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ABSTRACT
Escalating variations in modern CMOS designs have become
a threat to Moore’s law. While previous works have pro-
posed techniques for tolerating variations by trading relia-
bility for reduced voltage (energy) [10], the benefits of such
techniques are limited, because voltage/reliability tradeoffs
in conventional processors often introduce more errors than
can be gainfully tolerated [14]. Recent work has proposed
circuit and design-level optimizations [14, 15] that manipu-
late the error rate behavior of a design to increase the po-
tential for energy savings from voltage/reliability tradeoffs.
In this paper, we investigate whether architectural optimiza-
tions can also manipulate error rate behavior to significantly
increase the energy savings from voltage/reliability trade-
offs. To this end, we demonstrate how error rate behavior
indeed depends on processor architecture, and that archi-
tectural optimizations can be used to manipulate the error
rate behavior of a processor. We show that architectural
optimizations can significantly enhance voltage/reliability
tradeoffs, achieving up to 29% additional energy savings for
processors that employ Razor-based error resilience.

Categories and Subject Descriptors
C.1 [Processor Architectures]: Miscellaneous
General Terms: Design
Keywords: error resilience, microarchitecture, energy effi-
ciency, timing speculation

1. INTRODUCTION
Traditionally, processors have been architected to operate

correctly under worst case operating conditions. As device
sizes continue to shrink and the impact of process variations
escalates, several error resilient design techniques have been
proposed [10, 1, 12, 17, 9] to counter the rising costs of vari-
ability more efficiently. These techniques relax correctness
to improve energy efficiency in the average case at the ex-
pense of some errors. Errors are corrected or tolerated by
hardware or software error resilience mechanisms to main-
tain the level of output quality expected by the user.

The magnitude of benefits available from error resilience
techniques depends on two factors – where and how often
the processor produces errors as reliability is traded for re-
duced voltage or increased frequency. For example, if the
frequency of errors can be reduced for a timing speculative
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design, the range of overscaling can be extended, afford-
ing additional energy or performance gains. Previous works
have demonstrated the potential to increase the energy effi-
ciency of error resilient designs by modifying the error dis-
tribution of the processor [14, 16, 15]. However, these works
focused only on circuit and design-level techniques. It re-
mains to be shown whether architecture-level optimizations
can similarly affect the error distribution of an error resilient
design to generate energy or performance gains.

In this work, we demonstrate that the error distribution
indeed depends on architecture. We show that the error
distribution of a design that has been architected for error
free operation may limit voltage/reliability tradeoffs and en-
ergy efficiency for better-than-worst-case operation. Thus,
optimizing architecture for correctness can result in signifi-
cant inefficiency when the actual intent is to perform volt-
age/reliability tradeoffs. In other words, one would make
different, sometimes counterintuitive, architectural design
choices to optimize the error distribution of a processor to
exploit error resilience. Thus, we make a case for error
resilience-aware architectures and propose architectural op-
timizations that improve the potential benefits from volt-
age/reliability tradeoffs.

This work on error resilience-aware architecture makes the
following contributions.

• We show that the error distribution of a processor
strongly depends on its architecture. As such, we demon-
strate that architectural optimizations can be used to
significantly improve the energy benefits from volt-
age/reliability tradeoffs.

• We confirm, with experimental results for different im-
plementations of a 4-tap FIR filter and Alpha, MIPS [27],
FabScalar [7], and OpenSPARC [23] processor cores,
that error resilience-aware architectural design deci-
sions can indeed significantly increase the efficiency of
an error-resilient architecture.

Note that we have used voltage overscaling-based timing
speculation as the proxy for all variation-induced errors in
this paper. Our analysis and conclusions should apply for
other sources of timing variation as well.

The rest of the paper is organized as follows. Section 2
describes our fault model and explains how the slack and ac-
tivity distributions of a processor determine the error rate,
and consequently, the energy efficiency of a timing specula-
tive architecture. Section 3 describes the architectures that
we evaluate and provides examples of how architectural de-
cisions can influence the slack and activity distributions of a
design. Section 4 describes our experimental methodology.
Section 5 presents results and analysis showing that opti-
mizing an architecture for voltage/reliability tradeoffs can
significantly improve energy efficiency. Section 6 discusses
related work. Section 7 concludes the paper.
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Figure 1: Voltage scaling shifts the point of critical slack.
Paths in the shaded region have negative slack and cause
errors when toggled.
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Figure 2: Slack and activity distributions determine the error
rate.

2. BACKGROUND
Before exploring if and how architectural optimizations

affect the potential for voltage/reliability tradeoffs, we first
provide details about our fault model and how slack and
activity determine the error rate. The extent of energy ben-
efits gained from exploiting timing error resilience depends
on the error rate of a processor. In the context of voltage
overscaling, for example, benefits depend on how the error
rate changes as voltage decreases. If the error rate increases
steeply, only meager benefits are possible [14]. If the error
rate increases gradually, greater benefits are possible.

The timing error rate of a processor in the context of volt-
age overscaling depends on the timing slack and activity of
the paths of the processor. Figure 1 shows an example slack
distribution. The slack distribution of a circuit shows the
number of paths in a design at each value of timing slack.
As voltage scales down, path delay increases, and path slack
decreases. The slack distribution shows how many paths can
potentially cause errors because they have negative slack
(shaded region). Negative slack means that path delay is
longer than the clock period.

From the slack distribution, it is clear which paths cause
errors at a given voltage. In order to determine the error
rate of a processor, the activity of the negative slack paths
must be known. A negative slack path causes a timing error
when it toggles. Therefore, knowing the cycles in which any
negative slack path toggles reveals the number of cycles in
which a timing error occurs.

For example, consider the circuit in Figure 2 consisting
of two timing paths. P1 toggles in cycles 2 and 4, and P2

toggles in cycles 4 and 7. At voltage V1, P1 is at critical
slack, and P2 has 3ns of timing slack. Scaling down the
voltage to V2 causes P1 to have negative slack. Since P1

toggles in 2 of 10 cycles, the error rate of the circuit is 20%.
At V3, the negative slack paths (now P1 and P2) toggle in 3
of 10 cycles, and the error rate is 30%.

3. UNDERSTANDING AND MANIPULATING
THE ERROR DISTRIBUTION OF TIM-
ING SPECULATIVE ARCHITECTURES

In this section, we argue that both the slack and activity
distributions of processors are strongly dependent on proces-
sor architecture. This implies that architectural features can

be chosen to optimize the slack and activity distributions,
and by extension, the error distribution and energy efficiency
of a timing speculative processor. First, we demonstrate how
slack and activity distributions depend on processor archi-
tecture. Then, we show how architectural optimizations can
change the slack and activity distributions.

3.1 Architectural Dependence of Slack and Ac-
tivity Distributions

In this section, we show that slack and activity distribu-
tions indeed depend on architecture. First, we present four
functionally equivalent architectural variants of a 4-tap FIR
filter We describe how the architectural characteristics of
each filter determine the properties of its slack and activity
distributions.

The baseline FIR filter, shown in Figure 3(a), is the sim-
plest and most well-known arrangement of the FIR filter ar-
chitecture, containing four MAC units. A pipelined version
of the filter (Figure 3(b)) was created by creating a cut-
set across the outputs of the multipliers and adding a latch
to each arc. We also created a folded version of the filter
(Figure 3(c)), in which multiple operations are mapped to a
single hardware unit. Folding by a factor of two multiplexes
the filter hardware so that half of the filter coefficients are
active in even cycles, the other half are active in odd cycles,
and an output sample is computed every two cycles. The
blocked architecture of Figure 3(d) was created by replicat-
ing the internal filter structure to compute two samples in
parallel.

Figure 4 compares the path slack distributions of the dif-
ferent filter implementations, confirming our intuition that
the slack distributions of the filter designs depend strongly
on the architecture. Table 1 presents more detailed infor-
mation on how slack and activity change for different ar-
chitectures. The mean and standard deviation of the slack
distribution (µslack and σslack, respectively) tell how how
much initial slack exists and how regular the slack distri-
bution is, i.e., how spread out the values of path delay are.
Designs with more regular (less spread) slack distributions
allow less overscaling past the critical point because a large
number of paths fail at the same time, potentially causing
a steep increase in error rate. The average path activity
(αpath) shows how frequently paths toggle. Higher path ac-
tivity can mean that error rate increases more steeply, since
negative slack paths generate more errors when they toggle
more frequently.

Table 1 and Figure 4 reveal that pipelined and folded ar-
chitectures have more regular slack distributions. These ar-
chitectures have shorter paths that have less capacitance,
less delay sensitivity to voltage scaling, and less variation
in absolute path delay. This creates extra slack compared
to other architectures, but limits scaling past the critical
point. The folded architecture has high path activity, since
the internal filter elements must operate at twice the fre-
quency of the baseline design to achieve the same sample
rate. Likewise, the blocked architecture has reduced path
activity, since the same sample rate can be achieved at half
the operating frequency. Although it has reduced activity,
the blocked architecture has increased complexity and longer
paths than the baseline. This results in more spread in the
slack distribution, allowing more overscaling when errors can
be tolerated, although errors may start at a higher voltage.
Figure 5 shows how the power and error rate of each filter
architecture vary with voltage, confirming the expected ef-
fects of the slack and activity distributions on the error rate
of each architecture.
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Figure 3: 4-tap FIR filter designs: (a) Baseline, (b) Pipelined,
(c) Folded, (d) Blocked.

Table 1: Mean and standard deviation of path slack, relative
to the sampling period, and average path activity normalized
against the baseline.

Baseline Pipelined Folded Blocked
µslack 0.183 0.496 0.449 0.154
σslack 0.185 0.159 0.145 0.124

Avg(αpath) 1.0 1.9 3.4 0.5

Our simple DSP filter examples show that the architecture
of a design shapes the properties of its slack and activity
distributions. We now show that the same is true for general
purpose processors. As demonstrated in Section 2, error
rate is a function of the slack and activity distributions,
and our primary goal is to use architectural optimizations
to manipulate the error rate behavior of a design. Thus, we
use error rate as a proxy for slack and activity. We begin
by synthesizing four variants of the FabScalar [7] processor
with different microarchitectural characteristics.

Figure 6 shows that the four different FabScalar microar-
chitectures have significantly different error rate behavior,
demonstrating that slack, activity, and error rate indeed de-
pend on microarchitecture. Differences in the error rate be-
havior of different cores are due to several factors. First,
changing the sizes of microarchitectural units like queues
and register files changes logic depth and delay regular-
ity, which in turn effects the slack of many timing paths.
Secondly, varying some architectural parameters like super-
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Figure 4: Slack distributions for the FIR filter architectures.
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Figure 5: Power and error rate vs voltage for the FIR filter
architectures.

scalar width has a significant effect on complexity [20]. Chang-
ing complexity, fanout, and capacitance change path delay
sensitivity to voltage scaling and cause the shape of the
slack distribution to change. Finally, changing the architec-
ture alters the activity distribution of the processor, since
some units are stressed more heavily, depending on how
the pipeline is balanced. High activity in units with many
critical paths can cause error rate to increase more steeply.
Likewise, an activity pattern that frequently exercises longer
paths in the architecture limits overscaling. E.g., long de-
pendence chains lengthen the dynamically exercised critical
path of structures such as the issue queue and load store
queues that perform dependence checking. As these queues
become full, they begin to generate errors at higher voltages.

3.2 Architectural Optimizations that Manip-
ulate Slack and Activity Distributions
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Figure 6: Different microarchitectures exhibit different error
rate behaviors, demonstrating the potential to enhance the
energy efficiency of a timing speculative architecture through
microarchitectural techniques. (Notations described in Sec-
tion 5.3.)
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Figure 7: Typically, slack distributions of processors are dom-
inated by regular structures. Caches and register files ac-
count for a large fraction of the critical paths of a proces-
sor [21].

Now that we understand the relationships between slack,
activity, error rate, and architecture, we consider what must
be done to optimize processor architecture for improved tim-
ing speculation efficiency. In this section, we propose specific
architectural optimizations for general purpose processors
that manipulate their slack and activity distributions. In
Section 5, we show how these changes to the slack and ac-
tivity distributions translate into significant energy savings
for timing speculative architectures.
Regular Structures Typical energy-efficient processors
devote a large fraction of die area to structures with very
regular slack distributions, such as caches and register files.
These structures typically have high returns in terms of en-
ergy efficiency (performance/watt) during correct operation.
For example, 75-80% of the critical paths in the Alpha EV7
reside in the L1 caches and register files (Figure 7) [21].

While regular structures are architecturally attractive in
terms of processor efficiency for correct operation, such struc-
tures have slack distributions that allow little room for over-
scaling. This is because all paths in a regular structure are
similar in length, and when one path has negative slack,
many other paths also have negative slack. For example,
consider a cache. Any cache access includes the delay of ac-
cessing a cache line, all of which have the same delay. So, no
matter which cache line is accessed, the delay of the access
path will be nearly the same. Compare this to performing an
ALU operation, where the delay can depend on several fac-
tors including the input operands and the operation being
performed. When exploiting timing speculation-based er-
ror resilience for energy reduction, the energy-optimal error
rate is found by balancing the marginal benefit of reduc-
ing the voltage with the marginal cost of recovering from
errors [10]. When many paths fail together, error rate and
recovery overhead increase steeply upon overscaling, limiting
the benefits of timing speculation. Reducing the number or
delay of paths in a regular structure can reshape the slack
distribution, enabling more overscaling and better timing
speculation efficiency.

For the Alpha core, the register file is the most regular
critical structure. Figure 8 shows slack distributions for the
Alpha core with different register file sizes. As the size of the
register file increases, the regularity of the slack distribution
also increases, as does the average path delay. Figure 8
confirms that the spread of the slack distribution decreases
with a larger register file. Additionally, path slack values
shift toward zero (critical) slack due to the many critical
paths in the register file. Table 2 shows standard deviation
and mean values for the slack distributions of the processors
with different register file sizes. The table confirms that
regularity (represented by the standard deviation of slack)
increases, and average slack decreases with the size of the
register file. (Note that smaller σslack means a more regular
slack distribution.) We confirmed similar behavior when
the cache size was changed. For example, σslack reduced by
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Figure 8: Reducing the size of the register file (a regular
structure) increases the spread of the slack distribution, re-
sulting in fewer paths bunched around the point of critical
slack.

Table 2: Mean and standard deviation of path slack, relative
to the clock period, for the Alpha processor with different
register file sizes.

16reg 32reg 64reg
µslack 46% 41% 34%
σslack 10% 9% 6%

25% for the Alpha core and 23% for the MIPS core when
the cache size was increased from 2KB to 4KB.

Architectural design decisions that reshape the slack dis-
tribution by devoting less area to regular structures or mov-
ing regular structures off the critical path can enable more
overscaling and increase energy efficiency for timing spec-
ulative processors. In other words, additional power scal-
ing enabled by architectures with smaller regular structures
can outweigh the energy benefits of regularity when design-
ing a resilience-aware architecture. Since regularity-based
decisions may also impact power density, yield, and perfor-
mance, the final architectural decision should consider these
constraints in addition to the optimization metric. Section 5
presents examples showing that reducing the regularity of
the slack distribution can provide significant energy benefits
when employing Razor-based timing speculation.

Note that [18] also advocates several choices that may
affect the delay regularity of an architecture. However, un-
like [18], our goal is not necessarily to increase slack but
rather to reshape the slack and activity distributions of a
processor. Decisions advocated in [18] increase slack but
also make the slack distribution more regular. For example,
when choosing the architecture for an arithmetic unit, we
might advocate selection of a ripple-carry adder for its ir-
regular slack distribution and lower average case delay [22],
despite its higher critical path delay. [18], on the other hand,
would choose a Kogge-Stone adder to increase slack, also
making the slack distribution more regular.
Logic Complexity Typically, processors are architected
for energy efficiency during error free operation at a sin-
gle power/performance point and are not expected to scale
to other points. However, timing speculative architec-
tures achieve benefits by scaling beyond the typical oper-
ating point to eliminate conservative design margins. The
change in the shape of the slack distribution as voltage
changes depends on the delay scalability of the paths. There-
fore, unlike conventional architectures, architectures opti-
mized for timing speculation should consider the delay scal-
ability of different microarchitectural structures.

There are several architectural characteristics that affect
delay scalability that conventional processors ignore to vary-
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ing degrees. One factor that affects delay sensitivity to volt-
age scaling is logic complexity. In a conventional processor,
microarchitectural components are optimized largely oblivi-
ous to complexity, as long as the optimization improves pro-
cessor efficiency at the nominal design point. However, more
complex structures with more internal connections, higher
fanouts, deeper logic depth, and larger capacitance are more
sensitive to voltage scaling, potentially limiting overscaling
for a timing speculative processor.

Figure 9 demonstrates how the critical path delay of the
ALU of the OpenSPARC T1 [23] processor changes with
voltage scaling. Path P1 is the critical path at nominal volt-
age. However, the delay of P2 is more sensitive to voltage
scaling due to increased fanout. The slack distribution of a
processor with many complex logic structures becomes more
critical more quickly as voltage is scaled, limiting overscal-
ing.

To maximize the energy efficiency benefits of timing spec-
ulation, architectural decisions should be scalability-aware.
For example, complex architectural structures with high de-
gree of fanout should be optimized to reduce complexity, if
possible. Similarly, less complex implementations of archi-
tectural units can be chosen when performance is not signif-
icantly impacted. Example optimizations include changing
superscalar width and queue sizes – factors that strongly
influence logic complexity.. The capacitance of a logic
structure also influences the rate at which delay increases
with voltage reduction. If the impact on processor efficiency
is acceptable, less area should be devoted to complex and
centralized structures with high internal capacitance (e.g.,
rename logic, wakeup/select logic, bypass logic, etc.).

Comparing the Alpha and MIPS architectures again re-
veals how architectural changes affect the slack distribution.
Figure 10 compares the slack distributions of the MIPS and
Alpha processors. The MIPS slack distribution has both
higher mean and standard deviation than the distribution
for the Alpha processor, indicating reduced regularity and
complexity. These factors can be attributed to reduced word
length, simpler ALU design, smaller area devoted to the reg-
ister file, and a simpler, smaller instruction set, which results
in less complex control logic throughout the processor.
Utilization Modern processors consistently employ ar-
chitectural techniques such as pipelining, superscalar pro-
cessing, caching, etc. to improve utilization by reducing
the number of control and data hazards and mitigating long
latency memory delays. In general, when designing for cor-
rectness, architectural design choices that increase utiliza-
tion are desirable, as higher utilization of a processor core
often leads to better performance. However, architectures
with highly utilized critical paths are susceptible to high er-
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Figure 10: The reduced regularity and complexity of the
MIPS architecture, compared to the Alpha architecture, re-
sults in a slack distribution with greater average slack and
reduced regularity.

ror rates, since increased activity on negative slack paths
means more frequent errors. Architectural optimizations
that reduce the activity of critical paths have the potential to
reduce the error rate when timing speculation is performed.

The filter architectures above demonstrate how changes
to the architecture affect the activity distribution. Table 1
shows that average path activity can be varied over a range
of 6.8x by changing the amount of parallelism used in the
filter architecture.
Superscalar Width As noted above, superscalar width
has a strong impact on processor complexity [20]. In ad-
dition, changing the superscalar width can significantly im-
pact the activity distribution of a processor. We evaluate
the effect of changing the superscalar width of the MIPS
architecture. We observed average activity increase by up
to 25% for the superscalar version of the processor, com-
pared to the scalar version. Section 5 provides results that
show how architectural changes that affect the activity dis-
tribution alter the energy efficiency of Razor-based timing
speculation.

Note that activity reduction has associated costs in terms
of performance during correct operation. We do not advo-
cate reducing activity at all costs, but rather balancing the
error rate reduction and energy efficiency benefits of activity
reduction with the throughput benefits of high utilization.
Note also that a work such as [18] is unconcerned with the
activity distribution of a processor, since the goal is to pre-
vent errors, not to reshape the error distribution.

4. METHODOLOGY
Our experimental design flow takes an RTL design through

synthesis, placement, and routing, power estimation, tim-
ing analysis, area estimation, gate-level simulation, and er-
ror rate measurement. Designs are implemented with the
TSMC 65GP library (65nm), using Synopsys Design Com-
piler [24] for synthesis and Cadence SoC Encounter [5] for
layout. In order to evaluate the power and performance of
designs at different voltages and to provide Vth sizing options
for synthesis, Cadence Library Characterizer [3] was used to
generate low, nominal, and high Vth libraries at each volt-
age (Vdd) between 1.0V and 0.5V at 0.01V intervals. Power,
area, and timing analyses are performed in Synopsys Prime-
Time [25].

Gate-level simulation is performed with Cadence NC-Verilog [4]
to gather activity information for the design, which is sub-
sequently used for dynamic power estimation and error rate
measurement. Switching information generated during the
gate-level simulation is dumped to a value change dump
(VCD) file. To calculate the error rate of a design at a par-
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ticular voltage, toggled nets from the VCD file are traced
to find toggled paths in each cycle. The delays of toggled
paths are measured, and any cycle in which a negative slack
path toggles is counted as an error cycle. The error rate of
the design is equivalent to the cardinality of the set of er-
ror cycles divided by the total number of simulation cycles
(Xtot), as shown in Equation 1,

ER =
|
S

p∈Pn
χtoggle(p)|

Xtot

(1)

where Pn is the set of negative slack paths and χtoggle(p) is
the set of cycles in which path p toggles.

Figure 11 shows an example VCD file and illustrates the
path extraction method. The VCD file contains a list of tog-
gled nets in each cycle, as well as their new values. Toggled
nets in each cycle are marked, and these nets are traversed
to find toggled paths. A toggled path is identified when tog-
gled nets compose a connected path of toggled cells from a
primary input or flip-flop to a primary output or flip-flop.
In Figure 11, nets a, b, and c have toggled in the first and
fourth cycles (#1, #4), and nets d and c have toggled in the
second and fourth cycles (#2, #4). Two toggled paths are
extracted: a− b− c and d− c. Paths a− b− c and d− c both
have toggle rates of 0.4 (|χtoggle(p)| = 2 and Xtot = 5). If
both paths have negative slack, then timing errors will occur
in cycles #1, #2, and #4. Therefore, the error rate is 0.6
for this example.

In addition to inducing timing errors by increasing logic
delays, voltage scaling may prompt reliability concerns for
SRAM structures, such as insufficient Static Noise Margin
(SNM). Fortunately, the minimum energy voltage for our
processors is around 750mV, while production-grade SRAMs
have been reported to operate reliably at voltages as low
as 700mV [11]. Research prototypes have been reported to
work for even lower voltages. In any case, modern processors
typically employ a “split rail” design approach, with SRAMs
operating at the lowest safe voltage for a given frequency [8].

In our evaluation of general purpose processor architec-
tures, we run instruction traces from a set of 8 SPEC bench-
marks (ammp, art, equake, mcf, parser, swim, twolf, wup-
wise) on the processors. The traces are captured after fast-
forwarding the benchmarks to their early Simpoints [13].

We model Razor-based error resilience in our evaluations
(though our design principles are generally applicable to any
timing speculative architecture). Table 3 summarizes the
static and dynamic overheads incurred by our designs that
use Razor for error detection and correction. In our design
flow, we measure the percentage of die area devoted to se-
quential elements as well as the timing slack (with respect
to the shadow latch clock skew of 1/2 cycle) of any short

Table 3: Razor overheads for error-tolerant architectures.
Hold buffering Razor FF Counterflow Error Recovery

2% energy 23% energy <1% energy P cycles

Table 4: Design parameters and possible values.
I/D$ kB ALU/FPU INT Q-FP Q INT/FP Regs LQ/SQ
4,8,16,32 1,2,4 32-16,64-32 64,128 32,64

paths that need hold buffering. When evaluating energy
at the architecture level, we account for the increased area
and power of Razor flip-flops, hold buffering on short paths,
and implementation of the recovery mechanism. Most of the
static overhead is due to Razor FFs. Buffering overhead is
small, and the availability of cells with high and low Vth pro-
vides more control over path delay, eliminating the need for
buffering on most paths. We also add energy and through-
put overheads proportional to the error rate to account for
the dynamic cost of correcting errors over multiple cycles.
We model a counterflow pipeline Razor implementation [10]
with correction overhead proportional to the number of pro-
cessor pipeline stages (P ). We conservatively replace all
sequential cells with Razor FFs. This conservative account-
ing measure means we can also claim greater immunity to
aging-induced errors, e.g., due to NBTI, which can cause
paths to become critical over time.

To evaluate the effects of architectural optimizations on
the energy efficiency of timing speculation, we perform an
exploration of the processor design space defined by the pa-
rameters found in Table 4. All other parameters were chosen
to be identical to the OpenSPARC core. Because it would
be unreasonable to write, synthesize, layout, and test cus-
tom RTL for each of the hundreds of OpenSPARC processor
configurations that we study, we instead evaluate the power,
performance, and error rate of the architectures using a com-
bination of gate and microarchitecture-level simulation.

To estimate the performance and power of each architec-
ture, we use SMTSIM [26] with Wattch [2]. We also use
Wattch to report the activity factor for each microarchitec-
tural structure in each configuration, for each benchmark.
We approximate the error rate of an architecture as the
weighted sum of error rates from each of the microarchi-
tectural components that we vary in our exploration. To
obtain the component error rates, we used RTL from the
OpenSPARC T1 processor [23]. We modified the existing
OpenSPARC module descriptions to create an RTL descrip-
tion for each component configuration in Table 4 and used
our detailed design flow, as described above, to measure er-
ror rate and power at different voltages. Error rate at the
architecture level is given by the sum of the component er-
ror rates, where each component error rate is weighted by
the activity factor captured during architecture-level simu-
lation. While this error rate estimation technique is not as
accurate as our design-level technique, it provides suitable
accuracy to study the error behavior of many architectures
without requiring full gate-level evaluations of many com-
plex architectures.

5. RESULTS
In Section 2, we showed how the slack and activity distri-

butions determine the error rate. In Section 3, we showed
how architecture influences the slack and activity distribu-
tions. In this section, we demonstrate that architectural op-
timizations can significantly improve the energy efficiency of
timing speculation, first for simple DSP filter architectures,
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Figure 12: Energy efficiency comparison showing crossovers
between filter architectures for different voltage overscaling-
induced error rates.
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Figure 13: Power efficiency comparison showing crossovers
between filter architectures for different voltage overscaling-
induced error rates.

and then for general purpose processor cores (Alpha, MIPS,
and OpenSPARC).

5.1 DSP Filter Architectures
First, we compare the filters with respect to different en-

ergy efficiency metrics over a range of error rates to observe
how the optimal architecture changes for error free and error
resilient operation. Figure 12 compares the filter architec-
tures in terms of power-delay product. The low capacitance,
shorter paths, and highly regular slack distribution of the
pipelined architecture allow it to achieve better energy ef-
ficiency for error free operation. However, the clustering
of path delays in the pipelined design causes the error rate
to increase rapidly once errors begin to occur. This causes
power savings to quickly level off for the pipelined architec-
ture. Consequently, the blocked architecture becomes more
energy efficient at moderate error rates. While higher com-
plexity and deeper logic depth limit the amount of voltage
scaling for correct operation with the blocked architecture,
low activity allows the error rate of the filter to stay lower
longer as voltage is reduced, enabling an extended range
of power savings for the blocked design. The baseline and
folded architectures do not minimize energy over any range
of error rates, due to high activity and regularity of the
folded architecture and the increased sensitivity to voltage
scaling of the baseline (without the benefit of reduced activ-
ity that the blocked architecture has).

The choice of the efficiency metric (which expresses the
relative importance of power and performance to the archi-
tect) influences which architecture is most efficient at dif-
ferent error rates. Figure 13 compares the filters in terms
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Figure 14: Minimum energy for correct operation (denoted
by the dotted line) is achieved with the pipelined architec-
ture. When Razor is used to enable timing speculation, the
blocked architecture minimizes energy, demonstrating that
the architecture that minimizes energy by exploiting error
resilience is different than the optimal architecture for error
free operation.

of power efficiency. Both the pipelined and folded archi-
tectures are approximately the same in terms of sensitivity
to voltage scaling and regularity. The pipelined filter has
the best power efficiency for low error rates, due to extra
slack afforded by the increased regularity of the slack dis-
tribution. This enables more scalability before the onset of
errors. However, regularity results in a steep increase in
the error rate, allowing the folded architecture to gain the
power efficiency edge for mid-range error rates. The folded
architecture has reduced complexity, fewer paths, and less
fanout, resulting in the best scalability of any architecture.
It also has low power consumption due to simple logic and
low area (Figure 5). Nevertheless, though it has better scal-
ability and low power, once it starts making errors, its error
rate increases dramatically, due to increased activity. This
allows the block filter, with reduced activity, to take the lead
at high error rates.

Figure 14 compares the energy consumption of Razor im-
plementations of the filter architectures. While the pipelined
architecture has the best energy efficiency for error free op-
eration, the blocked architecture consumes the least energy
for Razor-based timing speculation (29% less energy than
the error-free pipelined filter). The reduced activity of the
blocked filter allows more voltage scaling before the energy-
optimal error rate for Razor is reached. Furthermore, the
blocked filter, having fewer flip-flops and pipeline stages,
has reduced implementation and recovery overheads for Ra-
zor, making it a more efficient choice for exploiting error
resilience. Note that other filter architectures, including the
optimal architecture for correct operation do not achieve
energy reduction with Razor, either due to static overheads
(Razor flip-flops and buffering of short paths) or dynamic
overheads (power and energy costs of error recovery).

To summarize, our experiments with different DSP filter
architectures validate our claim that the optimal architec-
ture for correctness may not be efficient for exploiting timing
error resilience. The results also confirm that architectural
optimizations that alter the slack and activity distributions
have the potential to increase the energy efficiency of timing
speculation.

5.2 General Purpose Processor Architectures
In this section, we evaluate how changes to the Alpha and

MIPS architectures that affect their slack and activity distri-



Alpha Core Varying Register File Size

3.0E-01
4.0E-01

5.0E-01
6.0E-01

7.0E-01
8.0E-01

9.0E-01
1.0E+00

1.1E+00

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Error Rate

E
n

er
g

y*
D

el
ay

^2
   

   
.

32reg 16reg

Figure 15: A larger register file increases performance, but
also results in increased regularity and activity, hindering
voltage scaling and energy efficiency at larger error rates.
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Figure 16: The 16-register design, having reduced regularity
and activity, achieves significant energy savings with Razor,
while the 32-register design, which was optimal for correct
operation, achieves almost no benefit.

butions (as described in Section 3.2) influence their energy
efficiency for timing speculation. Figure 15 compares the
energy efficiency of the Alpha processor for varying register
file sizes. The design with a larger register file has higher
throughput and better energy efficiency when both proces-
sors operate error free. However, the higher average path
delay and path delay regularity associated with the larger
register file hinder voltage scaling and energy efficiency at
non-zero error rates. Furthermore, high performance corre-
sponds to higher activity, which causes error rate to increase
more quickly for the processor with the larger register file.

Because of the higher throughput of the 32-register design,
there is a small range of error rates over which the 32-register
design regains the efficiency advantage when the many reg-
ular paths in the 16-entry register file begin to have nega-
tive slack, and error rate begins to increase more rapidly.
However, the design with fewer registers is able to scale to
a much lower voltage for higher error rates because of its
lower activity, increased average slack, and more gradually
increasing error rate resulting from reduced regularity of the
slack distribution.

Figure 16 shows energy consumption for the Alpha core
with Razor-based timing speculation, confirming that the
architecture with a smaller register file exploits timing er-
ror resilience more efficiently. The 16-register architecture
reduces energy by 21% with respect to the optimal architec-
ture for correctness, while the optimal error free architecture
barely procures any energy savings (2%) when using Razor.
Again, we observe significantly improved benefits from op-
timizing the architecture to exploit timing error resilience
while the optimal error free architecture sees only a small
energy reduction with timing speculation.

We evaluated the energy efficiency of the MIPS proces-
sor at different error rates when the superscalar width (and
number of ALUs) was increased. The main effect on the er-
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Figure 17: Increased throughput for the multiple-ALU ar-
chitecture results in better energy efficiency for error free
operation, but increased activity results in worse efficiency
at most non-zero error rates.
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Figure 18: The more complex superscalar architecture has
throughput and energy benefits for error free operation but
fails to exploit Razor for any energy savings with timing spec-
ulation. The simpler, scalar design achieves substantial en-
ergy savings with Razor.

ror rate from increasing the superscalar width of the proces-
sor is due to increased activity. Not only does this architec-
tural change increase the throughput (and thus the activity
factor) of the processor, increasing the width also increases
the number of paths that are active when the processor is
able to exploit ILP on multiple ALUs.

Figure 17 compares a single-ALU version of the MIPS ar-
chitecture against one with two ALUs. The multiple-ALU
architecture has better energy efficiency for correct opera-
tion due to increased throughput (up to 21% throughput re-
duction for the scalar case, 13% on average). However, when
operating at non-zero error rates, the increased activity and
complexity of the multiple-ALU architecture causes the er-
ror rate to increase more rapidly, limiting voltage scaling for
higher error rates. More instructions per cycle means more
errors per cycle, and more active ALUs means more paths
causing errors when voltage is scaled down. The higher ac-
tivity of the multiple-ALU architecture makes the single-
ALU architecture more energy-efficient for most non-zero
error rates.

Figure 18 confirms that the scalar design exploits timing
error resilience more efficiently. Whereas the superscalar
pipeline achieves better energy efficiency for correct opera-
tion, increased complexity and activity, along with increased
implementation and recovery overheads for Razor prevent
the multiple-ALU architecture from achieving energy ben-
efits with Razor. The single-ALU architecture has a more
gradually increasing error rate, allowing extended voltage
scalability and an 18% energy reduction with respect to the
energy-optimal architecture for correctness.

To summarize, our experimental results with the Alpha
and MIPS cores further confirm the benefits of architect-
ing to exploit timing error resilience and demonstrate that



architectures that have been optimized for energy-efficient
error free operation see little or no energy benefits when ex-
ploiting timing speculation. These results re-confirm that
changing the slack and activity distributions with architec-
tural optimizations can improve the energy efficiency of tim-
ing speculation.

5.3 Design Space Exploration for OpenSPARC
In the previous section, we performed analyses of vari-

ous architectural optimizations to validate our insights on
resilience-optimized architectures. In this section, we present
an exploration of the design space for resilience-optimized
general purpose processor architectures to further confirm
that the benefits of exploiting error resilience can be signif-
icantly enhanced by optimizing the architecture for timing
speculation.

In our exploration, we evaluated nearly 400 architectural
configurations by varying instruction and data cache sizes
(ic,dc), the number of integer and floating point functional
units (alu), instruction queue size (q), the number of physi-
cal registers (reg), and the size of the load/store queue (lsq).
A tuple (ic,dc,alu,q,reg,lsq) denotes the parameters of a par-
ticular architecture of interest. For each architecture, we
estimated power, performance, and error rate as described
in Section 4 and used these data to characterize energy con-
sumption of the architectures at different error rates.

Figure 19 compares the energy efficiency of three architec-
tures that emerged as the optimal design points for different
ranges of error rates. The optimal architecture for error
free operation (ic8,dc16,alu1,q32,reg128,lsq64) has a moder-
ate instruction cache size, larger data cache, and maximum
sizes for queues and register files. For error free operation,
this configuration achieves good performance and has low
power, making it the energy-optimal architecture. However,
the large cache and register file sizes result in a highly reg-
ular slack distribution, so that many paths fail in groups as
voltage is scaled. The increased complexity and deeper logic
of large instruction and load/store queues, while increasing
performance, also makes the architecture fail sooner with
overscaling.

For low to mid-range error rates, a different energy-optimal
architecture (ic8,dc8,alu1,q32,reg128,lsq32) emerges. This
architecture has a smaller data cache and load/store queue,
resulting in reduced regularity and complexity. The im-
mediate effect of increased spread and average slack in the
slack distribution is that voltage can be scaled further be-
fore the error rate begins to increase dramatically, resulting
in more power savings for timing speculation before reach-
ing an energy-optimal error rate. When operating at low
to mid-range error rates, the resilience-optimized architec-
ture has 6% energy (W/IPC) benefits over the optimal er-
ror free architecture. Energy reduction is mainly due to
enhanced power scaling (15% power reduction, on average),
since throughput is reduced by 7% with respect to the op-
timal error free architecture. Thus, energy benefits will in-
crease for a metric that weights power more heavily.

Note that compared to the optimal error free architecture,
the optimal for low to mid-range error rates decreases the
size of the load/store queue (LSQ), but not the instruction
queue. This is primarily because the LSQ becomes full more
often than the IQ, resulting in a longer dynamic critical path
that limits voltage scaling. To a second degree, the size of
the instruction queue also has a more pronounced effect on
performance.

For higher error rates (around 6% and up), an architecture
with minimum-sized data cache and register file (ic8,dc4,alu1,
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Figure 19: The energy-optimal architecture is different for
different ranges of voltage overscaling-induced error rates.
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Figure 20: The resilience-optimized architecture achieves sig-
nificant energy savings with Razor, while the optimal error
free architecture sees only minor benefits.

q16,reg64,lsq32) consumes the least energy. In addition to
the significantly reduced regularity of the slack distribution
(reduced area devoted to regular structures and reduced crit-
icality of regular structures), this architecture also has small
queue sizes with decreased complexity and better scalabil-
ity. The throughput of this architecture is an additional 27%
lower than the correctness-optimized baseline; however, the
corresponding reduced activity actually has some benefit in
terms of energy, since it results in a more gradually increas-
ing error rate as voltage is reduced. The optimal architecture
for higher error rates has the most gradually increasing error
rate, enabling significant voltage scaling and an average of
38% energy reduction at higher error rates, with respect to
the optimal error free architecture.

Graceful failure in the presence of overscaling translates
into a lower dynamic energy overhead when exploiting Razor-
based timing speculation. Figure 20 echoes the results of
our previous experiments, showing that the optimal archi-
tecture for correctness achieves only minor (5%) energy ben-
efits with Razor, while the resilience-optimized architecture
reduces energy by 25% with respect to the error free mini-
mum energy.

Since resilience-optimized architectures typically reduce
the sizes of regular structures like caches and use simpler
architectural features that, e.g., may throttle ILP, they may
sacrifice some throughput in order to reduce energy. Table 5
shows throughput reduction for the resilience-aware opti-
mizations we evaluated in this section. Since we employed
voltage overscaling, we demonstrate power and energy sav-
ings at the expense of some throughput. Note, however, that
we could also demonstrate performance gains by overscaling
frequency rather than voltage.



Table 5: Throughput Reduction for Resilience-aware Opti-
mizations.

REG (32 → 16) ALU (2 → 1) OpenSPARC
6% 21% 27%

6. RELATED WORK
This work demonstrates that the slack and activity dis-

tributions of a processor influence the error rate and the
efficiency of timing speculation. Furthermore, architectural
optimizations have the potential to alter the slack and activ-
ity distributions to increase the energy efficiency of timing
speculation.

The closest related work [28] evaluates how to optimize
pipeline depth to improve the efficiency of error resilient pro-
cessors, since the cost of recovery is proportional to pipeline
depth in many cases. Pipeline depth also has some effect
on the slack distribution, but activity is largely unchanged.
Another circuit level work [22, 19] compares the efficiency
of different adder architectures at different error rates. Our
work is at the architecture level, and we provide guidance
on how to optimize the architecture of a processor to alter
both the slack and activity distributions and increase the
efficiency of timing speculation. Unlike these works, we also
perform a full design space exploration for resilience-aware
architectures.

A related body of work exists at the level of design tech-
niques that optimize circuit modules for a target error rate [15,
6] or to fail gracefully in response to voltage overscaling [16,
14] through cell-based optimizations. Whereas these design-
level techniques reshape the slack distribution or reliability
of a circuit module, the architecture-level techniques pre-
sented in this paper target both the slack and activity dis-
tributions of a processor. Also, architecture-level optimiza-
tions can have a greater impact on the slack distribution
of a processor, since for a design-level technique, the mi-
croarchitecture and synthesized netlist are fixed, and the
ability of cell sizing to reshape path slack may be limited.
This work demonstrates that architecture-level changes can
improve the energy efficiency of a timing speculative archi-
tecture. A promising direction of work is to investigate co-
optimization at the architecture and design levels to reshape
the slack and activity distributions and maximize the energy
efficiency benefits provided at each level.

Another relevant related work [18] explores microarchi-
tectural parameter selection to optimize processor perfor-
mance in the presence of process variations. The authors
aim to reduce performance loss due to process variations
by adding slack to the critical paths of a processor where
possible. However, unlike our work, [18] attempts to pre-
vent the onset of errors; they are not concerned with the
activity distribution of the processor or scalability after the
point where errors begin to occur. Our work, on the other
hand, focuses on the error rate distribution. Since they are
only concerned with correct operation, they have no reason
to consider the activity distribution of a processor or the
shape of the slack distribution. We consider all these fac-
tors in our approach to architecture, since they determine
the energy benefits achievable through the exploitation of
timing speculation

7. CONCLUSIONS
The energy inefficiencies of traditional, conservative de-

sign approaches have led to the introduction of error re-
silient design techniques that relax correctness in order to
save power and energy. Until now, these design techniques

have been applied to architectures that have been optimized
for correctness.

In this work, we have demonstrated that the energy-
optimal error free architecture may not be the optimal archi-
tecture for exploiting voltage/reliability tradeoffs. In other
words, one would make different, sometimes counterintu-
itive, architectural design choices when optimizing a proces-
sor to perform voltage/reliability tradeoffs than when opti-
mizing for correct operation. Consequently, the desired er-
ror rate and the error resilience mechanism should be taken
into account when choosing the architecture for an error re-
silient design. In addition to characterizing the effects of
architectural optimizations on the slack and activity distri-
butions, we have demonstrated that they can change the
error rate behavior. Furthermore, we have demonstrated
with experimental results for several DSP filter and general
purpose architectures that optimizing architecture for volt-
age/reliability tradeoffs can significantly increase the energy
efficiency of timing speculation. Energy efficiency benefits of
up to 29% are achieved for Razor-based timing speculation.
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