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ABSTRACT
As device sizes shrink, device-level manufacturing challenges
have led to increased variability in physical circuit charac-
teristics. Exponentially increasing circuit density has not
only brought about concerns in the reliable manufacturing
of circuits, but has also exaggerated variations in dynamic
circuit behavior. The resulting uncertainty in performance,
power, and reliability imposed by compounding static and
dynamic non-determinism threatens to halt the continua-
tion of Moore’s law, which has been arguably the primary
driving force behind technology and innovation for decades.
As the marginal benefits of technology scaling continue to
languish, a new vision for stochastic computing has begun
to emerge. Rather than hiding variations under expensive
guardbands, designers have begun to relax traditional cor-
rectness constraints and deliberately expose hardware vari-
ability to higher levels of the compute stack, thus tapping
into potentially significant performance and energy benefits,
while exploiting software and hardware error resilience to
tolerate errors. In this paper, we present our vision for de-
sign, architecture, compiler, and application-level stochastic
computing techniques that embrace errors in order to ensure
the continued viability of semiconductor scaling.

Categories and Subject Descriptors: B.8.1 [Performance
and Reliability]: Reliability, Testing, and Fault-Tolerance
General Terms: Design, Algorithms, Theory, Reliability,
Performance
Keywords: stochastic computing, error resilience

1. INTRODUCTION
The primary driver for innovations in computer systems

has been the phenomenal scalability of the semiconductor
manufacturing process, governed by Moore’s law, that has
allowed us to literally print circuits and systems growing at
exponential capacities for the last three decades. Moore’s
law has come under threat, however, due to the resulting
exponentially deteriorating effects of material properties on
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chip reliability and power. Non-determinism is due to differ-
ent transistors being doped or etched differently during the
manufacturing process, as well as workload and environmen-
tal variations that cause uncertain timing characteristics on
the chip. The most immediate impact of non-determinism is
decreased chip yields. A growing number of parts are thrown
away since they do not meet timing and power-related speci-
fications. Area and power costs are enormous as well. Rough
calculations indicate that the average power cost of deal-
ing with non-determinism in today’s server-class processor
is 35%. This is expected to get worse with late-CMOS /
post-CMOS technologies. Moreover, hardware continues to
be unreliable in spite of these costs, affecting resilience in
harsh, radiation-heavy environments. A recent DARPA Ex-
ascale study [8] suggests that if an exascale system were to be
constructed using present components, failures will be com-
mon, with estimates ranging from one failure every 37 min-
utes [8] to one failure every 3 minutes [9]. Corrupted data
and computations will also become more common [5], which
has the potential to compromise the correctness of applica-
tion results. Clearly the status quo cannot continue. Left
unaddressed, the entire computing and information technol-
ogy industry will soon face the prospect of parts that neither
scale in capability nor cost.

Paradoxically, the problem is not non-determinism, per
se, but the current contract between hardware and soft-
ware. This contract guarantees that hardware will return
correct values for every computation, under all conditions.
In other words, we demand hardware to be overdesigned to
meet the mindsets in computer systems and software design
of the past. Guardbands imposed upon hardware result in
increased cost, because getting the last bit of performance
incurs too much area and power overhead, especially if per-
formance is to be optimized for all possible computations.
Conservative guardbands also leave enormous performance
and energy potential untapped, since the software assumes
lower performance than what a majority of instances of that
platform may be capable of attaining most of the time.

As the marginal benefits of technology scaling continue to
languish, a new vision for computing has begun to emerge.
Rather than hiding variations under expensive guardbands,
designers have begun to relax traditional correctness con-
straints and deliberately expose hardware variability to higher
levels of the compute stack, thus tapping into potentially sig-
nificant performance and energy benefits, but also opening
up the potential for errors. Rather than paying the increas-
ing price of hiding the true, stochastic nature of hardware,
emerging stochastic computing techniques [17, 21, 18, 16, 28,



27, 26] account for the inevitable variability and exploit it
to increase efficiency.

In this paper, we present our vision of stochastic com-
puting, encompassing multiple levels of the compute stack,
from design-level techniques that manipulate the error dis-
tribution of hardware to effectively and efficiently exploit
error resilience, to architectural optimizations that enable
processors to make efficient energy / reliability tradeoffs, to
compiler optimizations that increase the efficiency of pro-
grammable stochastic processors, and algorithmic optimiza-
tions that make applications robust to errors.

2. DESIGN-LEVEL TECHNIQUES FOR
STOCHASTIC COMPUTING

In this section, we discuss design-level techniques for stochas-
tic computing that manipulate the error distribution of hard-
ware to improve the efficiency of computing in the face of
errors. The extent of energy benefits provided by stochas-
tic computing techniques depends on the error rate of the
error resilient design. For example, in the context of voltage
overscaling, benefits depend on how the error rate changes
as voltage decreases. If the error rate increases steeply, only
meager benefits are possible [16] due to high error recovery
overheads or limited scalability. If the error rate increases
gradually, greater benefits are possible.

While energy benefits depend on the error rate of the pro-
cessor, the error rate itself depends on the timing slack and
activity of the paths of the processor in the context of over-
scaling. Figure 1 shows an example slack distribution. The
slack distribution is a histogram that shows the number of
paths in a circuit at each value of timing slack. As voltage is
scaled down, path delay increases, and path slack decreases.
Likewise, as frequency is scaled up, the clock period gets
shorter, and path slack decreases. The slack distribution
shows how many paths can potentially cause errors because
they have negative slack (shaded region). Negative slack
means that path delay is longer than the clock period.

From the slack distribution, it is clear which paths can
cause errors at a given voltage or frequency. In order to
determine the error rate of a processor, the activity of the
negative slack paths must be known. A negative slack path
causes a timing error when it toggles. Therefore, knowing
the cycles in which any negative slack path toggles reveals
the number of cycles in which a timing error occurs.

For example, consider the circuit in Figure 2 consisting
of two timing paths. P1 toggles in cycles 2 and 4, and P2

toggles in cycles 4 and 7. At voltage V1, P1 is at critical slack,
and P2 has 3ns of timing slack. Scaling down the voltage
to V2 causes P1 to have negative slack. Since P1 toggles in
2 of 10 cycles, the error rate of the circuit is 20%. At V3,
the negative slack paths (now P1 and P2) toggle in 3 of 10
cycles, and the error rate is 30%. Note that although two
paths violate timing in cycle 4, recovery for both violations
happens simultaneously, so the cost of recovery is the same
as it would be for a single violation.

2.1 Recovery-Driven Design
Conventional hardware is designed and optimized using

techniques that aim to ensure correct operation of the hard-
ware under all possible PVT variations. Better-than-worst-
case design techniques [2] save power by eliminating guard-
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Figure 1: Voltage or frequency scaling shifts the point of
critical slack. Paths in the shaded region have negative slack
and cause errors when toggled.
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Figure 2: Slack and activity distributions determine the error
rate. Error rate increases with overscaling, since more paths
cause errors.

bands, but are still aimed at ensuring correct hardware op-
eration under nominal conditions.

Recovery-driven design [17] contends that the use of error
resilient design techniques should fundamentally change the
way that hardware is designed and optimized. I.e., given
that mechanisms exist to tolerate hardware errors, rather
than designing and optimizing hardware for correct opera-
tion hardware should be optimized for a target error rate,
even during nominal operation. A recovery-driven design de-
liberately allows timing errors ([15, 7]) to occur during nomi-
nal operation, while relying on an error resilience mechanism
to tolerate these errors. The error rate target of a recovery-
driven design is chosen such that any errors produced in the
optimized design can be gainfully tolerated by hardware [7,
13] or software-based [15] error resilience. The expectation
behind recovery-driven design is that the “underdesigned”
hardware will have significantly lower power or higher per-
formance than hardware optimized for correct operation.
Also, because errors are allowed, the design methodology
can exploit workload-specific information (e.g, activity of
timing paths, architecture-level criticality of timing errors,
etc.) to further maximize the power / performance benefits
of underdesign.

The energy benefits of exploiting error resilience are max-
imized by redistributing timing slack from paths that cause
very few errors to frequently-exercised critical paths that
have the potential to cause many errors. This reduces the
error rate at a given voltage or frequency, and hence reduces
minimum supply voltage and power or increases maximum
frequency and performance for a target error rate. Figure 3
demonstrates the goal of recovery-driven design.

Recovery-driven design work [17] proposes a heuristic im-
plementation based on slack redistribution. The heuristic
targets energy reduction with a two-pronged approach –
extended voltage scaling through cell upsizing on critical
and frequently-exercised circuit paths (OptimizePaths), and
leakage power reduction achieved by downsizing cells in non-
critical and infrequently-exercised paths (ReducePower). The
heuristic searches for the combination of these two tech-
niques that provides the lowest total power consumption for



Figure 3: A recovery-driven design flow redistributes slack
from infrequently-exercised paths to frequently-exercised
paths and performs cell downsizing to accommodate average-
case conditions. These optimizations reduce the power con-
sumption of a circuit and extend the range that voltage can
be scaled before a target error rate is exceeded. The com-
bination of these factors produces a design with significantly
reduced power consumption. [17]

Figure 4: The power minimization heuristic for recovery-
driven design reshapes a circuit’s path slack distribution by
redistributing slack from paths that rarely toggle to paths
that toggle frequently. This extends the amount of ovescal-
ing that can be done for a given error rate target. [17]

a circuit, by performing path optimization and power reduc-
tion at each voltage step and then choosing the operating
power at which minimum power is observed.

Figure 4 illustrates the evolution of a slack distribution
throughout the stages of the power minimization procedure.
Each iteration begins as voltage is scaled down by one step
(a). After partitioning the paths into sets containing positive
and negative slack paths, OptimizePaths attempts to reduce
the error rate by increasing timing slack on negative slack
paths (b). Next, the heuristic allocates the error rate budget
by selecting paths to be added to the set of negative slack
paths, and downsizes cells to achieve area / power reduction
while respecting the dichotomy between negative and non-
negative slack paths (c). This cycle is repeated over the
range of potential operating voltages to find the minimum
power netlist and corresponding voltage (d). In Figure 4, P+

is the set of paths that must have non-negative slack after
power reduction, and P− is the set of paths that are allowed
to have negative slack.

By optimizing a design to achieve maximum efficiency
at a non-zero error rate rather than for correct operation,
recovery-driven design achieves significantly increased en-
ergy efficiency for voltage overscaling-based timing specu-

Figure 5: By optimizing the processor for a certain error
rate, then correcting the errors with an error-resilience mech-
anism, recovery-driven design achieves additional energy sav-
ings over competing approaches. Results are shown for a
processor that uses Razor-based timing speculation. The ad-
ditional energy benefits of the recovery-driven design are due
to extended overscaling and reduced area and leakage.

lation [17]. Figure 5 compares recovery-driven design for
a Razor-based [7] timing speculative processor against sev-
eral alternative design styles. Conventional P&R and Tight
P&R are highly-optimized conventional CAD flows with dif-
ferent timing constraints. PowerOpt X% denotes a recovery-
driven design that targets an error rate of X%, and Slack-
Opt denotes a gradual slack design [16]. PCT denotes a
path constraint tuning approach similar to the technique
used by BlueShift [14]. Figure 5 demonstrates that adopt-
ing a recovery-driven design style enables additional energy
savings over competing techniques, due to extended over-
scaling and lower area and leakage. Designing the processor
for the error rate target at which Razor operates most effi-
ciently allows the recovery-driven design to extend the range
of voltage scaling from 0.84V for the best “designed for cor-
rect operation” processor to 0.71V for the recovery-driven
design optimized for an error rate of 1%, affording an addi-
tional 19% energy reduction.

2.2 Gradual Slack Design
Gradual slack design [18] is an extension of recovery-driven

design that reshapes the slack distribution of a design to cre-
ate a gradual failure characteristic, rather than the typical
critical wall. While error rate-optimized, recovery-driven
designs achieve better energy efficiency at a single target
error rate, gradual slack designs have the ability to trade
reliability, throughput, or output quality for energy savings
over a range of error rates. Gradual slack design techniques
are used to create soft processors [16] – processors that de-
grade gracefully under variability. Figure 6 describes the
optimization approach for gradual slack design.

3. ARCHITECTURAL PRINCIPLES FOR
STOCHASTIC PROCESSORS

Architecture-level stochastic optimization work [26] demon-
strates that the error distribution of a design depends strongly
on architecture and that the error distribution of a design
that has been architected for error-free operation may limit
the ability to perform voltage / reliability tradeoffs. Thus,
optimizing architecture for correctness can result in signifi-
cant inefficiency when the actual intent is to exploit error re-
silience. On the other hand, architectural optimizations can
be used to increase the efficiency of a design that employs
error resilience. In other words, one would make different,
sometimes counterintuitive, architectural design choices to



Figure 6: The goal of a gradual slack [18] or soft processor [16]
design is to transform a slack distribution characterized by a
critical “wall” into one with a more gradual failure character-
istic. This allows performance / power tradeoffs over a range
of error rates, whereas conventional designs are optimized for
correct operation and recovery-driven designs, are optimized
for a specific target error rate.
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Figure 7: Different microarchitectures exhibit different error
rate behaviors, demonstrating the potential to influence the
energy efficiency of a timing speculative architecture through
microarchitectural optimizations. (Notations describe the
number of ALUs, issue queue length, number of physical reg-
isters, and load store queue size for a microarchitecture.)

optimize the error distribution of a design to exploit error
resilience.

Figure 7 demonstrates that microarchitecture can have a
significant effect on error rate. The figure shows the error
rate behavior for four different microarchitectural configura-
tions of the FabScalar [6] processor. Each microarchitecture
has a significantly different error rate behavior, demonstrat-
ing that slack, activity, and error rate indeed depend on
microarchitecture. Differences in the error rate behavior of
different microarchitectures are due to several factors. First,
changing the sizes of microarchitectural units like queues and
register files changes logic depth and path delay regularity,
which in turn effects the slack of many timing paths. Sec-
ondly, varying architectural parameters such as superscalar
width has a significant effect on logic complexity [23]. Com-
plexity, fanout, and capacitance change path delay sensitiv-
ity to voltage scaling and cause the shape of the slack distri-
bution to change. Finally, changing the architecture alters
the activity distribution of the processor, since some units
are stressed more heavily, depending on how the pipeline is
balanced. High activity in units with many critical paths
can cause error rate to increase more steeply. Likewise, an
activity pattern that frequently exercises longer paths in the
architecture limits overscaling.

Typically, energy-efficient processors devote a large frac-
tion of die area to structures with very regular slack distribu-
tions, such as caches and register files [24]. These structures
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Figure 8: The sizes of regular structures can significantly in-
fluence the slack distribution of a microarchitecture. Reduc-
ing the size of the register file (a regular structure) increases
the spread of the slack distribution, resulting in fewer paths
bunched around the point of critical slack.

typically have high returns in terms of energy efficiency (per-
formance/watt) during correct operation.

While regular structures are architecturally attractive in
terms of processor efficiency for correct operation, such struc-
tures have slack distributions that allow little room for over-
scaling. This is because all paths in a regular structure are
similar in length, and when one path has negative slack,
many other paths also have negative slack. For example,
consider a cache. Any cache access includes the delay of
accessing a cache line, all of which have the same delay.
So, no matter which cache line is accessed, the delay of the
access path will be nearly the same. Compare this to per-
forming an ALU operation, where the delay can depend on
several factors including the input operands and the opera-
tion being performed. When many paths fail together, error
rate and recovery overhead increase steeply upon overscal-
ing, limiting the benefits of timing speculation. Reducing
the number or delay of paths in a regular structure can re-
shape the slack distribution, enabling more overscaling and
better timing speculation efficiency.

For an example Alpha core [32], the register file is the
most regular critical structure. Figure 8 shows slack distri-
butions for the Alpha core with different register file sizes.
As the size of the register file increases, the regularity of the
slack distribution also increases, as does the average path
delay. Figure 8 confirms that the spread of the slack dis-
tribution decreases with a larger register file. Additionally,
path slack values shift toward zero (critical) slack due to the
many critical paths in the register file.

Architectural design decisions that reshape the slack dis-
tribution by devoting less area to regular structures or mov-
ing regular structures off the critical path can enable more
overscaling and increase energy efficiency for timing spec-
ulative processors. In other words, additional overscaling
enabled by architectures with smaller regular structures can
outweigh the energy benefits of regularity when designing
a resilience-aware architecture. Since regularity-based de-
cisions may also impact power density, yield, and perfor-
mance, architectural decisions should consider these con-
straints in addition to the chosen optimization metric.

Figure 9 shows energy consumption for the Alpha core
with Razor-based timing speculation, confirming that the
architecture with a smaller register file exploits timing er-
ror resilience more efficiently. The 16-register architecture
reduces energy by 21% with respect to the optimal architec-
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Figure 9: The 16-register design, having reduced regularity
and activity, achieves significant energy savings with Razor,
while the 32-register design, which was optimal for correct
operation, achieves almost no benefit.

ture for correctness, while the optimal error free architecture
barely achieves any energy savings (2%) when using Razor.

Other architectural optimizations that impact logic com-
plexity, regularity, and utilization have also been demon-
strated to improve the potential for energy savings from
voltage / reliability tradeoffs [26].

4. COMPILER OPTIMIZATIONS FOR
STOCHASTIC COMPUTING

Altering the error distribution of a timing speculative pro-
cessor has the potential to increase the energy benefits of
exploiting error resilience. As discussed above, architecture
and design-level optimizations that modify the slack and ac-
tivity distributions of a processor can increase the energy ef-
ficiency and performance of a timing speculative design [16,
18, 17, 26]. Since the program binary, in conjunction with
the processor architecture, determines a processor’s activity
distribution, timing speculation-aware compilation [27] can
also significantly increase the energy efficiency of a design
that exploits timing error resilience.

The goal of TS-aware binary optimizations is to minimize
the energy consumption of a timing speculative processor
by manipulating its activity distribution to reduce the error
rate for a given voltage or reduce the cost of error recovery.
As such, the optimizations fall into one of the following four
categories.
Critical Path Avoidance.

The first category of TS-aware optimization techniques
change the set of frequently exercised paths in a processor
to avoid activating the longest paths. Since these paths are
the first to have negative slack when the processor is over-
scaled, throttling their activity reduces early onset timing
violations. Optimizing the instruction stream can prevent
activity patterns that exercise the static critical paths of
hardware structures, resulting in more timing slack, on av-
erage, and more room for overscaling.
Activity Throttling.

The second category of techniques reduces error rate by
throttling activity in structures of the processor that cause
the most errors. A program binary, in conjunction with the
processor microarchitecture, determines how often different
processor units are stressed. When a structure that exer-
cises its critical paths for most instructions also has high
utilization, the structure generates many errors when the
processor is overscaled. Thus throttling the activity of such
structures can significantly reduce the processor error rate

for a given voltage, allowing the processor to scale to a lower
voltage for a given error rate.
Overlapping Errors.

The previous categories deal with error avoidance. An-
other way to increase TS efficiency is to reduce the cost of
error recovery. For many error recovery mechanisms, such
as rollback, flushing, counterflow, and replay, when multiple
timing errors occur in the same cycle, a single error recov-
ery process can correct all the errors. The third category
of compiler optimizations for stochastic computing focuses
on overlapping the occurrence of timing violations so that
multiple errors share a single error recovery process.
Recovery Cost-Aware Scheduling.

The final category of techniques aim to schedule accesses
to processor structures such that activity is inversely propor-
tional to error recovery cost. This strategy aims to utilize
timing speculation more efficiently by avoiding high cost er-
rors.

The exact optimization techniques that are most effec-
tive for a processor depend on the processor architecture
and the exact modules of the processor that cause the most
errors. Different pipeline stages cause errors at different
rates, depending on their slack and activity distributions.
Figure 10 shows the static slack distributions for the pipeline
stages that cause the most errors in one specific superscalar
pipeline implementation (FabScalar [6]). Figure 10 demon-
strates that two stages in particular – the issue queue (IQ)
and the load store unit (LSU) have the highest number of
critical paths. Based on Figure 10, one might expect that
IQ, having many more critical paths than all other mod-
ules, would produce the most errors in the processor. How-
ever, the static slack distribution only shows the potential
for paths to cause errors. To know how many errors the
paths actually generate, their activity must also be known.
Figure 11 shows activity-weighted, dynamic slack distribu-
tions that quantify the sum of toggle rates for all the paths
at each value of timing slack (activity from SPEC bench-
marks). The more timing critical activity a module has,
the more errors it is likely to cause. From Figure 11, it is
clear that the LSU dominates the error distribution of the
FabScalar architecture.
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Figure 10: The static slack distributions for the pipeline
stages show how many critical paths they have. The static
slack distribution does not, however, provide information
about how often the paths toggle, which is essential in char-
acterizing error rate.

LSU delay depends on program characteristics for sev-
eral reasons. The primary reason is that the store-to-load
forwarding path is on the static critical path of the LSU.
Since many RAW dependencies in the code lead to more for-
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Figure 11: The activity weighted (dynamic) slack distribu-
tions for different pipeline stages indicate how much timing
critical activity they have, and by extension, how frequently
they will produce errors for a given level of overscaling.

warding, the timing error rate will be higher for code with
a relatively large number of RAW dependencies. Program
characteristics also determine the utilization of the LQ and
the SQ, which, in turn, dictates access delays.

As described above, activity on the static critical paths
of the LSU can be reduced by avoiding dependent memory
operations and scenarios that cause the LSQ to fill up. This
can enable significantly deeper voltage overscaling, since the
LSU is the source of many timing violations.

Loop unrolling is a classic compiler optimization that can
eliminate and spread out loop carried dependencies, and
thus has the potential to reduce LSU delay. TS-aware com-
pilation provides a new use for unrolling – avoiding errors
to increase the efficiency of TS by grouping often indepen-
dent instructions (like vector math) and eliminating often
dependent instructions (like branches and index updates).
Unrolling also allows optimization of register allocation over
multiple loop iterations that can eliminate loads and stores,
thus reducing pressure on the LSU.

Figure 12 demonstrates that the compiling to avoid de-
pendencies and activity on the forwarding paths with loop
unrolling alters the activity distribution of the LSU and sig-
nificantly reduces the error rate of the processor. Figure 12
shows the activity-weighted (dynamic) slack distribution of
the LSU for an unoptimized summation loop and an unrolled
version of the loop. The figure demonstrates that activity
on the critical paths of the LSU is greatly reduced when loop
unrolling is used. The dependencies in the original code are
spread apart so that they do not simultaneously reside in
the LSQ, and forwarding is not required.

Figure 13 shows the error rate of the processor when ex-
ecuting the two code sequences. Unrolling significantly re-
duces the error rate by reducing activity on the forwarding
paths in the LSU. This error rate reduction enables addi-
tional overscaling and results in a substantial energy reduc-
tion for a Razor-based TS processor, as shown in Table 1.

In the normal, error-free case, the same unrolled loop pro-
vides a meager energy benefit of only 2%, on average, as un-
rolling causes dynamic power to increase significantly, even
as it increases throughput. This further demonstrates the
need for TS-aware compiler analysis and optimization.

Other compiler optimizations that target critical path avoid-
ance and critical activity throttling have also been demon-
strated to be effective in reducing the error rate and improv-
ing the energy efficiency of error resilient processors [27].
Balancing the amount of instruction-level parallelism ex-
posed to the processor backend, and splitting or fusing loops
have potential to manipulate the activity distribution of the
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Figure 13: Loop unrolling reduces activity on LSU forwarding
paths, resulting in a significant error rate reduction.

processor and throttle or avoid activity on error prone paths.
Additionally, TS-aware compilation work has demonstrated
that gcc optimization flags can be manipulated to influence
the energy efficiency of binaries on TS processors.

5. DESIGNING APPLICATIONS FOR
ROBUSTNESS

Algorithmic approaches for error correction allow us to
execute applications on a stochastically correct processor
(stochastic processor) [20, 16, 28, 17] by replacing the orig-
inal computation with one that may take slightly longer to
complete. We call this general methodology for converting
applications into a form that may be robust to variation-
induced errors, application robustification [30].

One approach for application robustification presented in
this section consists of reformulating applications as stochas-
tic optimization problems. We express them as constrained
optimization problems, mechanically convert these to an un-
constrained exact penalty form, and then solve them us-
ing stochastic gradient descent and conjugate gradient algo-
rithms. This approach is quite generic, since linear program-
ming, which is P-complete, can be implemented this way. In
fact, we present examples for both fragile (e.g. combinato-
rial problems, sorting, minimum cut, graph matching) and
intrinsically robust applications (e.g. solving least squares
problems).

The goal of the numerical-optimization approach is to re-
cast a given problem into an equivalent numerical problem
that can tolerate noise in the FPU, and whose solution en-
codes the solution to the equivalent problem.

Table 1: Razor-based TS and error-free energy savings (%)
for loop unrolling. (ss = superscalar width

CORE original unrolled unrolled error-free
ss1 11.8 43.1 1.6
ss2 6.4 20.8 2.0
ss4 4.0 42.9 3.2
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Let the vector x∗ denote the (unknown) solution to our
problem. To devise a robust algorithm, we construct a cost
function f whose minimum is attained at x∗. Solving the
problem then amounts to minimizing f . The main chal-
lenges, as illustrated in Figure 14, are

• How to construct f without knowing the actual value
of x∗ a priori.

• How to choose an optimization engine that converges
quickly and tolerates CPU noise.

Since the selection of the minimization function can often
depend on the optimization engine, we first detail the choice
of our optimization engine. We rely on gradient descent
as the primary optimization engine to construct algorithms
that tolerate noise in the CPU’s numerical units. Under mild
conditions, as long as step sizes are chosen carefully, gradient
descent converges to a local optimum of the cost function
even when the gradient is known only approximately.

To minimize a cost function f : Rd → R, gradient descent
generates a sequence of steps x1 . . . xi ∈ Rd via the iteration

x
i ← x

i−1 + λ
i∇f(xi−1), (1)

starting with a given initial iterate x0 ∈ Rd. The vector
∇f(xi−1) is a gradient of f at xi−1, and the positive scalar
λi is a step size that may vary from iteration to iteration.
The goal is for the sequence of iterates to converge to a
local optimizer, x∗, of f . The bulk of the computation in
gradient descent is in computing the gradient ∇f , which is
where variation-induced errors may occur.

The suitability of gradient descent for stochastic proces-
sors is due to the fact that under various assumptions of
local convexity on f , xi is known to always approach the
true optimum, even under errors, as iterations progress [30].
As long as the ∇f approximation is unbiased, gradient de-
scent can eventually extract a solution with arbitrarily high
accuracy.

For some applications, the natural conversion is to a con-
strained variational form

minimize
x∈Rd

f(x), s.t. g(x) ≤ 0, h(x) = 0 (2)

for some functions f , g, and h. We rely on an exact penalty
method to convert constrained problems into unconstrained
problems that can be solved by gradient descent [3, 22]:

f(x) + µ
X

i

|hi(x)|+ µ
X

j

[gj(x)]
+

. (3)

The operator [·]+ = max(0, ·) returns its argument if it is
positive, and zero otherwise. A similar result for quadratic

exact penalty functions of the form f(x) + µ
P

i
hi(x)2 +

µ
P

j
[gj(x)]2

+
also hold [25].

The actual rate of convergence depends on several factors
including the modulus of convexity c of the minimization
function f , and the size of each step taken. To alleviate
some of the artifacts of ill-conditioned problems, we also con-
sider some additional variants of the basic gradient decent
algorithm by using momentum in the search direction cal-
culation, different step sizing strategies, and preconditioning
of the objective function [30].

For certain problems, such as least squares, the structure
of the problem can be exploited further to construct bet-
ter search directions and step sizes. One approach is the
conjugate gradient (CG) method [12]. The method exam-
ines the gradients of the cost function to construct a se-
quence of search directions that are mutually conjugate to
each other (i.e. where two search direction pi and pj satisfy
pT

i Apj = 0, ∀i 6= j for a particular matrix A). CG is guar-
anteed to converge in at most n iterations without errors
(where n is the number of variables in the problem). The
convergence of CG under noise is also well understood [29].

5.1 Application Transformations for
Robustness

Transforming a given problem into its variational form
(2) is often immediately obvious from the definition of the
problem. Once converted into a variational form, any opti-
mization technique that is robust to numerical noise, such
as the ones described above, can be used to find a solution
to the problem. We provide several illustrative examples
below.
Least Squares

Given a matrix A and a column vector b of the same
height, a fundamental problem in numerical linear algebra
is to find a column vector x that minimizes the norm of
the residual Ax− b. This problem is typically implemented
on current CPUs via the SVD or the QR decomposition of
A. In Section 5.2 we show that these algorithms are disas-
trously unstable under numerical noise, but that minimizing
f(x) = ‖Ax− b‖2 = x⊤A⊤Ax− 2b⊤x + b⊤b by gradient de-
scent tolerates numerical noise well. The gradient in this
case is ∇f(x) = A⊤(Ax − b). Filtering a signal with an
infinite impulse response (IIR) filter, a basic operation in
signal processing, is another example application similar to
the least squares problem.
Sorting

To sort an array of numbers on current CPUs, one often
employs recursive algorithms like QuickSort or Merge-
Sort. Sorting can be recast as an optimization over the set
of permutations. Among all permutations of the entries of
an array u ∈ Rn, the one that sorts it in ascending order
also maximizes the dot product between the permuted u and
the array v = [1 . . . n]⊤ [4]. In matrix notation, for an n×n
permutation matrix X, Xu is the sorted array u if X maxi-
mizes the linear cost v⊤Xu. Since permutation matrices are
the extreme points of the set of doubly stochastic matrices,
which is polyhedral, such an X can be found by solving the
linear program

max
X∈Rn×n

v⊤Xu s.t. Xij ≥ 0,
X

i

Xij ≤ 1,
X

j

Xij ≤ 1. (4)

The corresponding unconstrained exact quadratic penalty



function is

f(X) = − v
⊤

Xu + λ1

X

ij

[Xij ]2
+

+ λ2

X

i

2

4

X

j

Xij − 1

3

5

2

+

+ λ2

X

j

"

X

i

Xij − 1

#

2

+

(5)

where λ1 and λ2 are suitably large constants, and the ijth
coordinate of the subgradient of f is

[∇f(X)]ij = − uivj + 2λ1 [Xij ]+ + 2λ2

2

4

X

j

Xij − 1

3

5

+

+ 2λ2

"

X

i

Xij − 1

#

+

.

(6)

Note that sorting is traditionally not thought of as an ap-
plication that is error tolerant. Our methodology produces
an error tolerant implementation of sorting.
Bipartite Graph Matching

Given a bipartite graph G = (U, V, E) with edges E con-
necting left-vertices U and right-vertices V , and weight func-
tion w(e), e ∈ E, a classical problem is to find a subset
S ⊆ E of edges with maximum total weight

P

e∈S
w(e) so

that every u ∈ U and every v ∈ V is adjacent to at most
one edge in S. This is the maximum weight bipartite graph
matching problem and is typically solved using the Hungar-
ian algorithm or by reducing to a MaxFlow problem and
applying the push-relabel algorithm [11]. Like other linear
assignment problems, it can also be solved by linear pro-
gramming: let W be the |U | × |V | matrix of edge weights
and let X be a |U | × |V | indicator matrix over edges, with
Xij binary, and only one element in each row and each col-
umn of X set. The weight of a matching given by X is then
P

ij
XijWij , which is linear in X, so it suffices to search over

doubly stochastic matrices, as in the previous example.
Typical implementations of bipartite graph matching are

again not considered error tolerant. Our methodology pro-
duces a potentially error tolerant implementation of bipartite
graph matching.

To summarize, the numerical optimization-based method-
ology can be used to make a large class of applications robust
- the ones that require precisely correct outputs (fragile ap-
plications), e.g., sorting, etc., as well as the ones that that
do not (intrinsically robust applications), e.g., Least Squares,
etc.

5.2 Experimental Results for Application
Robustification

To evaluate the robust versions of the above algorithms,
we built an FPGA-based framework with support for con-
trolled fault injection. Our framework consists of an Al-
tera Stratix II EP2S180 FPGA that hosts a Leon3 [10] soft
core processor. Error injection was done using a software-
controlled fault injector FPGA module, which perturbs one
randomly chosen bit in the output of the FPU before it is
committed to a register. The distribution of bit faults was
modeled from circuit level simulations of functional units [19].
The time between corruptions was drawn using a uniform
distribution generated by a linear feedback shift register.
This fault model is a surprisingly reasonable approximation
of voltage overscaling-induced errors in the FPU. To calcu-
late the energy benefits from application robustifcation, we

also used circuit-level simulations to calculate the relation-
ship between voltage and error rate for the FPU.
Gradient Descent

To explore the feasibility of the proposed approach to pro-
vide robustness and energy benefits, we evaluated stochastic
gradient descent (SGD) on the problems, least squares, bi-
partite graph matching, and sorting across a wide range of
fault rates. We evaluated both linear scaling (LS) of the
step size, 1

t
, and sqrt scaling (SQS) of the step size, 1√

t
,

where t is the number of iterations. We also examined an
adaptive stepping strategy called aggressive stepping (AS)
In the figures, SGD refers to a fixed number of iterations,
while SGD+AS refers to the fixed number of iterations with
a period of aggressive stepping at the end.

The metric used to describe the quality of output is differ-
ent for each benchmark. For sorting, the y axis represents
the percentage of outputs where the entire array is sorted
correctly (any undetermined entries (NaNs), wrongly sorted
number, etc., is considered a failure). For bipartite graph
matching, the y axis represents the percentage of outputs
where all the edges are accurately chosen. For least squares,
the quality of output is measured as the relative difference
between the ideal output and actual output (‖Ax− b‖2 ).

For sorting, array size is 5 elements. For the LSQ prob-
lem, A is 100× 10 and B is 100× 1. Bipartite graph match-
ing is performed for a graph with 11 nodes and 30 edges.
State-of-the-art deterministic applications are used for each
of the application baselines. Sorting was implemented us-
ing the C++ standard template library (STL). least squares
was implemented using SVD, QR, or Cholesky decomposi-
tions. Bipartite graph matching was implemented using the
OpenCV library [1].

Our evaluations were performed for different fault rates.
We define fault rate to be the inverse of the average number
of floating point operations between two faults.

Examining the results, we see that we are able to achieve
high quality results for both the fragile and the intrinsically
robust applications. Sorting (Figure 15) performs poorly
with linear step size scaling, but with sqrt step size scal-
ing is able to achieve 100% accuracy even with large fault
rates. Least squares (Figure 16), on the other hand, per-
forms better with linear step size scaling. It is also possible
to get highly accurate results, within 10−6% of the exact
value computed offline with an SVD-based baseline. The
benefits of aggressive stepping for the applications are most
pronounced for low fault rates (< 1%).

Bipartite graph matching (Figure 17) using 10, 000 iter-
ations of SGD showed little performance degradation with
increasing fault rates. However, the maximum success rate
obtained, even using aggressive stepping and step scaling,
was limited to below 50%. When considering gradient de-
cent with the additional variants described in the beginning
of Section 5, the Bipartite graph matching application is also
shown to have high accuracy(100%) in Figure 18. These
additional variants of gradient descent also be used to solve
problems which have poorly conditioned objective functions
several orders of magnitude faster.
Conjugate Gradient

While stochastic gradient descent-based techniques pro-
vide high robustness, it often comes at the expense of sig-
nificantly increased runtime due to the large number of it-
erations required for convergence. The Conjugate Gradient
method, on the other hand, allows efficient generation of
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conjugate directions by taking a linear combination of the
steepest descent direction and the previous directions. In
general, the CG method can guarantee convergence in at
most n iterations for an Ax = B problem where n is the
dimension of x. Figure 19 shows the accuracy of output for
our CG-based implementation of the least squares problem,
when using 10 iterations of CG. We consider three baseline
implementations (SVD, QR, and Cholesky decompositions).
The SVD-based solver allows for the highest accuracy, even
with ill-conditioned problems. The Cholesky-based solver
is the fastest baseline implementation but can only be used
for a subset of problems. The QR-based implementation
is slower than Cholesky-based implementations, but is also
more accurate.

Experimentally, the CG implementation was on average
30% faster than the QR/SVD baselines, and 10 iterations
of the CG were comparable to the execution time of the
Cholesky baseline.

The relatively small time of convergence allows CG-based
implementations of the LSQ problem to have lower energy
than the baseline implementations for the entire range of
accuracy targets when voltage overscaling is used (accuracy
targets lower than 1.00E-07 cannot be met using CG). This
is because it becomes possible to scale down the voltage and
the number of iterations concurrently. Figure 20 shows the
normalized energy results for the FPU for the least squares
problem. The results show that there is considerable po-
tential for using the proposed numerical optimization-based
methodology to reducing the energy of software execution
by voltage overscaling a processor and then letting the ap-
plications tolerate the errors.

5.3 Algorithmic Approximate Correction
An alternative approach for designing applications for stochas-

tic processors focuses on algorithmic techniques for approxi-
mate correction, relying on the inherent fault tolerance that
many applications contain within. The general problem for-
mulation is then as follows: Given an application with an

unknown correct output y, ensure that the application, even
in the presence of faults produces an output y∗ within a cer-
tain threshold of y.

We’ll now describe one example of algorithmic fault cor-
rection for a common linear algebra operation, the matrix-
vector (MV) product [31]. Given a MV product(v = Au)
with k faulty entries in the output vector(v′), the traditional
approach would explicitly detect and correct each of the k
faults. In reality, the application may only care about ap-
proximately correcting the vector error (e = v′ − v), and
improving the accuracy (i.e. RMS ‖v′− v‖2). Therefore, we
propose an alternative and simpler technique for correction.
The approximate correction technique for the MV product
involves subtracting the projection of the error onto the code
space ( a predetermined check vector called c). The partially
corrected MV product(v′′) can then be computed as follows:

v
′′ = v

′ −
(cT e)c

‖c‖2
(7)

One of the primary advantages of this particular approach,
is that the approximate correction is guaranteed to always
improve accuracy:

‖v′′ − v‖2 = ‖v′ − v‖2 −
(cT e)2

‖c‖2

‖v′′ − v‖2 ≤ ‖v′ − v‖2 (8)

Approximate error correction can also efficiently provision
the correction technique to account for the most important
faults in terms of performance and accuracy. This is im-
portant since applications typically see faults manifested in
different ways. The developer has significant flexibility in
the amount and types of codes chosen for the correction,
depending on the accuracy targets which are desired.

6. CONCLUSIONS
Shrinking device sizes and growing static and dynamic

non-determinism challenge the reliable manufacturing and
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operation of circuits. As conventional design approaches
that ensure determinism, even under worst case variations,
become increasingly inefficient, a new paradigm for stochas-
tic computing has arrived. Rather than hiding variations
under expensive guardbands, stochastic designs relax tradi-
tional correctness constraints and deliberately expose hard-
ware variability to higher levels of the compute stack, thus
tapping into potentially significant performance and energy
benefits, while exploiting software and hardware error re-
silience to tolerate errors.

In response to the challenge of growing variability, we pro-
pose stochastic computing techniques throughout the com-
pute stack, from design-level techniques that manipulate the
error distribution of hardware to effectively and efficiently
exploit error resilience, to architectural optimizations that
enable processors to make efficient energy / reliability trade-
offs, to compiler optimizations that increase the efficiency of
programmable stochastic processors, and algorithmic opti-
mizations that make applications robust to errors. As static
and dynamic non-determinism continue to increase, stochas-
tic computing techniques that embrace errors stand to reap
significant yield and energy benefits and ensure the contin-
ued viability of semiconductor scaling.
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