAILS AND CHOICES

4.1 Procedures
4.1.1 Path Optimization

The goal of the path optimization procedure presented in Algo-
rithm 1 (OptimizePaths) is to minimize the error rate at a voltage
level by transforming negative slack paths into non-negative-slack
paths. This is accomplished by performing cell swaps that upsize
cells in the negative slack paths and increase the path slack. Nega-
tive slack paths with maximum toggle rates are selected first during
optimization, since they have the most potential to reduce the error
rate if converted into non-negative-slack paths.

When a path is targeted for optimization, upsizing cell swaps are
attempted on all cells in the path to increase slack as much as possi-
ble until non-negative path slack is achieved. Once a cell has been
visited during optimization, it is marked to prevent degradation of
timing slack on any paths that the cell is in. Before accepting a
cell swap, path slack is checked for all paths that the cell or any
visited fanin / fanout cell is on. If the swap caused a decrease in
slack for any such paths, the move is rejected, and the original cell
is restored. Previously optimized (visited) fanin and fanout cells
are protected from slack decrease because they belong to paths that
have higher toggle rates, and thus higher priority of optimization.
If cell upsizing on a path fails to shift the path back into the set
of positive slack paths, then the path is ignored during subsequent
path optimization iterations.

Sensitivityc =
sc− sc′

wc−wc′
, where wc = wstat(c)+wdyn(c)(4)

Any cell swap that increases the error rate (by causing a path to
switch from the set of positive slack paths to the set of paths al-
lowed to have negative slack) is rejected. Otherwise, we recompute

the sensitivity of the swapped cell and all cells in its fanin / fanout
network and select the next cell for downsizing.

Algorithm 1 Pseudocode for OptimizePaths and ReducePower.
Procedure OptimizePaths(P,NVi ,Vi)

1. Clear ’visited’ mark in all cells in the netlist NVi ;
2. while P 6= /0 do
3. Select path p from P with maximum toggle rate
4. for each cell c in path p do
5. if c.visited == true then continue;
6. c.visited← true;
7. for each logically equivalent cell m for the cell instance c do
8. Resize cell c with logically equivalent cell m;
9. Q← c ∪ visited fanin and fanout cells of c;

10. for each path q in P that contains a cell in Q do
11. if ∆slack(q,c,m,Vi) < 0 then
12. Restore cell change;
13. break;
14. end if
15. end for
16. end for
17. end for
18. P← P− p;
19. end while

Procedure ReducePower(Pp,Pn,NVi ,Vi,ERtarget )

1. P+← Pp and P−← Pn;
2. while P+ 6= /0 do
3. Select path p from P+ with minimum ∆ER(p)
4. ER←ComputeErrorRate(P−+ p)
5. if ER≤ ERtarget then
6. P−← P−+ p
7. P+← P+− p
8. else
9. break;

10. end if
11. end while
12. Insert all downsizable cells into set C;
13. ComputeSensitivity(C,NVi ,Vi,−1)
14. while C 6= /0 do
15. Downsize cell c from C with minimum Sensitivityc;
16. Q← c ∪ fanin and fanout cells of c
17. for each path p in P+ that contains a cell in Q do
18. if slack(p,Vi) < 0 then
19. Restore cell change;
20. C←C− c;
21. continue while loop;
22. end if
23. end for
24. ComputeSensitivity(Q,NVi ,Vi,−1);
25. if cell c is not downsizable then
26. C←C− c;
27. end if
28. end while

4.1.2 Power Reduction
After path optimization, the error rate of the circuit is minimized

at the present voltage. From this state, we proceed to minimize
the power at the present voltage by utilizing the available error rate
budget Algorithm 1 (ReducePower) describes our power reduction
procedure.

The goal of the power reduction heuristic is to efficiently allocate
the remaining error budget to dormant paths in order to maximize
power reduction achieved by cell downsizing. Typically, cells on
negative-slack paths can be downsized to a greater extent, because
these paths are not bound by the normal timing constraint of the
circuit.

The first step in power reduction is to choose additional paths to
become negative-slack paths until the target error rate of the circuit
is matched. Paths are selected in order to minimize the additional
contribution to the error rate of the circuit. After defining the par-
tition between negative and non-negative-slack paths, cell down-
sizing is performed for all cells in the circuit in order of minimum
sensitivity. We define the sensitivity of a cell in Equation 4 as the
change in cell slack (∆sc) divided by the change in cell power (∆wc)
when the cell is downsized by one size. The slack of a cell, c, is
defined as the minimum slack on any timing arc containing c. This
formulation of sensitivity is similar to those proposed by previous
works targeting leakage power reduction [7, 9].



4.2 Path Extraction and Error Rate Estima-
tion

4.2.1 Path Extraction
Our heuristic has many path-based procedures – OptimizePaths,

ReducePower, and ComputeErrorRate – and it is impossible to
consider all of the topological paths in these procedures. Therefore,
we reduce the number of paths we consider by extracting paths
that are toggled during functional simulation. The value change
dump (VCD) file can be used to extract toggled paths. To produce
a VCD file, we perform gate-level simulation with Cadence NC-
Verilog v6.1 [24]. Figure 4 shows an example VCD file and the
path extraction method. The VCD file contains a list of toggled
nets in each cycle time, as well as their new values. We can use this
information to extract truly toggled paths in each cycle. Changed
nets in each cycle are marked, and these nets are traversed to find
toggled paths. We detect a toggled path when toggled nets compose
a connected path of toggled cells from a primary input or flip-flop
input to a primary output or flip-flop output. In Figure 4, nets a, b,
and c have toggled in the first and fourth cycles (#1, #4), and nets
d and c have toggled in the second and fourth cycles (#2, #4). We
extract two paths: a−b− c and d− c.

4.2.2 Toggle Rate and Error Rate Estimation
In order to accurately minimize power for an error rate target, we

must be able to produce accurate estimates for error rate during our
optimization flow. Thus, we propose a novel approach to error rate
estimation that enables design for a target error rate.

We calculate the toggle rate of an extracted path using the num-
ber of cycles in which the path toggles. χtoggle(p) represents the set
of cycles in which path p has toggled during the simulation. T R(p)
represents the toggle rate of path p and is defined as:

T R(p) =
|χtoggle(p)|

Xtot
(5)

where |χtoggle(p)| is the number of cycles in which path p has tog-
gled, and Xtot is the total number of cycles in the simulation. Using
the toggled cycle information of negative-slack paths, we can cal-
culate the error rate precisely. The error rate (ER) of the design is
calculated as:

ER =
|
⋃

p∈Pn
χtoggle(p)|

Xtot
(6)

where Pn is the set of negative-slack paths in the set of all toggled
paths. In Figure 4, if paths a− b− c and d− c both have a toggle
rate of 0.4 (number of toggled cycles is 2 and number of total cycles
is 5), and if both paths have negative slack, then timing errors will
occur in cycles #1, #2, and #4. Therefore, the error rate is 0.6 for
this example.
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Figure 4: VCD file format and path extraction.

4.3 Heuristic Design Choices
In this section, we discuss the heuristic design choices that we

have made.
Experiment 1: Path ordering during Optimization
The order in which we select paths for optimization affects the op-
timization result, since we prevent cells from being visited multiple
times during optimization. This order matters also because we pro-
tect previously optimized paths from slack degradation from other
attempted upsizing moves, since previously optimized paths have a
higher optimization priority.

We evaluate two prioritization functions for path selection dur-
ing optimization. The first ranks paths in order of decreasing toggle

rate, T R(p) Paths with the highest toggle rates have the greatest po-
tential to decrease error rate when optimized. We compare against a
function that ranks paths in order of decreasing T R(p)/|slack(p)|.
In this alternative, we prefer paths with less negative slack, since
these paths can be converted into non-negative-slack paths with
least optimization effort (upsizing).
Experiment 2: Optimization Radius
The goal of optimization is to maximize the slack of a targeted path
through cell upsizing. We evaluate two alternatives for the radius
of optimization. In one case, we only target cells on a given path
for upsizing. In the second case, we target both the cells on the path
as well as cells in their fanin / fanout networks, since swaps in the
fanin / fanout network can also affect cell slack.
Experiment 3: Path Traversal during Optimization
When optimizing a path, the order in which cells are visited can
have an effect on the optimization result, since cell swaps affect
input slew and output load. We consider two options – traversal
from front to back and from back to front. We iterate over the cells
in a path and make swaps until there is no further increase in the
slack of the path.
Experiment 4: Accuracy of Path Selection during Power Re-
duction
During power reduction, non-negative-slack paths are selected to
be added to the set of paths allowed to have negative slack, thus
utilizing the available error rate budget. Paths are prioritized in or-
der of increasing incremental contribution to error rate, ∆ER(p).
However, after moving a path from P+ to P−, ∆ER(p) can change
for paths that shared error cycles with the moved path.

To obtain precise ordering in terms of error rate contribution, we
can update ∆ER(p) after each path selection. However, this in-
troduces a runtime overhead, since we must continuously update
∆ER(p) for all remaining P+ paths. We compare such precise pri-
oritization against the alternative case where ∆ER(p) is calculated
only once for all P+ paths before path partitioning.
Experiment 5: Error Rate Budget Utilization
During power reduction, the final error rate after cell downsizing
could be less than the target error rate, ERtarget , since some paths in
P− might still have non-negative slack, even after maximum down-
sizing on the path cells. In this case, we might continue to reduce
the power of the design by selecting more paths to add to P− and
downsizing cells again. We evaluate two cases – one where a single
pass is performed for path selection and cell downsizing, and one
where the ReducePower procedure is repeated until there is no fur-
ther reduction in power. (i.e., Repeat ReducePower whenever some
paths added to P− still have non-negative slack after cell downsiz-
ing.)
Experiment 6: Starting Netlist
Here,we evaluate heuristic performance for different starting netlists
corresponding to loose and tight timing constraints. This can sig-
nificantly affect both the final voltage reached and the amount of
power savings afforded by the power minimization algorithm
Experiment 7: Voltage Step Size
In each iteration of the power minimization heuristic, we step down
the voltage by a value Vstep and run the OptimizePaths and Reduce-
Power procedures to produce a netlist for the present level of volt-
age scaling. The size of Vstep can influence the optimization result
and runtime of the heuristic. Thus, we compare two values of Vstep
– 0.01V and 0.05V – and compare the characteristics of the final
netlist as well as the heuristic runtime.
Experiment 8: Iterative Optimization
In each iteration of the heuristic, we perform optimization of negative-
slack paths at that voltage level. During the next iteration, we have
a choice between starting from the previously optimized netlist,
(NVi−1 ) or the original netlist (N0). We compare the netlists pro-
duced in each case and see if they have similar power and runtime
characteristics.

4.4 Comparison Against Alternative Flows
To demonstrate of the benefits of our power minimization design

flow, we compare five alternative design flows – traditional P&R
implementations with tight and loose timing constraints, BlueShift
PCT [6], Slack Optimization [13] [14], and our heuristic for Power
Optimization.



5. EXPERIMENTAL RESULTS
For our experiments, we use 9 modules (Table 1) of the OpenSPARC

T1 processor [23]. Module designs are implemented with a TSMC
65GP library (65nm) and the initial netlists are synthesized with
Synopsys Design Compiler vY-2006.06-SP5 [25].

Table 1: Target modules for experiments.
Module Stage Description Cell # Area (um2)
lsu_dctl MEM L1 Dcache Control 4537 13850

lsu_qctl1 MEM LDST Queue Control 2485 7964
lsu_stb_ctl MEM ST Buffer Control 854 2453

sparc_exu_div EX Integer Division 4809 14189
sparc_exu_ecl EX Execution Unit Control Logic 2302 7089
sparc_ifu_dec FD Instruction Decode 802 1737

sparc_ifu_errdp FD Error Datapath 4184 12972
sparc_ifu_fcl FD L1 Icache and PC Control 2431 6457

spu_ctl SPU Stream Processing Control 3341 9853
tlu_mmu_ctl MEM MMU Control 1701 5113

5.1 Evaluation of Error Rate Estimation
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Figure 5: Actual error rate from functional simulation vs. estimated error rate
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in [13] demonstrating much better correlation with actual error rate.

Accurate error rate estimation is critical to achieving power min-
imization when designing for a target error rate. Inaccurate esti-
mation can lead to over- or under-optimization. Figure 5 compares
the error rate estimation approach proposed by this work against
the result computed during functional simulation, and an estimator
used by the slack optimization heuristic in [13] [14].

Our estimation technique compares favorably against the previ-
ously proposed estimator, and matches well with actual error rate.
Root mean squared error for our technique is 0.1575 as opposed to
0.6002 for the technique used in the slack optimizer. Figure 6 com-
pares the runtime of our estimation technique with that of actual
simulation demonstrating over an order of magnitude decrease.
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5.2 Evaluation of Heuristic Design Choices
Figure 7 shows power and runtime of the various heuristic de-

sign alternatives that we evaluated. For path ordering during op-
timization, considering the slack in the prioritization function re-
sults in higher power than the case where only toggle rate is used.
Runtime is somewhat smaller, but since our optimization iterates
over a path multiple times until no slack increase is observed, both
results perform similarly. For the same reason, path traversal or-
der has little effect on the optimization result. We choose the toggle
rate priority function for its simplicity and lower power.

The results for optimization radius show that swapping cells in
the fanin/fanout network not only increases power at some error
rates, but also greatly increases runtime due to the large amount of
swaps that are performed. Thus, we choose to swap cells only on
the optimized path.

In the experiments on accuracy of path selection and error rate
budget utilization, we observe no difference in power. Both up-
dating the error rate contribution continuously during path selec-
tion and ensuring full utilization of the error rate budget increase
runtime significantly without providing power benefits, and these
techniques are not used in the final heuristic implementation.

Choice of starting netlist and voltage step size have significant
effects on power. Our heuristic for power minimization employs
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Figure 7: An evaluation of different heuristic design choices. The choices are
evaluated in terms of power of the resulting design as well as the runtime.

two main procedures – OptimizePaths (cell upsizing to reduce the
error rate) and ReducePower (cell downsizing to reduce area and
power). When starting the optimization flow from a loosely con-
strained design, we observe that path optimization provides the
most substantial contribution to power reduction by reducing the
error rate and extending voltage scaling. However, when starting
from a tightly constrained design, much optimization has already
been performed, and the power reduction stage of our heuristic
is essential to power minimization. Overall, a tightly constrained
netlist provides a better starting point since it permits more voltage
scaling, which has a larger affect on power reduction, since power
of all cells scales rather than only the downsized cells.

Using a coarser granularity voltage step reduces runtime signif-
icantly, but comes at the cost of power, since the heuristic cannot
hone in on the optimal voltage as easily. However, for higher er-
ror rates, a large step size can provide a good power result and a
large reduction in runtime. Thus, error rate-aware step sizing can
be beneficial.

In terms of iterative optimization, we observe that our heuristic
is able to achieve the same result independent of which version of
the netlist it starts with. Thus, we choose the option that minimizes
runtime.

5.3 Comparison Against Alternative Flows
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Figure 8: Power consumption of each design technique at various target error
rates for lsu_stb_ctl.

Figure 8 compares the power consumptions of the various design
techniques at several target error rates.

After deciding how to allocate the error rate budget, the Reduce-
Power stage of our power minimization heuristic performs aggres-
sive cell downsizing to reduce circuit area and power. Table 2 com-



pares design for a target error rate against other design flows in
terms of area overhead with respect to the baseline design. No-
tice that design for a target error rate has higher area overhead than
slack optimization but still produces a design with less power. The
reason for this is that designing for a target error rate allows more
aggressive voltage scaling before the target error rate is exceeded.
At lower voltages, there are more negative slack paths to be op-
timized during OptimizePaths, resulting in more area overhead.
However, the area is well spent, since the additional voltage scal-
ing it enables contributes to a net win in terms of power savings.
Comparing this result with tightly constrained P&R and BlueShift
reveals that designing for an error rate target focuses on the right
set of paths to optimize, while techniques that spend a compara-
ble amount of area fail to identify the right set of paths and end up
increasing power.

Table 2: Average Area Overhead with respect to the Baseline.

Tight P&R BlueShift SlackOpt PwrOpt 0.125% PwrOpt 0.25%
25.9% 11.8% 3.7% 7.7% 9.9%

PwrOpt 0.5% PwrOpt 1% PwrOpt 2% PwrOpt 4% PwrOpt 8%
9.8% 11.2% 13.9% 12.2% 12.8%

5.4 Evaluation of Recovery-driven Design for
Hardware-based Error Tolerance

The objective of design for an error rate is to achieve better
power efficiency for BTWC design by employing functional infor-
mation to optimize for an average case in which errors occur. These
errors can be gainfully tolerated by an error tolerance mechanism
in hardware or software, and since our design flow optimizes for
the most power efficient way to allow a particular error rate, we
observe a power benefit when we design for an error rate target.
Figure 9 compares power consumption of design for a target error
rate against other design techniques when Razor [3] is used to de-
tect and correct errors in the lsu_stb_ctl circuit. The figure shows
that design for an error rate that is efficient for Razor enables ex-
tended voltage scaling (0.75V vs. 0.82V) before recovery overhead
becomes too high, affording an additional 21% power savings.
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Figure 9: Power consumption for lsu_stb_ctl using Razor for error detection and
correction. Recovery-driven design enables extended voltage scaling for addi-
tional power benefits.

6. DESIGN CONSIDERATIONS FOR
RECOVERY-DRIVEN PROCESSORS

The heuristic presented in Section 3 optimizes a circuit module
for a target error rate. This heuristic can potentially be expanded to
provide power savings for processor designs that consist of many
modules. Such a processor-level heuristic would be well-suited for
design of stochastic processors [20, 16, 17, 14]. However, in order
to apply the power optimization heuristic to a large-scale processor
design, several considerations must be addressed.

The power optimization heuristic minimizes the power of a cir-
cuit module for a target error rate. Since a processor consists of
many modules, a processor-level heuristic would need to find the
most efficient way to assign error rate targets to modules in order
to achieve the desired error rate target for the processor. Similarly,
a processor-level heuristic must decide which modules should be
optimized to allow errors and which modules should be optimized
for correct operation. The module-level heuristic selects an opti-
mal operating voltage for each module. Since the optimal voltage
may be different for each module, a processor-level heuristic should
also be able to select the common operating voltage that minimizes
power for the entire processor.

These considerations, along with the design of recovery-driven
processors, are the subject of ongoing work.

7. SUMMARY AND CONCLUSION
In this paper, we have proposed recovery-driven design, a design

approach that optimizes a processor module for a target timing er-
ror rate instead of correct operation. We have presented a detailed
evaluation and analysis of a recovery-driven design methodology to
minimize processor power for a target error rate. We demonstrate
that such a design flow can result in significant power savings –
up to 25%, 19%, 22%, 24%, 20%, 28%, and 20% compared to
traditional P&R at error rates of 0.125%, 0.25%, 0.5%, 1%, 2%,
4%, and 8%, respectively. Additional power savings are possible
for recovery-driven designs that employ error tolerance. We have
demonstrated up to 21% additional power savings for a recovery-
driven design flow that uses Razor to correct timing violations. To
support our recovery-driven design flow, we have presented a fast,
novel, and accurate technique for post-layout activity and error rate
estimation that can significantly extend the range of allowable volt-
age scaling for a given target error rate.
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